-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathstrategy.py
167 lines (142 loc) · 5.93 KB
/
strategy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Importing various modules
import threading
import os
import abc
import time
import yfinance as yf
from alpaca_trade_api import REST
import pandas as pd
import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from keras.layers import Dense
from keras.models import Sequential, model_from_json
# AlpacaPaperSocket class for the connection to Alpaca API using paper trading key_id, secret_id & base_url
class AlpacaPaperSocket(REST):
def __init__(self):
super().__init__(
key_id = 'PKARJ9A9ZP1H8K5A58TF',
secret_key = '68Bl3zDxWDGGT1l30y*******NdwtEEe6nRAxAzW',
base_url = 'https://paper-api.alpaca.markets'
)
# TradingSystem class with methods declared as abstract, so that we can change our implementations according to the need of the system computations
class TradingSystem(abc.ABC):
def __init__(self, api, symbol, time_frame, system_id, system_label):
self.api = api
self.symbol = symbol
self.time_frame = time_frame
self.system_id = system_id
self.system_label = system_label
thread = threading.Thread(target = self.system_loop)
thread.start()
@abc.abstractmethod
def place_buy_order(self):
pass
@abc.abstractmethod
def place_sell_order(self):
pass
@abc.abstractmethod
def system_loop(self):
pass
# AI Porfolio Management Model class which implements our AI model
class PMDevelopment:
def __init__(self):
data = pd.read_csv("stock_data.csv")
# Seperating the Dependent & the Independent Model
x = data['Delta Value']
y = data.drop(['Delta Value'], axis = 1)
# Splitting the Train & Test DataSet
x_train, x_test, y_train, y_test = train_test_split(x, y)
# Creating a Sequential Model
network = Sequential()
# Creating the Structure to our Neural network
network.add(Dense(1, input_shape = (1,), activation = 'tanh'))
network.add(Dense(3, activation = 'tanh'))
network.add(Dense(3, activation = 'tanh'))
#network.add(Dense(5, activation = 'tanh'))
#network.add(Dense(3, activation = 'tanh'))
network.add(Dense(3, activation = 'tanh'))
network.add(Dense(1, activation = 'tanh'))
#Compiling the network using rmsprop optimizer. We can also use Adam Optimizer
network.compile(optimizer = 'rmsprop', loss = 'hinge', metrics = ['accuracy'])
#Fitting(Training) the model to predict the Accuracy
network.fit(x_train.values, y_train.values, epochs = 100)
#Evaluaing our model predictions
y_pred = network.predict(x_test.values)
y_pred = np.around(y_pred, 0)
print(classification_report(y_test, y_pred))
#Saving the structure to our json
strategy_model = network.to_json()
with open("model.json", "w") as json_file:
json_file.write(strategy_model)
#Saving our network weights to the HDF5
network.save_weights("result.h5")
#PMDevelopment()
# Portfolio Management Model class
class PortfolioMgmtModel:
def __init__(self):
data = pd.read_csv("stock_data.csv")
x = data['Delta Value']
y = data.drop(['Delta Value'], axis = 1)
# Reading Structure from Json
json_file = open("model.json", "r")
json = json_file.read()
json_file.close()
self.network = model_from_json(json)
# Reading weights from HDF5
self.network.load_weights("result.h5")
# Verifying weights & structure are loaded
y_pred = self.network.predict(x.values)
y_pred = np.around(y_pred, 0)
print(classification_report(y, y_pred))
PortfolioMgmtModel()
# Portfolio ManagementSystem class where a vector is created for storing data
class PortfolioMgmtSystem(TradingSystem):
def __init__(self):
super().__init__(AlpacaPaperSocket(), 'IBM', 86400, 1, 'AI_PM')
self.AI = PortfolioMgmtModel()
# function for placing a buy order
def place_buy_order(self):
self.api.submit_order(
symbol = 'IBM',
qty = 1,
side = 'buy',
type = 'market',
time_in_force = 'day'
)
# function for placing a sell order
def place_sell_order(self):
self.api.submit_order(
symbol = 'IBM',
qty = 1,
side = 'sell',
type = 'market',
time_in_force = 'day'
)
# An infinite loop which will systematically make the trades
def system_loop(self):
this_week_close = 0
last_week_close = 0
delta = 0
day_cnt = 0
while(True):
# Waiting a day fro requesting more data
time.sleep(1440)
# Requesting EOD from IBM
data_req = self.api.get_barset('IBM', timeframe = '1D', limit = 1).df
# Creating the dataframe to predict
z = pd.DataFrame(
data = [[data_req['IBM']['close'][0]]], columns = 'Close'.split()
)
if(day_cnt == 7):
day_cnt = 0
last_week_close = this_week_close
this_week_close = z['Close']
delta = this_week_close - last_week_close
# AI will choose whether to Buy, Sell or Hold Stock
if(np.around(self.AI.network.predict([delta])) <= -0.5):
self.place_sell_order()
elif(np.around(self.AI.network.predict([delta])) >= 0.5):
self.place_buy_order()
PortfolioMgmtSystem()