-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprediction.py
218 lines (166 loc) · 7.41 KB
/
prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""
This module contains the code that perform prediction on a given image or images
"""
import cv2
import argparse
import numpy as np
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
import utils.utils as utils
from utils.img_utils import alpha_overlay, normalize
from data_processing.road_dataset import load_image_, numpy_to_tensor
from models.reknetm1 import RekNetM1
from models.reknetm2 import RekNetM2
from models.lidcamnet_fcn import LidCamNet
from misc.transforms import test_trasformations
def predict(models: nn.ModuleList, img_path, path2save, thresh=0.5):
"""
Perfrom prediction for single image
Params:
models : NN models
img_path : path to an image
path2save :
thresh : preiction threshold
"""
img_path = Path(img_path)
if not img_path.exists():
raise FileNotFoundError("File '{}' not found.".format(str(img_path)))
src_img = cv2.imread(str(img_path))
transform = test_trasformations()
augmented = transform(image=src_img)
src_img = augmented["image"]
img2predict = src_img.copy()
img2predict = cv2.cvtColor(img2predict, cv2.COLOR_BGR2RGB).astype(dtype=np.float32)
img2predict = normalize(img2predict)
img2predict = utils.to_gpu(numpy_to_tensor(img2predict).unsqueeze(0).contiguous()).float()
if len(models) == 1:
#evaluate mode
model = models[0].eval()
with torch.set_grad_enabled(False):
predict = model(img2predict)
#Probs
predict = F.sigmoid(predict).squeeze(0).squeeze(0)
mask = (predict > thresh).cpu().numpy().astype(dtype=np.uint8)
overlayed_img = alpha_overlay(src_img, mask)
else:
#Averaging all predictions for one point of test data
sum_predicts = utils.to_gpu(torch.zeros((1, 1, src_img.shape[0], src_img.shape[1])).float())
for model in models:
model.eval()
with torch.set_grad_enabled(False):
predict = model(img2predict)
sum_predicts += F.sigmoid(predict)
predict = (sum_predicts / len(models)).squeeze(0).squeeze(0).float()
mask = (predict > thresh).cpu().numpy().astype(dtype=np.uint8)
overlayed_img = alpha_overlay(src_img, mask)
#save
cv2.imwrite(path2save, overlayed_img)
#show
cv2.imshow("Predicted", overlayed_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
print("Image '{}' was processed successfully.".format(str(img_path)))
def predict_batch(models: nn.ModuleList, path2images, path2save, thresh=0.5):
"""
Perfrom prediction for a batch images
Params:
models : NN models
path2images : path to an image
path2save : should be a dir
thresh : preiction threshold
"""
path2images = Path(path2images)
path2save = Path(path2save)
if not path2images.is_dir():
raise RuntimeError("File '{}' is not dir.".format(str(path2images)))
if not path2save.is_dir():
raise RuntimeError("File '{}' is not dir.".format(str(path2save)))
imgs_paths = sorted(list(path2images.glob("*")))
count_processed = 0
for idx, ip in enumerate(imgs_paths):
src_img = cv2.imread(str(ip))
transform = test_trasformations()
augmented = transform(image=src_img)
src_img = augmented["image"]
img2predict = src_img.copy()
img2predict = cv2.cvtColor(img2predict, cv2.COLOR_BGR2RGB).astype(dtype=np.float32)
img2predict = normalize(img2predict)
img2predict = utils.to_gpu(numpy_to_tensor(img2predict).unsqueeze(0).contiguous()).float()
if len(models) == 1:
model = models[0].eval()
with torch.set_grad_enabled(False):
predict = model(img2predict)
#Probs
predict = F.sigmoid(predict).squeeze(0).squeeze(0)
mask = (predict > thresh).cpu().numpy().astype(dtype=np.uint8)
overlayed_img = alpha_overlay(src_img, mask)
else:
#Averaging all predictions for one point of test data
sum_predicts = utils.to_gpu(torch.zeros((1, 1, src_img.shape[0], src_img.shape[1])).float())
for model in models:
model.eval()
with torch.set_grad_enabled(False):
predict = model(img2predict)
sum_predicts += F.sigmoid(predict)
predict = (sum_predicts / len(models)).squeeze(0).squeeze(0).float()
mask = (predict > thresh).cpu().numpy().astype(dtype=np.uint8)
overlayed_img = alpha_overlay(src_img, mask)
#save
cv2.imwrite(str(path2save / "{}".format(ip.name)), overlayed_img)
print("Image '{}' was processed successfully.".format(str(ip)))
count_processed += 1
print("{} images were processed.".format(count_processed))
if __name__ == "__main__":
parser = argparse.ArgumentParser("Prediction module parameters.")
parser.add_argument("--mode", type=str, default="single", help="Model of prediction. Can be 'single' of 'multiple'.")
parser.add_argument("--model-path", type=str, required=True, help="Path to a model or models. If path is a dir then models from this dir will be averaged.")
parser.add_argument("--model-type", type=str, default="reknetm1")
parser.add_argument("--path2image", type=str, required=True, help="Path to a single image or dir of images.")
parser.add_argument("--path2save", type=str, required=True, help="Path to save. Can be a single file or dir.")
parser.add_argument("--thresh", type=float, default=0.5)
args = parser.parse_args()
model_path = Path(args.model_path)
if args.model_type == "reknetm1":
model = RekNetM1(num_classes=1,
ebn_enable=True,
dbn_enable=True,
upsample_enable=False,
act_type="celu",
init_type="He")
print("Uses RekNetM1 as the model.")
elif args.model_type == "reknetm2":
model = RekNetM2(num_classes=1,
ebn_enable=True,
dbn_enable=True,
act_type="celu",
upsample_enable=False,
init_type="He")
print("Uses RekNetM2 as the model.")
elif args.model_type == "lcn":
model = LidCamNet(num_classes=1,
bn_enable=False)
print("Uses LidCamNet as the model.")
else:
raise ValueError("Unknown model type: {}".format(args.model_type))
if torch.cuda.is_available():
model = nn.DataParallel(model, device_ids=None).cuda()
model_list = nn.ModuleList()
if model_path.is_file():
state = torch.load(str(model_path))
model.load_state_dict(state["model"])
model_list.append(model)
else:
models_paths = sorted(list(model_path.glob("*")))
for mp in models_paths:
p = mp / "model.pt"
state = torch.load(str(p))
model.load_state_dict(state["model"])
model_list.append(model)
if args.mode == "single":
predict(models=model_list, img_path=args.path2image, path2save=args.path2save, thresh=args.thresh)
elif args.mode == "multiple":
predict_batch(models=model_list, path2images=args.path2image, path2save=args.path2save, thresh=args.thresh)
else:
raise ValueError("Unknown mode: {}".format(args.mode))