-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
executable file
·358 lines (288 loc) · 11.4 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
"""Define dataset model classes and the learning model class of AlexNet-based encoder and ResNet-based decoder."""
import numpy as np
import torch
from torch import nn
from torchvision import transforms
from torch.utils.data import Dataset
import scipy.ndimage as ndimage
from scipy.misc import imresize
import torch.nn.functional as F
from string import ascii_lowercase
import glob
import math
import re
import cv2
import os
from logger import get_logger
logger = get_logger(__name__)
letters = ['lower' + a for a in ascii_lowercase]
# ===================transforms & preprocessing=====================
img_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
def mean_subtract(dataset):
"""Subtract mean of all images in dataset from each image."""
data = [dataset[i] for i in range(len(dataset))]
data_numpy = [dataset[i].numpy() for i in range(len(dataset))]
# mean
mean = np.mean(data_numpy)
# standard deviation
std = np.std(data_numpy)
# perform mean subtract
new_dataset = []
for i in range(len(dataset)):
data[i] -= mean
data[i] /= std
new_dataset.append(data[i])
return new_dataset, mean
# ===================Dataset Classes=====================
class MyData(Dataset):
"""Alphabet, Noun Project & Theme Clipart Data."""
def __init__(self, args, img_size):
"""Intialize data items."""
data = []
self.labels = []
self.args = args
self.filenames = []
weights = []
identity = []
logger.info("Getting MyData Data")
if 'cliparts' in args.data:
logger.info("Getting clipart data ...")
for i, filename in enumerate(os.path.join(args.cliparts_dir, '*.png')):
if i > args.datalimit:
logger.info("Setting a limit of %d for cliparts" % args.datalimit)
break
img = ndimage.imread(filename)[:, :, 3]
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
img = cv2.bitwise_not(img)
res = imresize(img, size=(img_size, img_size))
res = res / 255.0
data.append(res)
weights.append(1)
identity.append(1)
self.filenames.append(filename)
self.labels.append(letters.index('lowera')) # dummy label
if 'letters' in args.data:
logger.info("Getting letter data ...")
for i, filename in enumerate(os.path.join(args.letters_dir, '*.png')):
if i > args.datalimit:
logger.info("Setting a limit of %d for letters" % args.datalimit)
break
img = ndimage.imread(filename)[:, :, :3]
res = imresize(img, size=(img_size, img_size)) # numpy array of dimensions (s,s,3)
res = res / 255.0
data.append(res)
label = ''.join([i for i in filename.split('/')[-1].split('.png')[0] if not i.isdigit()])
self.labels.append(letters.index(label))
identity.append(2)
self.filenames.append(filename)
weights.append(float(args.alpha))
self.mydata = data
self.transform = img_transform
self.weights = weights
self.identity = identity
def __getitem__(self, index):
"""Return data items."""
if self.transform is not None:
x = np.transpose(self.mydata[index], (2, 0, 1))
# x = self.transform(x)
x = torch.FloatTensor(x)
x -= 0.5
x /= 0.5
else:
x = self.mydata[index]
return x, self.labels[index], self.weights[index], self.identity[index] # return (img, label, w, identity)
def __len__(self):
"""Return numner of data items."""
return len(self.mydata)
# ===================Model Classes=====================
class Bottleneck(nn.Module):
"""Bottleneck function for ResNet-based encoder."""
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResnetEncoder(nn.Module):
"""ResNet-based Encoder."""
def __init__(self, block, layers, args, num_classes=23):
self.args = args
self.inplanes = 64
super(ResnetEncoder, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # return_indices = True)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1)
self.fc = nn.Linear(512 * block.expansion, args.zsize)
# self.fc = nn.Linear(num_classes,16)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
class AlexnetEncoder(nn.Module):
"""AlexNet-based Encoder."""
