forked from PGCSEDS-IIITH/hackathon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathml_utils.py
58 lines (45 loc) · 2 KB
/
ml_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
from sklearn.ensemble import RandomForestClassifier
from pandas import read_csv
import h2o
from h2o.automl import H2OAutoML
import subprocess
# define a Gaussain NB classifier
clf = RandomForestClassifier(max_depth=3, random_state=0)
# define the class encodings and reverse encodings
classes = {0: False, 1: True}
r_classes = {y: x for x, y in classes.items()}
# function to train and load the model during startup
def load_model():
# load the dataset from the official sklearn datasets
# X, y = datasets.load_iris(return_X_y=True)
df=read_csv("dataset/bug_pred.csv", sep=",")
X = df.drop("defects", axis=1)
y = df["defects"]
# do the test-train split and train the model
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
clf.fit(X_train, y_train)
# calculate the print the accuracy score
acc = accuracy_score(y_test, clf.predict(X_test))
print(f"Model trained with accuracy: {round(acc, 3)}")
#Generating Explainability File
subprocess.call(["jupyter","nbconvert","--to","notebook","--inplace","--execute","dataset/explainable_AI_starter.ipynb"])
subprocess.call(["jupyter","nbconvert","dataset/explainable_AI_starter.ipynb","--no-input","--to","html"])
print("Explainability file generated")
# def load_explainability():
# function to predict the flower using the model
def predict(query_data):
x = list(query_data.dict().values())
prediction = clf.predict([x])[0]
print(f"Model prediction: {classes[prediction]}")
return classes[prediction]
# function to retrain the model as part of the feedback loop
def retrain(data):
# pull out the relevant X and y from the FeedbackIn object
X = [list(d.dict().values())[:-1] for d in data]
y = [r_classes[d.defect] for d in data]
# fit the classifier again based on the new data obtained
clf.fit(X, y)