-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathorset_bst.fst
501 lines (434 loc) · 19.9 KB
/
orset_bst.fst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
module Orset_bst
open FStar.List.Tot
#set-options "--query_stats"
module O = Orset_space
open Library
type tree =
|Leaf : tree
|Node : (nat (*unique id*) * nat (*unique element*)) -> tree -> tree -> tree
val memt1 : (nat * nat)
-> tree
-> Tot bool
let rec memt1 x t =
match t with
| Leaf -> false
| Node n t1 t2 -> x = n || memt1 x t1 || memt1 x t2
val member_id_s : id:nat
-> t:tree
-> Tot (b:bool {(exists ele. memt1 (id,ele) t) <==> b = true})
let rec member_id_s id t =
match t with
| Leaf -> false
| Node (id1,_) t1 t2 -> id = id1 || member_id_s id t1 || member_id_s id t2
val member_ele_s : ele:nat
-> t:tree
-> Tot (b:bool {(exists id. memt1 (id,ele) t) <==> b = true})
let rec member_ele_s ele t =
match t with
| Leaf -> false
| Node (_,ele1) t1 t2 -> ele = ele1 || member_ele_s ele t1 || member_ele_s ele t2
val forallt : p:((nat * nat) -> Tot bool)
-> t:tree
-> Tot (r:bool{r = true <==> (forall x. memt1 x t ==> p x)})
let rec forallt p t =
match t with
| Leaf -> true
| Node n t1 t2 -> p n && forallt p t1 && forallt p t2
val unique_id_s : t:tree -> Tot bool
let rec unique_id_s t =
match t with
|Leaf -> true
|Node (id,ele) t1 t2 -> not (member_id_s id t1) && not (member_id_s id t2) &&
forallt (fun e -> not (member_id_s (fst e) t2)) t1 &&
forallt (fun e -> not (member_id_s (fst e) t1)) t2 &&
unique_id_s t1 && unique_id_s t2
val unique_ele_s : t:tree -> Tot bool
let rec unique_ele_s t =
match t with
|Leaf -> true
|Node (id,ele) t1 t2 -> not (member_ele_s ele t1) && not (member_ele_s ele t2) &&
forallt (fun e -> not (member_ele_s (snd e) t2)) t1 &&
forallt (fun e -> not (member_ele_s (snd e) t1)) t2 &&
unique_ele_s t1 && unique_ele_s t2
val is_bst : tree -> Tot bool
let rec is_bst t =
match t with
| Leaf -> true
| Node n t1 t2 -> forallt (fun n' -> snd n > snd n') t1 &&
forallt (fun n' -> snd n < snd n') t2 && is_bst t1 && is_bst t2
val size : t1:tree -> Tot nat
let rec size t1 =
match t1 with
|Leaf -> 0
|Node _ t1 t2 -> 1 + size t1 + size t2
type s = tree1:tree {is_bst tree1 /\ unique_id_s tree1}
type rval = O.rval
val init : s
let init = Leaf
type op = O.op
val help : t1:s -> Lemma (ensures unique_ele_s t1)
[SMTPat (is_bst t1)]
#set-options "--z3rlimit 1000"
let rec help tr =
match tr with
|Leaf -> ()
|Node n t1 t2 -> help t1 ; help t2
val memt : ele:(nat * nat)
-> t1:s
-> Tot (b:bool {(memt1 ele t1 <==> b = true)})
let rec memt x t =
match t with
|Leaf -> false
|Node n t1 t2 -> if x = n then true
else if (snd x < snd n) then memt x t1
else memt x t2
val ge : (nat * nat) -> (nat * nat) -> Tot bool
let ge n1 n2 = (snd n1 > snd n2 && fst n1 <> fst n2) || n1 = n2
val find_max : t1:tree {Node? t1}
-> Pure (nat * nat)
(requires (is_bst t1 /\ unique_id_s t1))
(ensures (fun r -> (forallt (ge r) t1) /\ memt1 r t1))
let rec find_max t1 =
match t1 with
| Node v _ t2 -> match t2 with
| Leaf -> v
| _ -> find_max t2
val delete_ele : x:nat
-> t1:s
-> Pure s
(requires true)
(ensures (fun r -> (forall e. memt1 e r <==> (memt e t1) /\ snd e <> x) /\ not (member_ele_s x r) /\
