-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsolver_main.cpp
executable file
·603 lines (461 loc) · 19.6 KB
/
solver_main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
// solver_main.cpp : Defines the entry point for the console application.
// The main, parallelized program
#include "solver.h"
#include "ionization.h"
int PROCESS_N;
int PROCESS_RANK;
MPI_Comm DEVICE_COMM;
int N_T; float_type TMIN, TMAX, TSTEP;
int N_X; float_type XMIN, XMAX, XSTEP;
int N_Y; float_type YMIN, YMAX, YSTEP;
int N_Z, n_Z=0; float_type* ZNET;
int APERTURE_N=0; float_type* APERTURE_Z=NULL; float_type* APERTURE_R=NULL;
FILE* CSDUMP_FID = NULL, *CSDUMP_PLASMA_FID = NULL;
FILE* SC_FID = NULL;
dump_manager_class* DUMPMAN = NULL;
double TIME_START = 0;
float_type LAMBDA_V = 0;
float_type ZSTEP = 0, LIN_ZSTEP = 0;
float_type MAX_TOLERANCE = MAX_TOLERANCE_DEFAULT;
float_type RESIZE_MAX_TOLERANCE = DEFAULT_RESIZE_MAX_TOLERANCE;
float_type RESIZE_MIN_TOLERANCE = DEFAULT_RESIZE_MIN_TOLERANCE;
int RESIZE_FREQUENCY = DEFAULT_RESIZE_FREQUENCY;
ptrdiff_t MY_NX_FT, MY_NXstart_FT;
ptrdiff_t MY_NX, MY_NXstart;
ptrdiff_t MY_NY, MY_NYstart;
ptrdiff_t MY_SIZE;
bool STOP_SIGNAL = false;
unsigned int STEP_N;
float_type CURRENT_Z = 0, FINAL_Z = 0;
f_complex *FIELD, *BIGBUFFER1, *BIGBUFFER2;
f_complex *NL_OUTPUT1, *NL_OUTPUT2, *NL_OUTPUT3, *NL_OUTPUT4, *NL_OUTPUT5, *NL_OUTPUT6;
f_complex *NL_INPUT;
f_complex *FIELD_REAL_SMALL, *NL_SMALLBUFFER1 , *NL_SMALLBUFFER2, *NL_SMALLBUFFER3, *NL_SMALLBUFFER4;
float_type *OMEGA;
float_type OMEGA0;
float_type OMEGA_MIN = 0, OMEGA_MAX = 1e20;
f_complex *WAVENUMBER;
f_complex WAVENUMBER0;
float_type GROUP_VELOCITY;
float_type *HO_DISPERSION;
f_complex *RAMAN_FUNCTION;
f_complex PLASMA_FACTOR;
float_type AMBIENT_CARRIER_DENSITY = 0;
float_type* KERR_PROFILE;
float_type* KERR_TH_PROFILE;
float_type NONLIN_REFRINDEX = 0;
float_type NONLIN_REFRINDEX4 = 0;
float_type RAMAN_FRACTION = 0, TAU_RAMAN = 0, OMEGA_RAMAN = 0;
float_type TH_FACTOR = 0;
#ifndef MULTI_LEVEL_IONIZATION
float_type IONIZATION_RATE_LN [IONIZATION_N];
float_type IONIZATION_I_LN [IONIZATION_N];
#else
float_type* IONIZATION_RATE_LN ;
float_type* IONIZATION_I_LN ;
#endif
float_type IONIZATION_POTENTIAL;
#ifdef MULTI_LEVEL_IONIZATION
float_type* IONIZATION_POTENTIALS;
float_type* ION_DENSITIES_BUFFER;
float_type* IONIZATION_RATES_BUFFER;
