forked from triton-inference-server/client
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmemory_growth_test.py
98 lines (86 loc) · 4.17 KB
/
memory_growth_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#!/usr/bin/env python3
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import numpy as np
import sys
import tritonclient.grpc as grpcclient
import tritonclient.http as httpclient
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-v',
'--verbose',
action="store_true",
required=False,
default=False,
help='Enable verbose output')
parser.add_argument('-i',
'--protocol',
type=str,
required=False,
default='HTTP',
help='Protocol (HTTP/gRPC) used to communicate with ' +
'the inference service. Default is HTTP.')
parser.add_argument('-r',
'--repetitions',
type=int,
required=False,
default=100,
help='Number of inferences to run. Default is 100.')
FLAGS = parser.parse_args()
model_name = "custom_identity_int32"
# Create the data for the input tensor.
input0_data = np.arange(start=0, stop=16, dtype=np.int32)
input0_data = np.expand_dims(input0_data, axis=0)
for i in range(FLAGS.repetitions):
if FLAGS.protocol.lower() != "grpc":
triton_client = httpclient.InferenceServerClient(
url="localhost:8000", verbose=FLAGS.verbose)
else:
triton_client = grpcclient.InferenceServerClient(
url="localhost:8001", verbose=FLAGS.verbose)
# Infer
inputs = []
outputs = []
if FLAGS.protocol.lower() != "grpc":
inputs.append(httpclient.InferInput('INPUT0', [1, 16], "INT32"))
inputs[0].set_data_from_numpy(input0_data, binary_data=True)
outputs.append(
httpclient.InferRequestedOutput('OUTPUT0', binary_data=True))
else:
inputs.append(grpcclient.InferInput('INPUT0', [1, 16], "INT32"))
inputs[0].set_data_from_numpy(input0_data)
outputs.append(grpcclient.InferRequestedOutput('OUTPUT0'))
results = triton_client.infer(model_name=model_name,
inputs=inputs,
outputs=outputs)
# Get the output arrays from the results and verify
output0_data = results.as_numpy('OUTPUT0')
if ((output0_data.dtype != input0_data.dtype) or
(output0_data.shape != input0_data.shape) or
not (np.array_equal(output0_data, input0_data))):
print("incorrect output")
sys.exit(1)