-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathlayer_generate.py
379 lines (313 loc) · 14.2 KB
/
layer_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# network_generate.py
# Alessio Burrello <[email protected]>
#
# Copyright (C) 2019-2020 University of Bologna
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import importlib
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import sys
from copy import deepcopy
sys.path.append('..')
from dory.Parsers.DORY_node import DORY_node
from dory.Parsers.Layer_node import Layer_node
def borders(bits, signed):
low = -(2 ** (bits-1)) if signed else 0
high = 2 ** (bits-1) - 1 if signed else 2 ** bits - 1
return low, high
def mean(bits, signed):
return 0 if signed else 2**(bits-1)
def std(bits):
return 2**(bits-1)
def create_dory_node(params, i):
node = DORY_node()
node.branch_out = 0
node.branch_in = 0
node.branch_last = 0
node.branch_change = 0
name = 'BNRelu' if params['batchnorm'] else 'Relu'
node.name = name
node.op_type = name
node.layout = 'CHW'
node.bias_bits = 32
# constant -> bn and relu
node.constant_type = 'int'
node.constant_bits = params['BNRelu_bits']
node.constant_names = []
node.input_activation_type = params['input_type']
node.input_activation_bits = params['intermediate_bits']
node.output_activation_type = params['output_type']
node.output_activation_bits = params['output_bits']
node.weight_type = 'int'
node.weight_bits = None
node.min, node.max = borders(node.output_activation_bits, node.output_activation_type == 'int')
# Ids of previous nodes, node can have multiple input nodes
node.number_of_input_nodes = 1
node.input_indexes = [str(i)]
node.output_index = str(i+1)
# Constants: weights, bias, k, lambda
node.number_of_input_constants = 4
return node
def calculate_output_dimensions(node):
if node.name == 'FullyConnected':
return [1,1]
h = (node.input_dimensions[0] + node.pads[0] + node.pads[1] - node.kernel_shape[0]) / node.strides[0] + 1
w = (node.input_dimensions[1] + node.pads[2] + node.pads[3] - node.kernel_shape[1]) / node.strides[1] + 1
return [int(h), int(w)]
def create_layer_node(params, i):
node = Layer_node()
node.name = params['layer_type']
node.op_type = params['operation_type'] # TODO might be redundant
node.pads = params['padding']
node.group = params['group']
node.strides = params['stride']
node.kernel_shape = params['kernel_shape']
node.input_dimensions = params['input_dimensions']
node.output_dimensions = calculate_output_dimensions(node)
node.input_channels = params['input_channels']
node.output_channels = params['output_channels']
node.output_activation_type = params['output_type']
node.output_activation_bits = params['intermediate_bits']
node.input_activation_type = params['input_type']
node.input_activation_bits = params['input_bits']
node.constant_names = []
node.constant_type = 'int'
node.constants_memory = None
node.constant_bits = None
node.weight_type = 'int'
node.weight_bits = params['weight_bits']
node.bias_bits = params['bias_bits']
node.weight_memory = None
node.MACs = node.output_dimensions[0] * node.output_dimensions[1] * node.output_channels \
* node.kernel_shape[1] * node.kernel_shape[0] * node.input_channels
node.n_test_inputs = 1
# Ids of previous nodes, node can have multiple input nodes
node.number_of_input_nodes = 1
node.input_indexes = [str(i)] # '0' is the network input
node.output_index = str(i+1)
# Constants: weights
node.number_of_input_constants = 1
return node
def clip(x, bits, signed=False):
low, high = borders(bits, signed)
x[x > high] = high
x[x < low] = low
return x
def calculate_shift(x, bits, signed):
"""
Calculate shift
This function calculates the shift in a way that it maximizes the number of values
that are in between min and max after shifting. It looks only at positive values since
all the negative ones are going to bi clipped to 0.
Signed: Tries to get the standard deviation to be equal to range / 2
Unsigned: Tries to shift the mean of positive values towards the middle of the range [0, 2**bits - 1]
"""
x = x.type(torch.float)
if signed:
s = x.std()
ratio = 1 if s.isnan() or s.isinf() or s < 1 else s.item() / std(bits)
else:
m = x[x > 0].mean().item()
ratio = m / mean(bits, signed)
shift = round(np.log2(ratio))
shift = 0 if shift < 0 else shift
return shift
def batchnorm(x, scale, bias):
return scale * x + bias
def calculate_batchnorm_params(x, output_bits, constant_bits, signed):
"""
Calculate batchnorm
Calculate Batch-Normalization parameters scale and bias such that we maximize the number
of values that fall into range [0, 2**output_bits - 1].