def __init__(self, args):
super(AlexnetEncoder, self).__init__()
self.args = args
self.conv1 = nn.Conv2d(3, 64, 11, stride=4, padding=2)
self.conv2 = nn.Conv2d(64, 192, 5, padding=2)
self.conv3 = nn.Conv2d(192, 384, 3, padding=1)
self.conv4 = nn.Conv2d(384, 256, 3, padding=1)
self.conv5 = nn.Conv2d(256, 256, 3, padding=1)
self.fc1 = nn.Linear(256 * 6 * 6, 4096)
self.fc2 = nn.Linear(4096, 4096)
self.fc3 = nn.Linear(4096, args.zsize)
self.drop_layer = nn.Dropout(p=0.5)
def forward(self, x):
x = F.relu(self.conv1(x))
x, indices1 = F.max_pool2d(x, (3, 3), (2, 2), return_indices=True)
x = F.relu(self.conv2(x))
x, indices2 = F.max_pool2d(x, (3, 3), (2, 2), return_indices=True)
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = F.relu(self.conv5(x))
x, indices3 = F.max_pool2d(x, (3, 3), (2, 2), return_indices=True)
x = x.view(x.size(0), 256 * 6 * 6)
x = self.drop_layer(x)
x = F.relu(self.fc1(x))
x = self.drop_layer(x)
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
class Decoder(nn.Module):
"""ResNet-based Decoder."""
def __init__(self, args):
super(Decoder, self).__init__()
self.dfc3 = nn.Linear(args.zsize, 4096)
self.bn3 = nn.BatchNorm1d(4096)
self.dfc2 = nn.Linear(4096, 4096)
self.bn2 = nn.BatchNorm1d(4096)
self.dfc1 = nn.Linear(4096, 256 * 6 * 6)
self.bn1 = nn.BatchNorm1d(256 * 6 * 6)
self.upsample1 = nn.Upsample(scale_factor=2)
self.dconv5 = nn.ConvTranspose2d(256, 256, 3, padding=0)
self.dconv4 = nn.ConvTranspose2d(256, 384, 3, padding=1)
self.dconv3 = nn.ConvTranspose2d(384, 192, 3, padding=1)
self.dconv2 = nn.ConvTranspose2d(192, 64, 5, padding=2)
self.dconv1 = nn.ConvTranspose2d(64, 3, 12, stride=4, padding=4)
def forward(self, x): # ,i1,i2,i3):
batch_size = x.shape[0]
x = self.dfc3(x)
# x = F.relu(x)
# x = x.view(100, 16, 16, 16)
x = F.relu(self.bn3(x))
x = self.dfc2(x)
x = F.relu(self.bn2(x))
# x = F.relu(x)
x = self.dfc1(x)
x = F.relu(self.bn1(x))
# x = F.relu(x)
# logger.info(x.size())
x = x.view(batch_size, 256, 6, 6)
# logger.info (x.size())
x = self.upsample1(x)
# logger.info x.size()
x = self.dconv5(x)
# logger.info x.size()
x = F.relu(x)
# logger.info x.size()
x = F.relu(self.dconv4(x))
# logger.info x.size()
x = F.relu(self.dconv3(x))
# logger.info x.size()
x = self.upsample1(x)
# logger.info x.size()
x = self.dconv2(x)
# logger.info x.size()
x = F.relu(x)
x = self.upsample1(x)
# logger.info x.size()
x = self.dconv1(x)
# logger.info x.size()
# x = F.sigmoid(x) - purva
x = torch.tanh(x)
# logger.info x
return x
class MultiTask(nn.Module):
"""Main multitask module."""
def __init__(self, args):
super(MultiTask, self).__init__()
self.args = args
self.fc = nn.Linear(args.zsize, 52) # for classification loss
self.sm = nn.Softmax() # for classification loss
if args.model == 'alexnet':
self.encoder = AlexnetEncoder(args=args)
elif args.model == 'bigresnet':
self.encoder = ResnetEncoder(block=Bottleneck, layers=[3, 4, 6, 3], args=args)
elif args.model == 'smallresnet':
self.encoder = ResnetEncoder(block=Bottleneck, layers=[1, 1, 1, 1], args=args)
self.decoder = Decoder(args)
def forward(self, x):
x = self.encoder(x)
self.representation = x
y = self.fc(x)
z = self.sm(y)
x = self.decoder(x)
return x, y, z