is_bst r /\ unique_id_s r))
(decreases (size t1))
#set-options "--z3rlimit 10000"
let rec delete_ele x tr =
match tr with
| Leaf -> Leaf
| Node n t1 t2 -> if snd n = x then
match t1, t2 with
| Leaf, Leaf -> Leaf
| _ , Leaf -> t1
| Leaf, _ -> t2
| _ -> assert (Node? t1); let y = find_max t1 in Node y (delete_ele (snd y) t1) t2
else if x < snd n then Node n (delete_ele x t1) t2
else Node n t1 (delete_ele x t2)
(*)val delete : x:(nat * nat)
-> t1:t
-> Pure t
(requires (memt x t1))
(ensures (fun r -> (forall e. memt1 e r <==> (memt e t1) /\ e <> x) /\ not (memt x r) /\ is_bst r /\ unique_id r))
(decreases (size t1))
#set-options "--z3rlimit 1000000"
let rec delete x tr =
match tr with
| Leaf -> Leaf
| Node n t1 t2 -> if n = x then
match t1, t2 with
| Leaf, Leaf -> Leaf
| _ , Leaf -> t1
| Leaf, _ -> t2
| _ -> assert (Node? t1); let y = find_max t1 in Node y (delete y t1) t2
else if snd x < snd n then Node n (delete x t1) t2
else Node n t1 (delete x t2)*)
#set-options "--z3rlimit 1000"
val update : ele:nat
-> id:nat
-> t1:s
-> Pure tree
(requires not (member_id_s id t1))
(ensures (fun res -> (forall e. memt e t1 /\ snd e <> ele <==> memt1 e res /\ snd e <> ele) /\
(forall e. memt1 e res /\ fst e <> id /\ member_id_s (fst e) res <==>
memt e t1 /\ snd e <> ele /\ member_id_s (fst e) t1) /\
(forall e. member_ele_s e t1 \/ e = ele <==> member_ele_s e res) /\
(forall e. memt1 e res /\ e <> (id,ele) <==> memt e t1 /\ snd e <> ele) /\
memt1 (id,ele) res /\ is_bst res /\ unique_id_s res))
#set-options "--z3rlimit 1000"
let rec update ele id tr =
match tr with
|Leaf -> Node (id,ele) Leaf Leaf
|Node (id1,ele1) t1 t2 -> if ele = ele1 then Node (id, ele1) t1 t2
else if ele < ele1 then (Node (id1,ele1) (update ele id t1) t2)
else Node (id1,ele1) t1 (update ele id t2)
let pre_cond_do s1 op = not (member_id_s (get_id op) s1)
let pre_cond_prop_do tr s1 op = true
val abs_dot : l1:O.s
-> l2:O.s
-> Pure O.s
(requires (forall e. O.member_ele_s e l1 ==> not (O.member_ele_s e l2)) /\
(forall e. O.member_id_s e l1 ==> not (O.member_id_s e l2)))
(ensures (fun res -> (forall e. mem e res <==> mem e l1 \/ mem e l2) /\
(forall e. O.member_id_s e res <==> O.member_id_s e l1 \/ O.member_id_s e l2) /\
(forall e. O.member_ele_s e res <==> O.member_ele_s e l1 \/ O.member_ele_s e l2)))
let rec abs_dot l1 l2 =
match l1,l2 with
|[],[] -> []
|x::xs,_ -> x::(abs_dot xs l2)
|[],_ -> l2
val flatten : tree1:s
-> Pure O.s
(requires true)
(ensures (fun res -> (forall e. memt e tree1 <==> mem e res) /\
(forall e. member_ele_s e tree1 <==> O.member_ele_s e res) /\
(forall e. member_id_s e tree1 <==> O.member_id_s e res)))
(decreases (size tree1))
#set-options "--z3rlimit 1000"
let rec flatten t =
match t with
|Leaf -> []
|Node n t1 t2 -> assert ((forall e. O.member_ele_s e (flatten t1) ==> not (O.member_ele_s e (flatten t2))) /\
(forall e. O.member_id_s e (flatten t1) ==> not (O.member_id_s e (flatten t2))) /\
not (O.member_id_s (fst n) (flatten t1)) /\
not (O.member_ele_s (snd n) (flatten t1)) /\
not (O.member_id_s (fst n) (flatten t2)) /\
not (O.member_ele_s (snd n) (flatten t2)));
assert (not (O.member_id_s (fst n) (abs_dot (flatten t1) (flatten t2))) /\
