-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
58 lines (42 loc) · 1.76 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import yaml
import torch
from torch.optim.lr_scheduler import LambdaLR
from torchvision.datasets import MNIST, CIFAR10
from src.diffusion import Diffusion
from src.unet import UNet
from src.trainer import Trainer
from utils import plot_stats
from load import load
DATASETS = {
"mnist" : (MNIST, 1, (2, 2, 2, 2)), # 28x28 -> 32x32
"cifar" : (CIFAR10, 3, (0, 0, 0, 0)),
}
def main(unet_params, batch_size, max_lr, warmup_steps, epochs,
data_str, load_model=True, save_model=True, device="cuda"):
assert data_str in DATASETS.keys()
torch_dataset, input_channels, padding = DATASETS[data_str]
dataloaders = load(torch_dataset, input_channels, batch_size)
network = UNet(**unet_params, input_channels=input_channels,
padding=padding)
model = Diffusion(network, device).to(device)
if load_model:
model.load_state_dict(torch.load("saved/diffusion.pt"))
optim = torch.optim.Adam(model.parameters(), lr=max_lr)
warmup_func = lambda step: min(1, step / warmup_steps)
scheduler = LambdaLR(optim, warmup_func)
trainer = Trainer(dataloaders, optim, scheduler)
train_losses, valid_losses = trainer.train(model, epochs, validate=True,
save_model=save_model, device=device)
plot_stats(train_losses, valid_losses)
return model
if __name__ == "__main__":
device = "cuda" if torch.cuda.is_available() else "cpu"
with open("unet.yaml", "r") as stream:
unet_params = yaml.safe_load(stream)
batch_size = 128
max_lr = 2e-4
warmup_steps = 5000
epochs = 50
model = main(unet_params, batch_size, max_lr, warmup_steps,
epochs, data_str="mnist", load_model=False,
save_model=True, device=device)