Shifts the mean towards the center of the range and changes the standard deviation so that
most of the values fall into the range.
"""
x = x.type(torch.float)
desired_mean = mean(output_bits, signed)
desired_std = std(output_bits)
# Calculate mean and std for each output channel
m = x.mean(dim=(-2, -1), keepdim=True)
s = x.std(dim=(-2, -1), keepdim=True)
scale = torch.empty_like(s)
scale[s.isnan()] = 1
scale[torch.logical_not(s.isnan())] = desired_std / s[torch.logical_not(s.isnan())]
scale = scale.round()
scale = clip(scale, constant_bits)
scale[scale == 0] = 1
bias = scale * (desired_mean - m)
bias = bias.round()
bias = clip(bias, constant_bits, signed=True)
return scale.type(torch.int64), bias.type(torch.int64)
def create_input(node):
low, high = borders(node.input_activation_bits, node.input_activation_type == 'int')
size = (1, node.input_channels, node.input_dimensions[0], node.input_dimensions[1])
dt = torch.int64 if node.output_activation_bits==64 else torch.int32
return torch.randint(low=low, high=high+1, size=size).to(dtype=dt)
def create_weight(node):
low, high = borders(node.weight_bits, signed=True)
if node.name == 'FullyConnected':
size = (node.output_channels, node.input_dimensions[0]*node.input_dimensions[1]*node.input_channels)
else:
size = (node.output_channels, node.input_channels // node.group, node.kernel_shape[0], node.kernel_shape[1])
dt = torch.int64 if node.output_activation_bits==64 else torch.int32
return torch.randint(low=low, high=high+1, size=size).to(dtype=dt)
def create_bias(node):
low, high = borders(node.bias_bits//2, signed=True)
size = (node.output_channels,1)
# return torch.randint(low=low, high=high, size=size).flatten()
dt = torch.int64 if node.output_activation_bits==64 else torch.int32
return torch.randint(low=low, high=high, size=size).flatten().to(dtype=dt)
def create_layer(i_layer, layer_node, dory_node, network_dir, input=None, weight=None, batchnorm_params=None):
x = input if input is not None else create_input(layer_node)
is_fc = layer_node.name == 'FullyConnected'
x_save = x.permute(0, 2, 3, 1).flatten()
if i_layer == 0:
np.savetxt(os.path.join(network_dir, 'input.txt'), x_save, delimiter=',', fmt='%d')
w = weight if weight is not None else create_weight(layer_node)
layer_node.constant_names.append('weights')
layer_node.weights = {
'value': w.numpy(),
'layout': 'CoutCinK'
}
b = create_bias(layer_node)
layer_node.constant_names.append('bias')
layer_node.bias = {
'value': b.numpy(),
'layout': ''
}
if not is_fc:
y = F.conv2d(input=x, weight=w, bias=b, stride=layer_node.strides, padding=layer_node.pads[0], groups=layer_node.group)
else:
inp = x[:, :, 0, 0].flatten().unsqueeze(0)
y = F.linear(input=inp, weight=w, bias=b)
if layer_node.output_activation_bits == 64:
y_type = torch.int64
elif layer_node.output_activation_bits == 32:
y_type = torch.int32
else:
print("Unsupported output activation bitwidth")
sys.exit(-1)
y_signed = layer_node.output_activation_type == 'int'
if dory_node:
if 'BN' in dory_node.op_type:
if batchnorm_params is not None:
k, l = batchnorm_params
else:
k, l = calculate_batchnorm_params(y, dory_node.output_activation_bits, dory_node.constant_bits, y_signed)
dory_node.constant_names.append('k')
dory_node.k = {'value': k.type(torch.float).numpy(), 'layout': ''}
dory_node.constant_names.append('l')
dory_node.l = {'value': l.type(torch.float).numpy(), 'layout': ''}
y = batchnorm(y, k, l)
else:
dory_node.constant_names.append('outmul')
dory_node.outmul = {
'value': 1,
'layout': ''
}
dory_node.constant_names.append('outshift')
dory_node.outshift = {
'value': calculate_shift(y, dory_node.output_activation_bits, y_signed),
'layout': ''
}
y = y >> dory_node.outshift['value']
y = clip(y, dory_node.output_activation_bits, y_signed)
else:
layer_node.constant_names.append('outmul')
layer_node.outmul = {
'value': 1,
'layout': ''
}
layer_node.constant_names.append('outshift')
layer_node.outshift = {
'value': 0,
'layout': ''
}
y = y.type(y_type)
y_save = y.permute(0, 2, 3, 1) if not is_fc else y