not (O.member_ele_s (snd n) (abs_dot (flatten t1) (flatten t2))));
n::(abs_dot (flatten t1) (flatten t2))
val do : s1:s
-> op1:(nat * op)
-> Pure (s * rval)
(requires pre_cond_do s1 op1)
(ensures (fun res -> (O.opa op1 ==> (get_rval res = O.Bot) /\ (forall e. memt e s1 /\ snd e <> O.get_ele op1 <==>
memt e (get_st res) /\ snd e <> O.get_ele op1) /\
(forall e. memt e (get_st res) /\ fst e <> get_id op1 /\ member_id_s (fst e) (get_st res) <==>
memt e s1 /\ snd e <> O.get_ele op1 /\ member_id_s (fst e) s1) /\
(forall e. member_ele_s e s1 \/ e = O.get_ele op1 <==> member_ele_s e (get_st res)) /\
(forall e. memt e (get_st res) /\ e <> ((get_id op1), (O.get_ele op1)) <==>
memt e s1 /\ snd e <> O.get_ele op1) /\
memt ((get_id op1), (O.get_ele op1)) (get_st res)) /\
(O.opr op1 ==> (get_rval res = O.Bot) /\ (forall e. memt e (get_st res) <==> memt e s1 /\ snd e <> O.get_ele op1)) /\ (get_op op1 = O.Rd ==> get_rval res = O.Val (O.get_set_s (flatten s1)) /\ get_st res = s1)))
let do s1 op =
match op with
|(_, O.Add _) -> (update (O.get_ele op) (get_id op) s1, O.Bot)
|(_, O.Rem _) -> (delete_ele (O.get_ele op) s1, O.Bot)
|(_, O.Rd) -> (s1, O.Val (O.get_set_s (flatten s1)))
val insert : x:(nat * nat)
-> t1:s
-> Pure tree
(requires (not (memt x t1) /\ not (member_id_s (fst x) t1) /\ not (member_ele_s (snd x) t1)))
(ensures (fun r -> is_bst r /\ (forall y. memt1 y r <==> (memt y t1 \/ x = y)) /\ unique_id_s r))
(decreases (size t1))
#set-options "--z3rlimit 1000"
let rec insert x t =
match t with
| Leaf -> Node x Leaf Leaf
| Node n t1 t2 -> if x = n then t
else if snd x < snd n then (let y = insert x t1 in Node n (insert x t1) t2)
else Node n t1 (insert x t2)
val totree1 : s1:O.s
-> acc:s
-> Pure s
(requires (forall e. member_id_s e acc ==> not (O.member_id_s e s1)) /\
(forall e. member_ele_s e acc ==> not (O.member_ele_s e s1)))
(ensures (fun t1 -> (forall e. memt e t1 <==> mem e s1 \/ memt e acc)))
#set-options "--z3rlimit 1000"
let rec totree1 l acc =
match l with
|[] -> acc
|x::xs -> totree1 xs (insert x acc)
val totree : l:O.s -> t1:s {(forall e. memt e t1 <==> mem e l) /\
(forall e. member_ele_s e t1 <==> O.member_ele_s e l) /\
(forall e. member_id_s e t1 <==> O.member_id_s e l)}
let totree l = totree1 l Leaf
val lt : n1:(nat * nat)
-> n2:(nat * nat)
-> Tot (b:bool)
let lt (id,ele) (id1,ele1) = (ele < ele1 && id <> id1)
val fst : (nat * nat) -> nat
let fst (id,ele) = id
val snd : (nat * nat) -> nat
let snd (id,ele) = ele
val sim : tr:ae op
-> s1:s
-> Tot (b:bool {(b = true <==> (forall e. memt e s1 ==> (forall a. mem a tr.l /\ O.opa a /\ snd e = O.get_ele a ==>
(forall r. mem r tr.l /\ O.opr r /\ O.get_ele a = O.get_ele r /\ get_id a <> get_id r ==>
not (tr.vis a r)) ==> fst e >= get_id a) /\
(mem ((fst e), O.Add (snd e)) tr.l /\
(forall r. mem r tr.l /\ O.opr r /\ O.get_ele r = snd e /\ fst e <> get_id r ==> not (tr.vis ((fst e), O.Add (snd e)) r)))) /\
(forall a. mem a tr.l /\ O.opa a ==> (forall r. mem r tr.l /\ O.opr r /\ O.get_ele a = O.get_ele r /\ get_id a <> get_id r ==> not (tr.vis a r)) ==> member_ele_s (O.get_ele a) s1))})
let sim tr s1 = O.sim tr (flatten s1)
val diff : a:s
-> l:s
-> Pure s
(requires true)
