-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprimes_lists.py
62 lines (47 loc) · 1.55 KB
/
primes_lists.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from math import log
from itertools import combinations
from lib import primes_to_n, memoized
from time import time
P = 32768
K = 3
def pad(nums, m):
return [x + [0] * (m - len(x)) for x in nums]
def generate_funcs():
return pad(map(num2bin, range(2**(2**K))), 2**K)
def get_funcs2():
return range(2**K)
def bin2num(string):
r = 0
for i in reversed(string):
r = r << 1
r += i
return r
def num2bin(n):
if n == 0: return [0]
return [(n/(2**i)) % 2 for i in range(int(log(n, 2)) + 1)]
def apply(func, string):
return func[bin2num(string)]
def bias(func, strings):
s = (N/(2**K)) * sum(func)
t = sum([func[bin2num(string)] for string in strings])
return t - s
if __name__ == "__main__":
#rand_strings = [''.join(random.choice('01') for j in range(L)) for i in range(N)]
assert(bin2num([1,1,0]) == 3)
assert(num2bin(3) == [1,1])
assert(pad([[1], [1,1]], 3) == [[1,0,0], [1,1,0]])
start = time()
primes = [x/2 % (P/4) for x in primes_to_n(P) if x > P/2]
L = int(log(primes[-1], 2)) + 1
N = len(primes)
prime_strings = pad(map(lambda x: num2bin(x), primes), L)
best = 0
funcs = generate_funcs()
for i in combinations(range(L), K):
for func in funcs:
b = bias(func, [map(lambda x: string[x], i) for string in prime_strings])
if b > best - 3:
print "bias of function " + str(func) + " on bits " + str(i) + ": ", b
if b > best:
best = b
print time()-start