forked from crbates/ans-winter-2014-sum-pres
-
Notifications
You must be signed in to change notification settings - Fork 0
/
comp.py
185 lines (164 loc) · 4.35 KB
/
comp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from pylab import *
plt.title("Test", fontname="Times New Roman Bold")
import matplotlib.pyplot as plt
# time in hours
t=[1.22, 1.752, 2.008, 3.22, 4.80, 6.80, 9.47, 12.7, 15.9, 20.2, 25.2, 36.7, 59, 96, 133, 197, 292, 464, 475]
expdatac2 = [488., 415., 375., 268., 173., 101., 50.6, 23.0, 11.7 ,5.80, 3.56, 2.43, 1.78, 1.22, 0.952, 0.759, 0.667, 0.613, 0.614]
exp_unc = [19., 16., 15., 10., 7., 4., 2.0, 0.9, 0.5, 0.23, 0.14, 0.09, 0.07, 0.05, 0.037, 0.030, 0.026, 0.024, 0.024]
exp_rel_err = [x/y for x, y in zip(exp_unc, expdatac2)]
top_err_bar = [1+x for x in exp_rel_err]
bot_err_bar = [1-x for x in exp_rel_err]
r2sdatac2 = [409.6, 357.8, 325.0, 240.7, 158.8, 94.25, 47.42, 21.39, 10.71, 5.151, 3.134, 2.214, 1.724, 1.264, 1.016, 0.8208, 0.7115, 0.6375, 0.6318]
d1sdatac2 = [390.0, 341.0, 310.0, 229.0, 150.0, 88.9, 44.6, 19.9, 9.73, 4.54, 2.66, 1.86, 1.5, 1.16, 0.974, 0.818, 0.725, 0.655, 0.651]
pyne_str_unnorm = [
3.3925E-11,
3.3734E-11,
3.3814E-11,
3.3260E-11,
3.2380E-11,
3.0820E-11,
2.8236E-11,
2.3315E-11,
1.8306E-11,
1.3042E-11,
1.0287E-11,
9.2131E-12,
8.9996E-12,
8.4805E-12,
8.0850E-12,
7.9153E-12,
8.1102E-12,
8.2767E-12,
8.3486E-12
]
pyne_unstr_unnorm = [
3.6142E-11,
3.5940E-11,
3.5742E-11,
3.5265E-11,
3.4709E-11,
3.2948E-11,
3.0006E-11,
2.4974E-11,
1.9477E-11,
1.4030E-11,
1.1014E-11,
9.9155E-12,
9.6386E-12,
9.1964E-12,
8.8134E-12,
8.6296E-12,
8.5837E-12,
8.9214E-12,
8.9279E-12,
]
pyne_uni_unnorm = [
3.4290E-11,
3.4157E-11,
3.4040E-11,
3.3593E-11,
3.2758E-11,
3.1282E-11,
2.8431E-11,
2.3672E-11,
1.8571E-11,
1.3338E-11,
1.0430E-11,
9.3030E-12,
9.1089E-12,
8.5706E-12,
8.2195E-12,
8.0326E-12,
8.1274E-12,
8.3914E-12,
8.4058E-12]
str_norms = [
1.165672E+09,
1.023899E+09,
9.327389E+08,
6.992203E+08,
4.723243E+08,
2.935185E+08,
1.635804E+08,
8.961018E+07,
5.762522E+07,
3.975389E+07,
3.161722E+07,
2.515280E+07,
1.994249E+07,
1.564019E+07,
1.324200E+07,
1.102772E+07,
9.510200E+06,
8.270402E+06,
8.213313E+06]
unstr_norms= [
1.153044E+09,
1.012886E+09,
9.227689E+08,
6.919205E+08,
4.676071E+08,
2.908163E+08,
1.623132E+08,
8.912482E+07,
5.745627E+07,
3.971895E+07,
3.161804E+07,
2.515815E+07,
1.993511E+07,
1.563258E+07,
1.323569E+07,
1.102264E+07,
9.506100E+06,
8.267623E+06,
8.210615E+06]
pyne_str_mrem=[]
for i in range(0, 19):
pyne_str_mrem.append(pyne_str_unnorm[i]*str_norms[i])
pyne_uni_mrem=[]
for i in range(0, 19):
pyne_uni_mrem.append(pyne_uni_unnorm[i]*str_norms[i])
pyne_unstr_mrem=[]
for i in range(0, 19):
pyne_unstr_mrem.append(pyne_unstr_unnorm[i]*unstr_norms[i])
# convert to uSv/hr
pyne_str = [x*10000 for x in pyne_str_mrem]
pyne_uni = [x*10000 for x in pyne_uni_mrem]
pyne_unstr = [x*10000 for x in pyne_unstr_mrem]
# calculate ce
ce_r2sdatac2 = []
ce_d1sdatac2 = []
ce_pyne_str = []
ce_pyne_uni = []
ce_pyne_unstr = []
for i in range(0, 19):
ce_r2sdatac2.append(r2sdatac2[i]/expdatac2[i])
ce_d1sdatac2.append(d1sdatac2[i]/expdatac2[i])
ce_pyne_str.append(pyne_str[i]/expdatac2[i])
ce_pyne_uni.append(pyne_uni[i]/expdatac2[i])
ce_pyne_unstr.append(pyne_unstr[i]/expdatac2[i])
fig1=plt.figure()
ax1=fig1.add_subplot(111)
ax1.scatter(t, pyne_str, label='PyNE R2S Cartesian', s=20, color='purple', marker = '^')
ax1.scatter(t, pyne_uni, label='PyNE Cartesian uniform', s=20, color='blue')
ax1.scatter(t, pyne_unstr, label='PyNE tetrahedral', s=20, color='orange', marker = 'v')
ax1.scatter(t, r2sdatac2, label='Batistoni et. al. R2S', s=20, color='red', marker = 's')
ax1.scatter(t, d1sdatac2, label='Batistoni et. al. D1S', s=20, color='green', marker = 'd')
ax1.set_xscale('log')
ax1.set_yscale('log')
font = {'family':'serif','size':20}
matplotlib.rc('font', **font)
ax1.set_xlabel('Decay Time (h)', fontname="Times New Roman")
ax1.set_ylabel('Dose Rate ($\mu$Sv/h)', fontname="Times New Roman")
ticks_font = matplotlib.font_manager.FontProperties(family='Times New Roman', style='normal', size=18, weight='normal', stretch='normal')
for label in ax1.get_xticklabels():
label.set_fontproperties(ticks_font)
for label in ax1.get_yticklabels():
label.set_fontproperties(ticks_font)
# plt.axis(xmin=1, xmax=1E3, ymin=0.6, ymax=1.4, fontname="Times New Roman")
plt.axis(xmin=1, xmax=1E3, fontname="Times New Roman")
fig1.set_facecolor("white")
l=legend(scatterpoints = 1, prop={'size':14}, loc=1)
for a in l.get_texts():
a.set_fontproperties(ticks_font)
plt.savefig("comp.pdf", bbox_inches='tight')