-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathdemo.py
78 lines (67 loc) · 2.45 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# ---------------------------------------------------------------------
# Copyright (c) 2024 Qualcomm Innovation Center, Inc. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# ---------------------------------------------------------------------
from typing import Callable
import torch
from PIL.Image import fromarray
from qai_hub_models.models.unet_segmentation.app import UNetSegmentationApp
from qai_hub_models.models.unet_segmentation.model import (
MODEL_ASSET_VERSION,
MODEL_ID,
UNet,
)
from qai_hub_models.utils.args import (
demo_model_from_cli_args,
get_model_cli_parser,
get_on_device_demo_parser,
validate_on_device_demo_args,
)
from qai_hub_models.utils.asset_loaders import CachedWebModelAsset, PathType, load_image
from qai_hub_models.utils.display import display_or_save_image
from qai_hub_models.utils.image_processing import pil_resize_pad
IMAGE_ADDRESS = CachedWebModelAsset.from_asset_store(
MODEL_ID, MODEL_ASSET_VERSION, "unet_test_image.jpg"
)
# Run unet segmentation app end-to-end on a sample image.
# The demo will display the predicted mask in a window.
def unet_demo(
model: Callable[..., Callable[[torch.Tensor, torch.Tensor], torch.Tensor]],
MODEL_ID,
default_image: PathType,
is_test: bool = False,
):
# Demo parameters
parser = get_model_cli_parser(UNet)
parser = get_on_device_demo_parser(parser, add_output_dir=True)
parser.add_argument(
"--image",
type=str,
default=None,
help="File path or URL to an input image to use for the demo.",
)
args = parser.parse_args([] if is_test else None)
validate_on_device_demo_args(args, MODEL_ID)
# Load image & model
model = demo_model_from_cli_args(UNet, MODEL_ID, args)
print("Model loaded from pre-trained weights.")
(_, _, height, width) = UNet.get_input_spec()["image"][0]
orig_image = load_image(
args.image or default_image, verbose=True, desc="sample input image"
)
image, _, _ = pil_resize_pad(orig_image, (height, width))
# Run app
app = UNetSegmentationApp(model)
mask = fromarray(app.predict(image))
if not is_test:
display_or_save_image(image, args.output_dir, "input_image.png", "input image")
display_or_save_image(mask, args.output_dir, "mask.png", "mask")
def main(is_test: bool = False):
unet_demo(
UNet,
MODEL_ID,
IMAGE_ADDRESS,
is_test,
)
if __name__ == "__main__":
main()