-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgt2ds.py
168 lines (162 loc) · 5.97 KB
/
gt2ds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import argparse
import os
import time
from distutils.util import strtobool
import cv2
import json
import numpy as np
from tqdm import tqdm
from sort import Sort
from deep_sort import DeepSort
from util import draw_bboxes, draw_polys
def main():
args = get_parser().parse_args()
if args.display:
cv2.namedWindow("out_vid", cv2.WINDOW_NORMAL)
cv2.resizeWindow("out_vid", 960, 720)
sort = Sort()
deepsort = DeepSort(args.deepsort_checkpoint, nms_max_overlap=args.nms_max_overlap, use_cuda=bool(strtobool(args.use_cuda)))
assert os.path.isfile(os.path.join(args.input, 'via_export_json.json')), "Error: path error, via_export_json.json not found"
'''
if args.out_vid:
out_vid = cv2.VideoWriter(
filename=args.out_vid,
fourcc=cv2.VideoWriter_fourcc(*'MJPG'),
fps=args.fps,
frameSize=(1920, 1440),
)
'''
if args.out_txt:
out_txt = open(args.out_txt, "w+")
total_counter = [0]*1000
json_file = os.path.join(args.input, 'via_export_json.json')
with open(json_file) as f:
imgs_anns = json.load(f)
for idx, v in tqdm(enumerate(imgs_anns.values()), total=len(imgs_anns.values())):
filename = os.path.join(args.input, v["filename"])
annos = v["regions"]
polys = []
dets = []
for anno in annos:
region_attributes = anno["region_attributes"]
if not region_attributes:
break
anno = anno["shape_attributes"]
if anno["name"] != "polygon":
break
px = anno["all_points_x"]
py = anno["all_points_y"]
poly = np.array([[x, y] for x, y in zip(px, py)], np.int32).reshape((-1,1,2))
if int(region_attributes["category_id"]):
dets.append([np.min(px), np.min(py), np.max(px), np.max(py), 1])
polys.append(poly)
start = time.time()
im = cv2.imread(filename)
current_counter = []
if args.tracker == 'sort':
if len(dets):
dets = np.array(dets)
else:
dets = np.empty((0,5))
outputs = sort.update(dets)
outputs = np.array([element.clip(min=0) for element in outputs]).astype(int)
else:
if len(dets):
ccwh_boxes = []
for det in dets:
ccwh_boxes.append([(det[0]+det[2])/2, (det[1]+det[3])/2, det[2]-det[0], det[3]-det[1]])
ccwh_boxes = np.array(ccwh_boxes)
confidences = np.ones(len(dets))
outputs, __ = deepsort.update(ccwh_boxes, confidences, im)
else:
outputs = []
if len(outputs):
tlbr_boxes = outputs[:, :4]
identities = current_counter = outputs[:, -1]
ordered_identities = []
for identity in identities:
if not total_counter[identity]:
total_counter[identity] = max(total_counter) + 1
ordered_identities.append(total_counter[identity])
im = draw_bboxes(im, tlbr_boxes, ordered_identities, binary_masks=[])
if args.out_txt:
for i in range(len(ordered_identities)):
tlbr = tlbr_boxes[i]
line = [idx+1, ordered_identities[i], tlbr[0], tlbr[1], tlbr[2]-tlbr[0], tlbr[3]-tlbr[1], 1, 1, 1]
out_txt.write(",".join(str(item) for item in line) + "\n")
end = time.time()
im = draw_polys(im, polys)
im = cv2.putText(im, "Frame ID: "+str(idx), (20,20), 0, 5e-3 * 200, (0,255,0), 2)
time_fps = "Time: {}s, fps: {}".format(round(end - start, 2), round(1 / (end - start), 2))
im = cv2.putText(im, time_fps,(20, 60), 0, 5e-3 * 200, (0,255,0), 3)
im = cv2.putText(im, 'Groundtruth2'+args.tracker, (20, 100), 0, 5e-3*200, (0,255,0), 3)
im = cv2.putText(im, "Current Hand Counter: "+str(len(current_counter)),(20, 140), 0, 5e-3 * 200, (0,255,0), 2)
im = cv2.putText(im, "Total Hand Counter: "+str(max(total_counter)), (20, 180), 0, 5e-3 * 200, (0,255,0), 2)
if args.display:
cv2.imshow("out_vid", im)
cv2.waitKey(1)
'''
if args.out_vid:
out_vid.write(im)
'''
def get_parser():
parser = argparse.ArgumentParser(description="Grounttruth to (Deep)SORT demo")
parser.add_argument("--input",
type=str,
default='/media/data3/EgoCentric_Nafosted/micand26/gt/',
help='path to input folder contains detection groundtruth',
)
parser.add_argument("--tracker",
type=str,
default='sort',
help='tracker type, sort or deepsort',
)
parser.add_argument("--deepsort_checkpoint",
type=str,
default="deep_sort/deep/checkpoint/ckpt.t7",
help='Cosine metric learning model checkpoint',
)
parser.add_argument(
"--max_dist",
type=float,
default=0.3,
help="Max cosine distance",
)
parser.add_argument("--nms_max_overlap",
type=float,
default=0.5,
help='Non-max suppression threshold',
)
parser.add_argument(
"--display",
type=bool,
default=False,
help="Streaming frames to display",
)
parser.add_argument(
"--fps",
type=float,
default=30.0,
help="Output video Frame Per Second",
)
parser.add_argument(
"--out_vid",
type=str,
default="output_video.avi",
help="Output video",
)
parser.add_argument(
"--use_cuda",
type=str,
default="True",
help="Use GPU if true, else use CPU only",
)
parser.add_argument(
"--out_txt",
type=str,
default="output_txt.txt",
help="Write tracking results in MOT16 format to file seqtxt2write. To evaluate using pymotmetrics",
)
return parser
if __name__ == "__main__":
main()