int IONIZATION_LEVEL_N;
float_type* N2_IONFACTOR;
#endif
#ifdef MULTIPHOTON_IONIZATION
float_type BETA_MPI_LN;
int K_MPI;
#endif
#ifdef TUNNEL_IONIZATION
float_type TUNNELING_FIELD;
#endif
float_type AVALANCHE_CROSSSECTION;
float_type PONDEROMOTIVE_COEFFICIENT;
float_type NEUTRAL_DENSITY;
float_type RECOMBINATION_TAU;
float_type COLLISION_TAU;
f_complex* PLASMA_FUNC;
int _ARGC;
char** _ARGV;
fftwt_plan FFT_FWPLAN_T, FFT_BWPLAN_T, FFT_ALLBWPLAN_T;
fftwt_plan FFT_FWPLAN_XY, FFT_BWPLAN_XY;
#if TRANSVERSE_DIMENSIONS == 1
#ifdef QDHT
qdht_plan* HT_PLAN;
#else
fhatha_plan* HT_PLAN;
#endif
#endif
#ifdef BLOCH_RESPONSE
int BLOCH_N;
float_type BLOCH_TEMP;
float_type *BLOCH_RHO_D;
f_complex *BLOCH_RHO_O;
float_type *BLOCH_ENERGY;
float_type *BLOCH_DIPOLE;
float_type *BLOCH_G1;
float_type *BLOCH_G2;
#endif
void calc_ho_dispersion();
void calc_raman_function();
void resize_if_needed();
inline void print_status(double timetot) { if (ISMASTER) {printf("\nStep number %d, total time %5.2fs, time per step %3.2fs, ETA %5.2fs", STEP_N, timetot, timetot/STEP_N, timetot*((double)N_Z/(double)n_Z - 1.0));fflush(stdout); }}
int main(int argc, char** argv)
{
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &PROCESS_N);
MPI_Comm_rank(MPI_COMM_WORLD, &PROCESS_RANK);
_ARGC = argc;
_ARGV = argv;
fftwt_mpi_init();
if (ISMASTER)
{
#ifdef _ENABLE_CUDA
printf("*** UPPE solver (CUDA GPU version)*** \n");
#else
printf("*** UPPE solver (CPU version, on %d CPUs)*** \n", PROCESS_N);
#endif
#ifdef _EXTMATH_SINGLE
printf("Float-type precision: single\n");
#else
printf("Float-type precision: double\n");
#endif
time_t starttime; time(&starttime);
printf("\n %s", ctime(&starttime));
#ifdef _FULL_DUMPS
srand((unsigned)time(NULL));
DUMP_ID = rand();
printf("\n Dump id is %d",DUMP_ID);
fflush(stdout);
#endif
}
#ifdef _SINGLE_PROCESS
if (PROCESS_N > 1) throw "The source code was compiled with _SINGLE_PROCESS key, it does not support parallel execution";
#endif
srand48((unsigned)(time(NULL)+PROCESS_RANK));
MPI_Barrier(MPI_COMM_WORLD);
try
{
STEP_N = 0;
process_input(argc, argv);
TIME_START = MPI_Wtime();
if (ISMASTER) printf("\n ZSTEP = %e", ZSTEP);
#ifndef _SILENCE
if (ISMASTER) printf("\nStarting computation cycle");
#endif
double status_time = TIME_START;
while (!STOP_SIGNAL)
{
