forked from baaivision/EVA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheva_clip.py
172 lines (135 loc) · 5.63 KB
/
eva_clip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import json
import logging
import os
import pathlib
import re
from copy import deepcopy
from pathlib import Path
from tkinter import E
from typing import Optional, Tuple, Any, Union, List
import torch
from torchvision.transforms import Normalize, Compose, InterpolationMode, ToTensor, Resize, CenterCrop
from eva_model import EVA_CLIP, convert_weights_to_fp16
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
def _natural_key(string_):
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
def _rescan_model_configs():
global _MODEL_CONFIGS
config_ext = ('.json',)
config_files = []
for config_path in _MODEL_CONFIG_PATHS:
if config_path.is_file() and config_path.suffix in config_ext:
config_files.append(config_path)
elif config_path.is_dir():
for ext in config_ext:
config_files.extend(config_path.glob(f'*{ext}'))
for cf in config_files:
with open(cf, 'r') as f:
model_cfg = json.load(f)
if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')):
_MODEL_CONFIGS[cf.stem] = model_cfg
_MODEL_CONFIGS = {k: v for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))}
_rescan_model_configs() # initial populate of model config registry
def list_models():
""" enumerate available model architectures based on config files """
return list(_MODEL_CONFIGS.keys())
def add_model_config(path):
""" add model config path or file and update registry """
if not isinstance(path, Path):
path = Path(path)
_MODEL_CONFIG_PATHS.append(path)
_rescan_model_configs()
def get_model_config(model_name):
if model_name in _MODEL_CONFIGS:
return deepcopy(_MODEL_CONFIGS[model_name])
else:
return None
def load_state_dict(checkpoint_path: str, map_location: str='cpu', model_key='model|module|state_dict'):
checkpoint = torch.load(checkpoint_path, map_location=map_location)
for mk in model_key.split('|'):
if isinstance(checkpoint, dict) and mk in checkpoint:
state_dict = checkpoint[mk]
break
else:
state_dict = checkpoint
if next(iter(state_dict.items()))[0].startswith('module'):
state_dict = {k[7:]: v for k, v in state_dict.items()}
return state_dict
def load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=True):
state_dict = load_state_dict(checkpoint_path, model_key=model_key)
incompatible_keys = model.load_state_dict(state_dict, strict=strict)
print(incompatible_keys)
return incompatible_keys
def create_model(
model_name: str,
pretrained: str = '',
precision: str = 'fp32',
device: torch.device = torch.device('cpu'),
force_quick_gelu: bool = False,
):
model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names
if model_name in _MODEL_CONFIGS:
logging.info(f'Loading {model_name} model config.')
model_cfg = deepcopy(_MODEL_CONFIGS[model_name])
else:
logging.error(f'Model config for {model_name} not found; available models {list_models()}.')
raise RuntimeError(f'Model config for {model_name} not found.')
if force_quick_gelu:
# override for use of QuickGELU on non-OpenAI transformer models
model_cfg["quick_gelu"] = True
model = EVA_CLIP(**model_cfg)
load_checkpoint(model, pretrained)
model.to(device=device)
if precision == "fp16":
assert device.type != 'cpu'
convert_weights_to_fp16(model)
# set image / mean metadata from pretrained_cfg if available, or use default
model.visual.image_mean = OPENAI_DATASET_MEAN
model.visual.image_std = OPENAI_DATASET_STD
return model
def _convert_to_rgb(image):
return image.convert('RGB')
def image_transform(
image_size: int,
mean: Optional[Tuple[float, ...]] = None,
std: Optional[Tuple[float, ...]] = None,
):
mean = mean or OPENAI_DATASET_MEAN
if not isinstance(mean, (list, tuple)):
mean = (mean,) * 3
std = std or OPENAI_DATASET_STD
if not isinstance(std, (list, tuple)):
std = (std,) * 3
if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]:
# for square size, pass size as int so that Resize() uses aspect preserving shortest edge
image_size = image_size[0]
normalize = Normalize(mean=mean, std=std)
transforms = [
Resize(image_size, interpolation=InterpolationMode.BICUBIC),
CenterCrop(image_size),
]
transforms.extend([
_convert_to_rgb,
ToTensor(),
normalize,
])
return Compose(transforms)
def build_eva_model_and_transforms(
model_name: str,
pretrained: str = '',
precision: str = 'fp32',
device: torch.device = torch.device('cpu'),
force_quick_gelu: bool = False,
image_mean: Optional[Tuple[float, ...]] = None,
image_std: Optional[Tuple[float, ...]] = None,
):
model = create_model(
model_name, pretrained, precision, device,
force_quick_gelu=force_quick_gelu)
image_mean = image_mean or getattr(model.visual, 'image_mean', None)
image_std = image_std or getattr(model.visual, 'image_std', None)
preprocess_val = image_transform(model.visual.image_size, mean=image_mean, std=image_std)
return model, preprocess_val