-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
59 lines (49 loc) · 1.99 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
import torch.nn as nn
class Generator(nn.Module):
def __init__(self, in_channels, out_channels, ngf=64):
super(Generator, self).__init__()
model = [
# (in_channels, 1, 1)
nn.ConvTranspose2d(in_channels, ngf * 4, kernel_size=4, stride=1, padding=0, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(inplace=True),
# (ngf * 4, 4, 4)
nn.ConvTranspose2d(ngf * 4, ngf * 2, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(inplace=True),
# (ngf * 2, 8, 8)
nn.ConvTranspose2d(ngf * 2, ngf, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(inplace=True),
# (ngf, 16, 16)
nn.ConvTranspose2d(ngf, out_channels, kernel_size=4, stride=2, padding=3),
nn.Sigmoid()
# (out_channels, 28, 28)
]
self.model = nn.Sequential(*model)
def forward(self, x):
return self.model(x)
class Discriminator(nn.Module):
def __init__(self, in_channels, ndf=64):
super(Discriminator, self).__init__()
model = [
# (in_channels, 28, 28)
nn.Conv2d(in_channels, ndf, kernel_size=4, stride=2, padding=3, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# (ndf, 16, 16)
nn.Conv2d(ndf, ndf * 2, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
# (ndf * 2, 8, 8)
nn.Conv2d(ndf * 2, ndf * 4, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
# (ndf * 4, 4, 4)
nn.Conv2d(ndf * 4, 1, kernel_size=4, stride=1, padding=0),
nn.Sigmoid()
# (1, 1, 1)
]
self.model = nn.Sequential(*model)
def forward(self, x):
return self.model(x)