double timetot = MPI_Wtime()-TIME_START; if (timetot > status_time + 30) {print_status(timetot); status_time = timetot;}
if (CURRENT_Z >= ZNET[n_Z])
{
DUMPMAN -> dump();
print_status(timetot); status_time = timetot;
if (n_Z == N_Z-1) {STOP_SIGNAL = true; break;}
n_Z++;
}
#ifndef _SILENCE
fflush(stdout);
#endif
computationcycle();
CURRENT_Z += ZSTEP;
#ifdef ONECYCLE
STOP_SIGNAL = true;
#endif
}
#ifdef DUMP_FINAL_FIELD
fftw(FFT_BWPLAN_T, N_X*MY_NY, (fftwt_complex*)FIELD, 1,N_T, (fftwt_complex*)BIGBUFFER1, 1,N_T); fftwt_Nnormalize(N_X*MY_NY, BIGBUFFER1);
dump_mypiece(BIGBUFFER1, DUMP_PREFIX, n_Z);
#endif
MPI_Barrier(MPI_COMM_WORLD);
fflush(stdout);
destroy_variables();
}
catch (char* errmsg)
{
printf("\n!!!Error in process %d occured!!! , %s", PROCESS_RANK, errmsg);
fflush(stdout);
MPI_Abort(MPI_COMM_WORLD,2);
return 1;
}
catch (const char* errmsg)
{
printf("\n!!!Error in process %d occured!!! , %s", PROCESS_RANK, errmsg);
fflush(stdout);
MPI_Abort(MPI_COMM_WORLD,2);
return 1;
}
MPI_Finalize();
return 0;
}
void computationcycle()
{
propagator();
#ifndef NO_RESIZE
if (STEP_N % RESIZE_FREQUENCY == 0)
{
resize_if_needed();
}
#endif
STEP_N++;
}
void initialize_variables()
{
#if TRANSVERSE_DIMENSIONS == 0
MY_NX = 1;
MY_NY = 1;
MY_NXstart = 0;
MY_NYstart = 0;
MY_NX_FT = 1;
MY_SIZE = N_T;
#elif TRANSVERSE_DIMENSIONS == 1
#ifdef QDHT
HT_PLAN = new qdht_plan(N_X);
if (ISMASTER) printf("\n Hankel transform - quasi-discrete. ");
#else
float_type fresnel_number = load_namedfloat(SC_FID, "FRESNEL_NUMBER",true,-1);
if (ISMASTER && fresnel_number==-1) printf("\n Warning!!! Fresnel number is not specified. Default might not be the best one!");
float_type alpha_mult = load_namedfloat(SC_FID, "R_NET_ALPHA_FACTOR", true, 1);
HT_PLAN = new fhatha_plan(N_X, alpha_mult);
if (ISMASTER) printf("\n Hankel transform parameters: Fresnel number=%.4g, r0=%3e m, rmax=%3e m", HT_PLAN->getNf(), XMAX*HT_PLAN->x_n(0), XMAX*HT_PLAN->x_n(N_X-1));
#endif
MY_NX = N_X/PROCESS_N;
MY_NXstart = MY_NX*PROCESS_RANK;
MY_SIZE = MY_NX*N_T;
MY_NY = 1;
MY_NYstart = 0;
MY_NX_FT = MY_NX;
MY_NXstart_FT = MY_NXstart;
#elif TRANSVERSE_DIMENSIONS == 2
ptrdiff_t xyplan_sizes[2] = {N_Y, N_X};
MY_SIZE = fftwt_mpi_local_size_many_transposed(2, xyplan_sizes, N_T, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, MPI_COMM_WORLD, &MY_NY, &MY_NYstart, &MY_NX_FT, &MY_NXstart_FT);
