-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathffnet_quanteval.py
executable file
·224 lines (189 loc) · 7.66 KB
/
ffnet_quanteval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#!/usr/bin/env python3
# -*- mode: python -*-
# =============================================================================
# @@-COPYRIGHT-START-@@
#
# Copyright (c) 2022 of Qualcomm Innovation Center, Inc. All rights reserved.
#
# @@-COPYRIGHT-END-@@
# =============================================================================
""" AIMET Quantsim code for FFNet """
# pylint:disable = import-error, wrong-import-order
# adding this due to docker image not setup yet
# General Python related imports
from __future__ import absolute_import
from __future__ import division
import os
import sys
import argparse
from functools import partial
from tqdm import tqdm
# Torch related imports
import torch
# AIMET related imports
from aimet_torch.model_validator.model_validator import ModelValidator
# Dataloader and Model Evaluation imports
from aimet_zoo_torch.common.utils.utils import get_device
from aimet_zoo_torch.ffnet.dataloader.cityscapes.utils.misc import eval_metrics
from aimet_zoo_torch.ffnet.dataloader.cityscapes.utils.trnval_utils import (
eval_minibatch,
)
from aimet_zoo_torch.ffnet.dataloader import get_dataloaders_and_eval_func
from aimet_zoo_torch.ffnet import FFNet
sys.path.append(os.path.dirname(sys.path[0]))
def seed(seed_number):
"""Set seed for reproducibility"""
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
torch.manual_seed(seed_number)
torch.cuda.manual_seed(seed_number)
torch.cuda.manual_seed_all(seed_number)
def eval_func(model, dataloader):
"""Define evaluation func to evaluate model with data_loader"""
model.eval()
iou_acc = 0
for data in tqdm(dataloader, desc="evaluate"):
_iou_acc = eval_minibatch(data, model, True, 0, False, False)
iou_acc += _iou_acc
mean_iou = eval_metrics(iou_acc, model)
return mean_iou
def forward_pass(device, model, data_loader):
"""Forward pass for compute encodings"""
model = model.to(device)
model.eval()
for data in tqdm(data_loader):
images, gt_image, edge, img_names, scale_float = data # pylint: disable = unused-variable
assert isinstance(images, torch.Tensor)
assert len(images.size()) == 4 and len(gt_image.size()) == 3
assert images.size()[2:] == gt_image.size()[1:]
with torch.no_grad():
inputs = images
_pred = model(inputs.to(device))
def arguments(raw_args=None):
""" argument parser"""
#pylint: disable=redefined-outer-name
parser = argparse.ArgumentParser(
description="Evaluation script for PyTorch FFNet models."
)
parser.add_argument(
"--model-config",
help="Select the model configuration",
type=str,
default="segmentation_ffnet78S_dBBB_mobile",
choices=[
"segmentation_ffnet78S_dBBB_mobile",
"segmentation_ffnet54S_dBBB_mobile",
"segmentation_ffnet40S_dBBB_mobile",
"segmentation_ffnet78S_BCC_mobile_pre_down",
"segmentation_ffnet122NS_CCC_mobile_pre_down",
],
)
parser.add_argument(
"--dataset-path",
help="Path to cityscapes parent folder containing leftImg8bit",
type=str,
default="",
)
parser.add_argument(
"--batch-size", help="Data batch size for a model", type=int, default=8
)
parser.add_argument(
"--default-output-bw",
help="Default output bitwidth for quantization.",
type=int,
default=8,
)
parser.add_argument(
"--default-param-bw",
help="Default parameter bitwidth for quantization.",
type=int,
default=8,
)
parser.add_argument(
"--use-cuda", help="Run evaluation on GPU.", type=bool, default=True
)
args = parser.parse_args(raw_args)
return args