(ensures (fun d -> (forall e. memt e d <==> memt e a /\ not (memt e l)) /\
(forall e. memt e d /\ member_id_s (fst e) d <==>
memt e a /\ member_id_s (fst e) a /\ not (memt e l)) /\
(forall e. memt e d /\ member_ele_s (snd e) d <==>
memt e a /\ member_ele_s (snd e) a /\ not (memt e l)) /\
(forall e. memt e a /\ memt e l ==> not (member_ele_s (snd e) d) /\ not (member_id_s (fst e) d))))
(decreases %[l;a])
let diff a l =
totree (O.diff (flatten a) (flatten l))
let pre_cond_merge l a b = O.pre_cond_merge (flatten l) (flatten a) (flatten b)
let pre_cond_prop_merge ltr l atr a btr b = true
val merge : l:s -> a:s -> b:s
-> Pure s
(requires pre_cond_merge l a b)
(ensures (fun res -> res = totree (O.merge (flatten l) (flatten a) (flatten b))))
let merge l a b = totree (O.merge (flatten l) (flatten a) (flatten b))
val prop_merge : ltr:ae op
-> l:s
-> atr:ae op
-> a:s
-> btr:ae op
-> b:s
-> Lemma (requires (forall e. mem e ltr.l ==> not (mem_id (get_id e) atr.l)) /\
(forall e. mem e atr.l ==> not (mem_id (get_id e) btr.l)) /\
(forall e. mem e ltr.l ==> not (mem_id (get_id e) btr.l)) /\
(sim ltr l /\ sim (union ltr atr) a /\ sim (union ltr btr) b))
(ensures (pre_cond_merge l a b) /\ (sim (abs_merge ltr atr btr) (merge l a b)))
#set-options "--z3rlimit 1000"
let prop_merge ltr l atr a btr b =
O.prop_merge ltr (flatten l) atr (flatten a) btr (flatten b)
val prop_do : tr:ae op
-> st:s
-> op:(nat * op)
-> Lemma (requires (sim tr st) /\ (not (mem_id (get_id op) tr.l)) /\
(forall e. mem e tr.l ==> get_id e < get_id op) /\ get_id op > 0)
(ensures (sim (abs_do tr op) (get_st (do st op))))
#set-options "--z3rlimit 1000"
let prop_do tr st op =
assert (not (member_id_s (get_id op) st));
O.prop_do tr (flatten st) op
val convergence : tr:ae op
-> a:s
-> b:s
-> Lemma (requires (sim tr a /\ sim tr b))
(ensures (forall e. memt e a <==> memt e b))
let convergence tr a b =
O.convergence tr (flatten a) (flatten b)
val prop_spec : tr:ae op
-> st:s
-> op:(nat * op)
-> Lemma (requires (sim tr st) /\ (not (mem_id (get_id op) tr.l)) /\
(forall e. mem e tr.l ==> get_id e < get_id op) /\ get_id op > 0)
(ensures (get_op op = O.Rd ==> (forall e. mem e (O.extract (get_rval (do st op))) <==>
mem e (O.extract (O.spec op tr)))) /\
(get_op op <> O.Rd ==> (get_rval (do st op) = O.spec op tr)))
#set-options "--z3rlimit 1000"
let prop_spec tr st op = ()
instance orset_bst : mrdt s op rval = {
Library.init = init;
Library.spec = O.spec;
Library.sim = sim;
Library.pre_cond_do = pre_cond_do;
Library.pre_cond_prop_do = pre_cond_prop_do;
Library.pre_cond_merge = pre_cond_merge;
Library.pre_cond_prop_merge = pre_cond_prop_merge;
Library.do = do;
Library.merge = merge;
Library.prop_do = prop_do;
Library.prop_merge = prop_merge;
Library.prop_spec = prop_spec;
Library.convergence = convergence
}
(******************* Height-balanced BST ************************)
let max n1 n2 = if n1 > n2 then n1 else n2
val pos : l:O.s
-> ele:(nat * nat)
-> Pure nat
(requires (mem ele l))
(ensures (fun p -> true))
let rec pos l e =
match l with
|x::y -> if x = e then 0 else 1 + pos y e
val sorted : l:O.s
-> Tot bool
(decreases (length l))
let rec sorted l =
match l with
|[] -> true
|x::[] -> true
|x::y::xs -> snd x < snd y && sorted (y::xs)