MY_NXstart = 0;
MY_NX = N_X;
#endif
unsigned long datapiece_size = sizeof(f_complex)*MY_SIZE;
unsigned long datapiece_small_size = sizeof(f_complex)*N_T;
BIGBUFFER1 = (f_complex*)malloc_ch(datapiece_size);
#ifndef _UNIAXIAL_FINITE_DIFFERENCE
FIELD = (f_complex*)malloc_ch(datapiece_size);
BIGBUFFER2 = (f_complex*)malloc_ch(datapiece_size);
#else
FIELD = (f_complex*)malloc_ch(N_T*(MY_NX+1)*sizeof(f_complex));
BIGBUFFER2 = (f_complex*)malloc_ch(2*datapiece_size);
#endif
#if TRANSVERSE_DIMENSIONS == 2
FFT_FWPLAN_XY = fftwt_mpi_plan_many_dft(2, xyplan_sizes, N_T, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, (fftwt_complex*)BIGBUFFER1, (fftwt_complex*)BIGBUFFER1, MPI_COMM_WORLD, FFTW_BACKWARD, FFTW_MPI_TRANSPOSED_OUT | FFTW_FLAG);
FFT_BWPLAN_XY = fftwt_mpi_plan_many_dft(2, xyplan_sizes, N_T, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, (fftwt_complex*)FIELD, (fftwt_complex*)FIELD, MPI_COMM_WORLD, FFTW_FORWARD , FFTW_MPI_TRANSPOSED_IN | FFTW_FLAG);
#endif
FIELD_REAL_SMALL = (f_complex*)malloc_ch(datapiece_small_size);
NL_SMALLBUFFER1 = (f_complex*)malloc_ch(datapiece_small_size);
NL_SMALLBUFFER2 = (f_complex*)malloc_ch(datapiece_small_size);
NL_SMALLBUFFER3 = (f_complex*)malloc_ch(datapiece_small_size);
NL_SMALLBUFFER3 = (f_complex*)malloc_ch(datapiece_small_size);
NL_SMALLBUFFER4 = (f_complex*)malloc_ch(datapiece_small_size);
RAMAN_FUNCTION = (f_complex*)malloc_ch(datapiece_small_size);
NL_OUTPUT1 = (f_complex*)malloc_ch(datapiece_small_size);
NL_OUTPUT2 = (f_complex*)malloc_ch(datapiece_small_size);
NL_OUTPUT3 = (f_complex*)malloc_ch(datapiece_small_size);
NL_OUTPUT4 = (f_complex*)malloc_ch(datapiece_small_size);
NL_INPUT = (f_complex*)malloc_ch(datapiece_small_size);
FFT_FWPLAN_T = fftwt_plan_dft_1d(N_T, (fftwt_complex*)NL_SMALLBUFFER1, (fftwt_complex*)NL_SMALLBUFFER2, FFTW_FORWARD, FFTW_FLAG);
FFT_BWPLAN_T = fftwt_plan_dft_1d(N_T, (fftwt_complex*)NL_SMALLBUFFER1, (fftwt_complex*)NL_SMALLBUFFER2, FFTW_BACKWARD, FFTW_FLAG);
FFT_ALLBWPLAN_T = fftwt_plan_many_dft(1, &N_T, MY_NX*MY_NY, (fftwt_complex*)FIELD, NULL, 1, N_T, (fftwt_complex*)BIGBUFFER1,NULL, 1, N_T, FFTW_BACKWARD, FFTW_FLAG);
KERR_PROFILE = (float_type*)malloc_ch(datapiece_small_size);
KERR_TH_PROFILE = (float_type*)malloc_ch(datapiece_small_size);
CURRENT_Z = ZNET[0];
AVALANCHE_CROSSSECTION = 0;