y_save = y_save.flatten().numpy()
np.savetxt(os.path.join(network_dir, f'out_layer{i_layer}.txt'), y_save, delimiter=',', fmt='%d')
return y
def create_graph(params, network_dir):
params_in = deepcopy(params)
params_in['layer_type'] = 'Convolution'
params_in['operation_type'] = 'Conv'
params_in['input_bits'] = 2
params_in['kernel_shape'] = [1,1]
params_in['weight_bits'] = 2
params_in['padding'] = 4*[0]
params_in['output_bits'] = params['input_bits']
params_in['output_type'] = params['input_type']
params_in['stride'] = [1,1]
params_in['input_channels'] = 4
params_in['output_channels'] = params['input_channels']
in_layer_node = create_layer_node(params_in, 0)
in_act_node = create_dory_node(params_in, 1)
with torch.no_grad():
layer_input = create_layer(0, in_layer_node, in_act_node, network_dir)
layer_node = create_layer_node(params, 2)
act_node = create_dory_node(params, 3)
with torch.no_grad():
layer_output = create_layer(1, layer_node, act_node, network_dir, input=layer_input)
params_out = deepcopy(params)
params_out['layer_type'] = 'FullyConnected'
params_out['operation_type'] = 'Gemm'
params_out['input_bits'] = params['output_bits']
params_out['weight_bits'] = 2
params_out['output_channels'] = 8
params_out['stride'] = [1,1]
params_out['kernel_shape'] = [1,1]
params_out['input_channels'] = params['output_channels'] # params['output_channels'] *
# layer_node.output_dimensions[0] * layer_node.output_dimensions[1] # this
# will give tiling issues...
params_out['input_dimensions'] = [1,1]#layer_node.output_dimensions
params_out['output_bits'] = 32
out_layer_node = create_layer_node(params_out, 4)
with torch.no_grad():
create_layer(2, out_layer_node, None, network_dir, input=layer_output)
return [in_layer_node, in_act_node, layer_node, act_node, out_layer_node]
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('hardware_target', type=str, choices=["PULP.PULP_gvsoc","PULP.GAP8", "PULP.GAP9", "Occamy", "Diana"],
help='Hardware platform for which the code is optimized')
parser.add_argument('--config_file', default='dory/dory_examples/config_files/config_single_layer.json', type=str,
help='Path to the JSON file that specifies the ONNX file of the network and other information. Default: config_files/config_single_layer.json')
parser.add_argument('--app_dir', default='./application',
help='Path to the generated application. Default: ./application')
parser.add_argument('--perf_layer', default='Yes', help='Yes: MAC/cycles per layer. No: No perf per layer.')
parser.add_argument('--verbose_level', default='Check_all+Perf_final',
help="None: No_printf.\nPerf_final: only total performance\nCheck_all+Perf_final: all check + final performances \nLast+Perf_final: all check + final performances \nExtract the parameters from the onnx model")
parser.add_argument('--optional', default='8bit',
help='auto (based on layer precision, 8bits or mixed-sw), 8bit, mixed-hw, mixed-sw')
args = parser.parse_args()
json_configuration_file_root = os.path.dirname(args.config_file)
with open(args.config_file, 'r') as f:
json_configuration_file = json.load(f)
network_dir = os.path.join(json_configuration_file_root, os.path.dirname(json_configuration_file['onnx_file']))
os.makedirs(network_dir, exist_ok=True)
torch.manual_seed(0)
DORY_Graph = create_graph(json_configuration_file, network_dir)
# Including and running the transformation from DORY IR to DORY HW IR
onnx_manager = importlib.import_module(f'dory.Hardware_targets.{args.hardware_target}.HW_Parser')
DORY_to_DORY_HW = onnx_manager.onnx_manager
DORY_Graph = DORY_to_DORY_HW(DORY_Graph, json_configuration_file, json_configuration_file_root).full_graph_parsing()
# Deployment of the model on the target architecture
onnx_manager = importlib.import_module(f'dory.Hardware_targets.{args.hardware_target}.C_Parser')
DORY_HW_to_C = onnx_manager.C_Parser
DORY_Graph = DORY_HW_to_C(DORY_Graph, json_configuration_file, json_configuration_file_root,
args.verbose_level, args.perf_layer, args.optional, args.app_dir).full_graph_parsing()