val take_element : l:O.s
-> pos1:nat
-> Pure O.s
(requires (pos1 < length l) /\ length l >= 1 /\ sorted l)
(ensures (fun r -> (forall e. mem e r <==> mem e l /\ pos l e = pos1) /\ length r = 1 /\ sorted r /\
(forall e. mem e r /\ O.member_id_s (fst e) r <==>
mem e l /\ O.member_id_s (fst e) l /\ pos l e = pos1)))
(decreases %[(length l); pos1])
#set-options "--z3rlimit 10000000"
let rec take_element l n =
match l with
| h::t -> if n > 0 then take_element t (n-1) else [h]
val takemiddle : l:O.s
-> Pure O.s
(requires (sorted l /\ length l >= 1))
(ensures (fun r -> (forall e. mem e r <==> mem e l /\ pos l e = length l/2) /\
(forall e. mem e r /\ O.member_id_s (fst e) r <==> mem e l /\
O.member_id_s (fst e) l /\ pos l e = length l/2)/\ length r = 1))
let takemiddle l = take_element l (length l/2)
val take : pos1:nat
-> l:O.s
-> Pure O.s
(requires (pos1 < length l /\ sorted l))
(ensures (fun r -> (forall e. mem e r <==> mem e l /\ pos l e < pos1) /\
(forall e. mem e r /\ O.member_id_s (fst e) r <==>
mem e l /\ O.member_id_s (fst e) l /\ pos l e < pos1)
/\ O.unique_id_s r /\ length r = pos1 /\
(forall e. mem e r ==> pos l e < pos1)))
(decreases %[pos1;l])
#set-options "--z3rlimit 10000000"
let rec take n l =
if n = 0 then []
else (match l with |h::t -> h:: take (n-1) t)
val takesorted : pos1:nat
-> l:O.s
-> Lemma (requires (pos1 < length l) /\ (sorted l))
(ensures (sorted (take pos1 l)))
(decreases %[pos1;(length l)])
#set-options "--z3rlimit 10000000"
let rec takesorted n l =
if n = 0 then () else
match l with
|[] -> ()
|x::y -> takesorted (n - 1) y
val takefront : l:O.s
-> Pure O.s
(requires (sorted l /\ length l >= 1))
(ensures (fun r -> (forall e. mem e r <==> mem e l /\ pos l e < (length l/2)) /\
(forall e. mem e r /\ O.member_id_s (fst e) r <==>
mem e l /\ O.member_id_s (fst e) l /\ pos l e < (length l/2))
/\ sorted r /\ length r = (length l)/2))
(decreases l)
#set-options "--z3rlimit 10000000"
let takefront l =
let t = take (length l/2) l in
takesorted (length l/2) l;
t
val drop : pos1:nat
-> l:O.s
-> Pure O.s
(requires (pos1 <= length l /\ sorted l))
(ensures (fun r -> (forall e. mem e r <==> mem e l /\ pos l e >= pos1) /\
(forall e. mem e r /\ O.member_id_s (fst e) r <==>
mem e l /\ O.member_id_s (fst e) l /\ pos l e >= pos1)
/\ sorted r /\ length r = length l - pos1))
(decreases %[pos1;l])
let rec drop n l =
if n = 0 then l else
(match l with
| h::t -> drop (n-1) t)
val takeback : l:O.s
-> Pure O.s
(requires (sorted l /\ length l >= 1))
(ensures (fun r -> (forall e. mem e r <==> mem e l /\ pos l e > (length l/2)) /\
(forall e. mem e r /\ O.member_id_s (fst e) r <==>
mem e l /\ O.member_id_s (fst e) l /\ pos l e > (length l/2))
/\ sorted r /\ length r = ((length l) - (length l)/2 - 1)))
(decreases l)
let takeback l = drop (length l/2 + 1) l
val tree_of_list : l:O.s
-> Pure tree
(requires (sorted l))
(ensures (fun r -> (size r = length l) /\
(forall e. memt1 e r <==> mem e l)))
(decreases %[length l])
#set-options "--z3rlimit 1000000"
let rec tree_of_list l =
match l with
| [] -> Leaf
| h::[] -> Node h Leaf Leaf
| h::t -> Node (hd (takemiddle l)) (tree_of_list (takefront l)) (tree_of_list (takeback l) )