-
Notifications
You must be signed in to change notification settings - Fork 92
/
Copy pathdemo.py
107 lines (93 loc) · 3.31 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# ---------------------------------------------------------------------
# Copyright (c) 2024 Qualcomm Innovation Center, Inc. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# ---------------------------------------------------------------------
import numpy as np
from PIL import Image
from qai_hub_models.models.foot_track_net.app import (
BBox_landmarks,
FootTrackNet_App,
drawbbox,
)
from qai_hub_models.models.foot_track_net.model import (
MODEL_ASSET_VERSION,
MODEL_ID,
FootTrackNet_model,
)
from qai_hub_models.utils.args import (
demo_model_from_cli_args,
get_model_cli_parser,
get_on_device_demo_parser,
validate_on_device_demo_args,
)
from qai_hub_models.utils.asset_loaders import CachedWebModelAsset, load_image
from qai_hub_models.utils.display import display_or_save_image
from qai_hub_models.utils.draw import create_color_map
from qai_hub_models.utils.image_processing import pil_resize_pad
INPUT_IMAGE_ADDRESS = CachedWebModelAsset.from_asset_store(
MODEL_ID, MODEL_ASSET_VERSION, "test1.jpg"
)
def undo_resize_pad_BBox(bbox: BBox_landmarks, scale: float, padding: list):
"""
undo the resize and pad in place of the BBox_landmarks object.
operation in place to replace the inner coordinates
Parameters:
scale: single scale from original to target image.
pad: left, top padding size
Return:
None.
"""
if bbox.haslandmark:
for lmk in bbox.landmark:
lmk[0] = (lmk[0] + padding[0]) / scale
lmk[1] = (lmk[1] + padding[1]) / scale
bbox.x = (bbox.x + padding[0]) / scale
bbox.y = (bbox.y + padding[1]) / scale
bbox.r = (bbox.r + padding[0]) / scale
bbox.b = (bbox.b + padding[1]) / scale
return
def main(is_test: bool = False):
parser = get_model_cli_parser(FootTrackNet_model)
parser = get_on_device_demo_parser(parser, add_output_dir=True)
parser.add_argument(
"--image",
type=str,
default=INPUT_IMAGE_ADDRESS,
help="image file path or URL",
)
args = parser.parse_args([] if is_test else None)
model = demo_model_from_cli_args(FootTrackNet_model, MODEL_ID, args)
validate_on_device_demo_args(args, MODEL_ID)
# Load image
(_, _, height, width) = FootTrackNet_model.get_input_spec()["image"][0]
orig_image = load_image(args.image)
image, scale, padding = pil_resize_pad(orig_image, (height, width))
print("Model Loaded")
app = FootTrackNet_App(model)
objs_face, objs_person = app.det_image(image)
objs = objs_face + objs_person
img_out = np.array(orig_image)[:, :, ::-1].copy() # to BGR
jt_vis = [0, 15, 16]
vis_thr = 0.5
color_maps = create_color_map(2)
for obj in objs:
undo_resize_pad_BBox(obj, scale, padding)
color = color_maps[int(obj.label)]
color = [int(e) for e in color]
vis = obj.vis
img_out = drawbbox(
img_out,
obj,
color=color,
landmarkcolor=color,
visibility=vis,
joint_to_visualize=jt_vis,
visibility_thresh=vis_thr,
)
img_out_PIL = Image.fromarray(img_out[:, :, ::-1])
if not is_test:
display_or_save_image(
img_out_PIL, args.output_dir, "FootTrackNet_demo_output.png"
)
if __name__ == "__main__":
main()