class ModelConfig:
"""hardcoded values for parsed arguments"""
def __init__(self, args):
#pylint: disable=redefined-outer-name
self.input_shape = (1, 3, 1024, 2048)
self.prepared_checkpoint_path = f"prepared_{args.model_config}.pth"
self.optimized_checkpoint_path = f"{args.model_config}_W{args.default_param_bw}A{args.default_output_bw}_CLE_tfe_perchannel.pth"
self.encodings_path = f"{args.model_config}_W{args.default_param_bw}A{args.default_output_bw}_CLE_tfe_perchannel.encodings"
self.config_file = "./default_config_per_channel.json"
for arg in vars(args):
setattr(self, arg, getattr(args, arg))
def main(raw_args=None):
""" main evaluation function"""
# pylint: disable=redefined-outer-name, too-many-locals, no-member
seed(1234)
args = arguments(raw_args)
config = ModelConfig(args)
device = get_device(args)
print(f"device: {device}")
# Load original model
model_orig = FFNet(model_config=config.model_config)
model_orig.from_pretrained(quantized=False)
# model_orig = torch.load(config.prepared_checkpoint_path)
model_orig.model = model_orig.model.to(device)
model_orig.model.eval()
# Load optimized model
model_optim = FFNet(model_config=config.model_config)
model_optim.from_pretrained(quantized=True)
# model_optim = torch.load(config.optimized_checkpoint_path)
model_optim.model = model_optim.model.to(device)
model_optim.model.eval()
# Get Dataloader
# pylint: disable = unused-variable
train_loader, val_loader, eval_func = get_dataloaders_and_eval_func(
dataset_path=config.dataset_path, batch_size=config.batch_size, num_workers=4
)
# Initialize Quantized model
dummy_input = torch.rand(config.input_shape, device=device)
print("Validate Models")
ModelValidator.validate_model(model_orig.model, dummy_input)
ModelValidator.validate_model(model_optim.model, dummy_input)
print("Evaluating Original Model")
sim_orig = model_orig.get_quantsim(quantized=False)
# sim_orig = QuantizationSimModel(model_orig, **kwargs)
if "pre_down" in config.model_config:
sim_orig.model.smoothing.output_quantizer.enabled = False
sim_orig.model.smoothing.param_quantizers["weight"].enabled = False
# forward_func = partial(forward_pass, device)
# sim_orig.compute_encodings(forward_func, forward_pass_callback_args=val_loader)
mIoU_orig_fp32 = eval_func(model_orig.model, None)
del model_orig
torch.cuda.empty_cache()
mIoU_orig_int8 = eval_func(sim_orig.model, None)
del sim_orig
torch.cuda.empty_cache()
print("Evaluating Optimized Model")
sim_optim = model_optim.get_quantsim(quantized=True)
# sim_optim = QuantizationSimModel(model_optim, **kwargs)
if "pre_down" in config.model_config:
sim_orig.model.smoothing.output_quantizer.enabled = False
sim_orig.model.smoothing.param_quantizers["weight"].enabled = False
forward_func = partial(forward_pass, device)
sim_optim.compute_encodings(forward_func, forward_pass_callback_args=val_loader)
mIoU_optim_fp32 = eval_func(model_optim.model, None)
del model_optim
torch.cuda.empty_cache()
mIoU_optim_int8 = eval_func(sim_optim.model, None)
del sim_optim
torch.cuda.empty_cache()
print(f"Original Model | 32-bit Environment | mIoU: {mIoU_orig_fp32:.4f}")
print(
f"Original Model | {config.default_param_bw}-bit Environment | mIoU: {mIoU_orig_int8:.4f}"
)
print(f"Optimized Model | 32-bit Environment | mIoU: {mIoU_optim_fp32:.4f}")
print(
f"Optimized Model | {config.default_param_bw}-bit Environment | mIoU: {mIoU_optim_int8:.4f}"
)
return {'mIoU_orig_fp32': mIoU_orig_fp32,
'mIoU_orig_int8': mIoU_orig_int8,
'mIoU_optim_fp32': mIoU_optim_fp32,
'mIoU_optim_int8': mIoU_optim_int8}
if __name__ == "__main__":
main()