PONDEROMOTIVE_COEFFICIENT = 0;
f_complex j = f_complex(0,1);
float_type m = ELECTRON_MASS*load_namedfloat(SC_FID, "REDUCED_MASS", true, 1);
PLASMA_FACTOR = (ELECTRON_CHARGE*ELECTRON_CHARGE*VACUUM_PERMEABILITY/(WAVENUMBER0*WAVENUMBER0*m*((f_complex)1.0-j/OMEGA0/COLLISION_TAU)));
float_type IBS_crossection = ELECTRON_CHARGE/m*ELECTRON_CHARGE*VACUUM_PERMEABILITY/real(WAVENUMBER0);
#ifndef NO_AVALANCHE
AVALANCHE_CROSSSECTION = IBS_crossection*OMEGA0*COLLISION_TAU/(1+OMEGA0*COLLISION_TAU*OMEGA0*COLLISION_TAU);
#endif
#ifndef NO_PONDEROMOTIVE_POTENTIAL
PONDEROMOTIVE_COEFFICIENT = IBS_crossection/2.0/real(WAVENUMBER0)/GROUP_VELOCITY/(1.0+1.0/(OMEGA0*COLLISION_TAU));
#endif
PLASMA_FUNC = (f_complex*)malloc(sizeof(f_complex)*N_T);
for (int nw=0; nw<N_T; nw++)
{
float_type alpha = COLLISION_TAU*OMEGA[nw];
float_type alpha0 = COLLISION_TAU*OMEGA0;
float_type k = real(WAVENUMBER[nw]);
//alpha = COLLISION_TAU*3e14;
//k = 3e14/LIGHT_VELOCITY;
PLASMA_FUNC[nw] = -(alpha/((float_type)1.0+j*alpha)/(float_type)2.0/k*ELECTRON_CHARGE*ELECTRON_CHARGE/m*VACUUM_PERMEABILITY);
//PLASMA_FUNC[nw] = -alpha0/((float_type)1.0+j*alpha)*IBS_crossection/(float_type)2.0;
#ifdef PLASMA_FULL_DISPERSION
PLASMA_FUNC[nw] *= (float_type)2.0*j/k;
#endif
}
calc_ionization_rate();
calc_raman_function();
IONIZATION_POTENTIAL *=IONRATE_DENOM/INTENSITY_DENOM;
#ifdef MULTI_LEVEL_IONIZATION
for (size_t i=0; i<IONIZATION_LEVEL_N; i++) IONIZATION_POTENTIALS[i]*=IONRATE_DENOM/INTENSITY_DENOM;
#endif
NONLIN_REFRINDEX*=INTENSITY_DENOM;
NONLIN_REFRINDEX4*=INTENSITY_DENOM*INTENSITY_DENOM/1e16/1e16;
RECOMBINATION_TAU *= IONRATE_DENOM;
PONDEROMOTIVE_COEFFICIENT *= IONRATE_DENOM;
#ifdef _ENABLE_CUDA
cuda_load_const();
#endif
}
void calc_raman_function()
{
float_type M = TSTEP*(1+OMEGA_RAMAN*OMEGA_RAMAN*TAU_RAMAN*TAU_RAMAN)/TAU_RAMAN/(OMEGA_RAMAN*TAU_RAMAN);
for (int nt=0; nt<N_T; nt++)
{
float_type t = TSTEP*nt;
NL_SMALLBUFFER1[nt] = RAMAN_FRACTION*M*exp(-t/TAU_RAMAN)*sin(OMEGA_RAMAN*t);
}
fftwt_execute_dft(FFT_FWPLAN_T, (fftwt_complex*)NL_SMALLBUFFER1, (fftwt_complex*)RAMAN_FUNCTION);
//fftwt_Nnormalize(1, RAMAN_FUNCTION);
for (int nw=0; nw<N_T; nw++) RAMAN_FUNCTION[nw] += (1-RAMAN_FRACTION);
}
void destroy_variables()
{
fclose(SC_FID);
#ifdef _ENABLE_CUDA
cuda_free_const();
#endif
free(FIELD);
free(BIGBUFFER1);
free(BIGBUFFER2);
