-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
148 lines (98 loc) · 5.38 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import plot_confusion_matrix, plot_roc_curve, plot_precision_recall_curve
from sklearn.metrics import precision_score, recall_score
def main():
st.title('Binary Classification Web App')
st.sidebar.title('Binary Classifier App')
st.markdown("Are Your Mashroom poisonous?")
st.sidebar.markdown("Are Your Mashroom poisonous?")
@st.cache(persist = True)
def load_data():
df = pd.read_csv('data/mushrooms.csv')
le = LabelEncoder()
for col in df.columns:
df[col] = le.fit_transform(df[col])
return df
@st.cache(persist= True)
def split(df):
y = df.type
x = df.drop(columns= ['type'])
xtrain, xtest, ytrain, ytest = train_test_split(x,y, test_size = 0.3, random_state = 0)
return xtrain, xtest, ytrain, ytest
def plot_metrics(metrics_list):
if 'Confusion Matrix' in metrics_list:
st.subheader('Confusion Matrix')
plot_confusion_matrix(model, xtest, ytest, display_labels = class_names)
st.pyplot()
if 'ROC Curve' in metrics_list:
st.subheader('ROC Curve')
plot_roc_curve(model, xtest, ytest)
st.pyplot()
if 'Precision-Recall Curve' in metrics_list:
st.subheader('Precision-Recall Curve')
plot_precision_recall_curve(model, xtest, ytest)
st.pyplot()
df = load_data()
xtrain, xtest, ytrain, ytest = split(df)
class_names = ['edible','poisonous']
st.sidebar.subheader('Choose Classifier')
classifier = st.sidebar.selectbox("Classifier", ("Support Vector Machine(SVM)", "Logistic Regression", "Random Classifier"))
if classifier == "Support Vector Machine(SVM)":
st.sidebar.subheader("Model HyperParameter")
c = st.sidebar.number_input("C (Regularization parameter)", 0.01,10.0, step = 0.01, key= 'c')
kernel = st.sidebar.radio("kernel", ("rbf", "linear"), key = 'kernel')
gamma = st.sidebar.radio("Gamma (Kernel Coefficient", ('scale', 'auto'), key = 'gamma')
metrics = st.sidebar.multiselect("What metrics to plot?", ("Confusion Matrix", "ROC Curve", "Precision-Recall Curve"))
if st.sidebar.button("Classify", key = 'classify'):
st.subheader('Support Vector Machine (SVM) Results')
model = SVC(C= c, kernel=kernel,gamma= gamma)
model.fit(xtrain, ytrain)
accuracy = model.score(xtest, ytest)
ypred = model.predict(xtest)
st.write("Accuracy: ", accuracy.round(2))
st.write("Precision", precision_score(ytest, ypred, labels = class_names).round(2))
st.write("Recall: ", recall_score(ytest, ypred, labels = class_names).round(2))
plot_metrics(metrics)
if classifier == "Logistic Regression":
st.sidebar.subheader("Model HyperParameter")
c_lr = st.sidebar.number_input("C (Regularization parameter)", 0.01,10.0, step = 0.01, key= 'c_lr')
max_iter = st.sidebar.slider("maximum number of iteration", 100, 500, key = 'max_iter')
metrics = st.sidebar.multiselect("What metrics to plot?", ("Confusion Matrix", "ROC Curve", "Precision-Recall Curve"))
if st.sidebar.button("Classify", key = 'classify'):
st.subheader('Logistic Regression Results')
model = LogisticRegression(C= c_lr, max_iter= max_iter)
model.fit(xtrain, ytrain)
accuracy = model.score(xtest, ytest)
ypred = model.predict(xtest)
st.write("Accuracy: ", accuracy.round(2))
st.write("Precision", precision_score(ytest, ypred, labels = class_names).round(2))
st.write("Recall: ", recall_score(ytest, ypred, labels = class_names).round(2))
plot_metrics(metrics)
if classifier == "Random Classifier":
st.sidebar.subheader("Model HyperParameter")
n_estimator = st.sidebar.number_input("Number of Trees in the forest", 100,5000, step =10, key= 'n_estimator')
max_depth = st.sidebar.slider("Maximum Depth of the tree", 1, 20, step = 1,key = 'max_depth')
bootstrap = st.sidebar.radio("Bootstrap samples when building trees", ('True', 'False'), key ='bootstrap')
metrics = st.sidebar.multiselect("What metrics to plot?", ("Confusion Matrix", "ROC Curve", "Precision-Recall Curve"))
if st.sidebar.button("Classify", key = 'classify'):
st.subheader('Random Forest Result')
model = RandomForestClassifier(n_estimators=n_estimator, max_depth= max_depth, bootstrap=bootstrap)
model.fit(xtrain, ytrain)
accuracy = model.score(xtest, ytest)
ypred = model.predict(xtest)
st.write("Accuracy: ", accuracy.round(2))
st.write("Precision", precision_score(ytest, ypred, labels = class_names).round(2))
st.write("Recall: ", recall_score(ytest, ypred, labels = class_names).round(2))
plot_metrics(metrics)
if st.sidebar.checkbox('Show raw data', False):
st.subheader('Mushroom Data Set (Cassification')
st.write(df)
if __name__ == '__main__':
main()