free(OMEGA); free(WAVENUMBER); free(HO_DISPERSION);
free(FIELD_REAL_SMALL); free(NL_SMALLBUFFER1);free(NL_SMALLBUFFER2);free(NL_SMALLBUFFER3); free(NL_SMALLBUFFER4);
free(KERR_PROFILE); free(KERR_TH_PROFILE);
free(RAMAN_FUNCTION); free(PLASMA_FUNC); free(APERTURE_R); free(APERTURE_Z);
#ifdef MULTI_LEVEL_IONIZATION
free(IONIZATION_POTENTIALS); free(ION_DENSITIES_BUFFER); free(IONIZATION_RATES_BUFFER); free(N2_IONFACTOR);
#endif
fftwt_destroy_plan(FFT_FWPLAN_T); fftwt_destroy_plan(FFT_BWPLAN_T);
fftwt_destroy_plan(FFT_FWPLAN_XY); fftwt_destroy_plan(FFT_BWPLAN_XY);
delete DUMPMAN;
}
void resize_if_needed()
{
/* float_type maxIt = 0, maxIw = 0, maxpIt = 0, maxpIw = 0, maxpIt2 = 0, maxpIw2 = 0;
float_type maxIt_ = 0, maxIw_ = 0, maxpIt_ = 0, maxpIw_ = 0, maxpIt2_ = 0, maxpIw2_ = 0;
float_type maxpIx = 0, maxpIkx = 0, maxpIx2 = 0, maxpIkx2 = 0;
float_type maxpIx_ = 0, maxpIkx_ = 0, maxpIx2_ = 0, maxpIkx2_ = 0;
float_type maxpIy = 0, maxpIky = 0, maxpIy2 = 0, maxpIky2 = 0;
float_type maxpIy_ = 0, maxpIky_ = 0, maxpIy2_ = 0, maxpIky2_ = 0;
bool resized = false;
fftw(FFT_BWPLAN_T, MY_NX*MY_NY, (fftwt_complex*)FIELD, 1,N_T, (fftwt_complex*)BIGBUFFER1, 1,N_T); fftwt_Nnormalize(MY_NX*MY_NY, BIGBUFFER1);
if (maxpIt > RESIZE_MAX_TOLERANCE*maxIt && maxpIw2 < RESIZE_MIN_TOLERANCE*maxIw)
{
expandtwice(BIGBUFFER1, 1, N_T, N_T, MY_NX*MY_NY, 2); // expand field in t domain
fftw(FFT_FWPLAN_T, MY_NX*MY_NY, (fftwt_complex*)BIGBUFFER1, 1,N_T, (fftwt_complex*)FIELD, 1,N_T);
fftw(FFT_BWPLAN_T, MY_NX*MY_NY, (fftwt_complex*)BIGBUFFER2, 1,N_T, (fftwt_complex*)BIGBUFFER1, 1,N_T); fftwt_Nnormalize(MY_NX*MY_NY, BIGBUFFER1);
expandtwice(BIGBUFFER1, 1, N_T, N_T, MY_NX*MY_NY, 2); // expand x-y Fourier (or Hankel) transform in temporal domain
fftw(FFT_FWPLAN_T, MY_NX*MY_NY, (fftwt_complex*)BIGBUFFER1, 1,N_T, (fftwt_complex*)BIGBUFFER2, 1,N_T);
T_MIN = T_MIN*2;
T_MAX = T_MAX*2;
recalculate_profiles();
}
if (maxpIw > RESIZE_MAX_TOLERANCE*maxIw && maxpIt2 < RESIZE_MIN_TOLERANCE*maxIt)
{
expandtwice(FIELD, 1, N_T, N_T, MY_NX*MY_NY, 1); // expand field in FT_t domain
expandtwice(BIGBUFFER2, 1, N_T, N_T, MY_NX*MY_NY, 1); // expand x-y Fourier (or Hankel) transform in FT_t domain
T_MIN = T_MIN / 2;
T_MAX = T_MAX / 2;
recalculate_profiles();
}
for (int i=0; i<N_T*MY_NX*MY_NY; i++) {maxIt = max(maxIt, abs2(FIELD[i])); maxIw = max(maxIw, abs2(BIGBUFFER2[i]));}
maxIt_ = maxIt; maxIw_ = maxIw;
MPI_Allreduce(&maxIt_, &maxIt, 1, MPI_FLOAT_TYPE, MPI_MAX, MPI_COMM_WORLD);
MPI_Allreduce(&maxIw_, &maxIw, 1, MPI_FLOAT_TYPE, MPI_MAX, MPI_COMM_WORLD);
#ifndef _UNIAXIAL
//
//x-resizing
for (int nt=0; nt<N_T; nt++)
{
for (int ny=0; ny<MY_NY; ny++)
{
int ofs0 = nt+N_T*N_X*ny;
maxpIx = max(maxpIx, abs2(FIELD[ofs0])); maxpIx = max(maxpIx, abs2(FIELD[ofs0+N_T*(N_X-1)]));
maxpIx2 = max(maxpIx2, abs2(FIELD[ofs0 + N_T*3*N_X/4])); maxpIx2 = max(maxpIx2, abs2(FIELD[ofs0 + N_T*N_X/4]));
}
for (int nx=0; nx<MY_NX_FT; nx++)
{
int ofs0 = nt+N_T*N_Y*nx;
maxpIky = max(maxpIky, abs2(BIGBUFFER2[ofs0])); maxpIky = max(maxpIky, abs2(BIGBUFFER2[ofs0+N_T*(N_Y-1)]));
maxpIky2 = max(maxpIky2, abs2(BIGBUFFER2[ofs0 + N_T*3*N_Y/4])); maxpIky2 = max(maxpIky2, abs2(BIGBUFFER2[ofs0+N_T*N_Y/4]));
}
}
transpose_mpi(FFT_FWPLAN_XY->p_transpose_inv, sizeof(f_complex)*N_T/sizeof(TRANSPOSE_EL_TYPE), (TRANSPOSE_EL_TYPE*)BIGBUFFER2, (TRANSPOSE_EL_TYPE*)BIGBUFFER1);
for (int nt=0; nt<N_T; nt++)
{
for (int ny=0; ny<MY_NY; ny++)
{
int ofs0 = nt+N_T*N_X*ny;
maxpIkx = max(maxpIkx, abs2(BIGBUFFER2[ofs0])); maxpIkx = max(maxpIkx, abs2(BIGBUFFER2[ofs0+N_T*(N_X-1)]));
maxpIkx2 = max(maxpIkx2, abs2(BIGBUFFER2[ofs0 + N_T*3*N_X/4])); maxpIkx2 = max(maxpIkx2, abs2(BIGBUFFER2[ofs0 + N_T*N_X/4]));
}
}
maxpIx_ = maxpIx; maxpIx2_ = maxpIx2; maxpIkx_ = maxpIkx; maxpIkx2_ = maxpIkx2;
MPI_Allreduce(&maxpIx_, &maxpIx, 1, MPI_FLOAT_TYPE, MPI_MAX, MPI_COMM_WORLD);
MPI_Allreduce(&maxpIx2_, &maxpIx2, 1, MPI_FLOAT_TYPE, MPI_MAX, MPI_COMM_WORLD);
MPI_Allreduce(&maxpIkx_, &maxpIkx, 1, MPI_FLOAT_TYPE, MPI_MAX, MPI_COMM_WORLD);
MPI_Allreduce(&maxpIkx2_, &maxpIkx2, 1, MPI_FLOAT_TYPE, MPI_MAX, MPI_COMM_WORLD);
if (maxpIx > RESIZE_MAX_TOLERANCE*maxIt && maxpIkx2 < RESIZE_MIN_TOLERANCE*maxIw)
{
for (int ny=0; ny<MY_NY; ny++) expandtwice(FIELD+N_T*N_X*ny, N_T, 1, N_X, N_T, 2); // expand field in x domain
float_type xmin = XMIN, xmax = XMAX;
XMIN = (xmin + xmax)/2 - (xmax-xmin);
XMAX = (xmin + xmax)/2 + (xmax-xmin);
if (ISMASTER) printf("\n X grid is twice expanded.");
resized = true;
}
if (maxpIkx > RESIZE_MAX_TOLERANCE*maxIw && maxpIx2 < RESIZE_MIN_TOLERANCE*maxIt)
{
for (int ny=0; ny<MY_NY; ny++) contracttwice(FIELD+N_T*N_X*ny, N_T, 1, N_X, N_T, 2); // contract field in x domain
float_type xmin = XMIN, xmax = XMAX;
XMIN = (xmin + xmax)/2 - (xmax-xmin)/4;
XMAX = (xmin + xmax)/2 + (xmax-xmin)/4;
resized = true;
if (ISMASTER) printf("\n X grid is twice contracted.");
}
//y-resizing
transpose_mpi(FFT_FWPLAN_XY->p_transpose, sizeof(f_complex)*N_T/sizeof(TRANSPOSE_EL_TYPE), (TRANSPOSE_EL_TYPE*)FIELD, (TRANSPOSE_EL_TYPE*)BIGBUFFER1);
for (int nt=0; nt<N_T; nt++)
{
for (int nx=0; nx<MY_NX_FT; nx++)
{
int ofs0 = nt+N_T*N_Y*nx;
maxpIy = max(maxpIy, abs2(FIELD[ofs0])); maxpIy = max(maxpIy, abs2(FIELD[ofs0 + N_T*(N_Y-1)]));
maxpIy2 = max(maxpIy2, abs2(FIELD[ofs0 + N_T*3*N_Y/4])); maxpIy2 = max(maxpIy2, abs2(FIELD[ofs0 + N_T* N_Y/4]));
}
}
maxpIy_ = maxpIy; maxpIy2_ = maxpIy2; maxpIky_ = maxpIky; maxpIky2_ = maxpIky2;
MPI_Allreduce(&maxpIy_, &maxpIy, 1, MPI_FLOAT_TYPE, MPI_MAX, MPI_COMM_WORLD);
MPI_Allreduce(&maxpIy2_, &maxpIy2, 1, MPI_FLOAT_TYPE, MPI_MAX, MPI_COMM_WORLD);
MPI_Allreduce(&maxpIky_, &maxpIky, 1, MPI_FLOAT_TYPE, MPI_MAX, MPI_COMM_WORLD);
MPI_Allreduce(&maxpIky2_, &maxpIky2, 1, MPI_FLOAT_TYPE, MPI_MAX, MPI_COMM_WORLD);
if (maxpIy > RESIZE_MAX_TOLERANCE*maxIt && maxpIky2 < RESIZE_MIN_TOLERANCE*maxIw)
{
for (int nx=0; nx<MY_NX_FT; nx++) expandtwice(FIELD+N_T*N_Y*nx, N_T, 1, N_Y, N_T, 2); // expand field in y domain
float_type ymin = YMIN, ymax = YMAX;
YMIN = (ymin + ymax)/2 - (ymax-ymin);
YMAX = (ymin + ymax)/2 + (ymax-ymin);
resized = true;
if (ISMASTER) printf("\n Y grid is twice expanded.");
}
if (maxpIky > RESIZE_MAX_TOLERANCE*maxIw && maxpIy2 < RESIZE_MIN_TOLERANCE*maxIt)
{
for (int nx=0; nx<MY_NX_FT; nx++) contracttwice(FIELD+N_T*N_Y*nx, N_T, 1, N_Y, N_T, 2); // contract field in y domain
float_type ymin = YMIN, ymax = YMAX;
YMIN = (ymin + ymax)/2 - (ymax-ymin)/4;
YMAX = (ymin + ymax)/2 + (ymax-ymin)/4;
resized = true;
if (ISMASTER) printf("\n Y grid is twice contracted.");
}
transpose_mpi(FFT_FWPLAN_XY->p_transpose_inv, sizeof(f_complex)*N_T/sizeof(TRANSPOSE_EL_TYPE), (TRANSPOSE_EL_TYPE*)FIELD, (TRANSPOSE_EL_TYPE*)BIGBUFFER1);
if (resized) {memcpy(BIGBUFFER2, FIELD, sizeof(f_complex)*N_T*MY_NX*MY_NY); fftwnd_mpi(FFT_FWPLAN_XY, N_T, (fftwt_complex*)BIGBUFFER2, (fftwt_complex*)BIGBUFFER1, FFTW_TRANSPOSED_ORDER);}
else transpose_mpi(FFT_FWPLAN_XY->p_transpose, sizeof(f_complex)*N_T/sizeof(TRANSPOSE_EL_TYPE), (TRANSPOSE_EL_TYPE*)BIGBUFFER2, (TRANSPOSE_EL_TYPE*)BIGBUFFER1);
#endif */
}