forked from NVIDIA/NeMo-Curator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexact_deduplication.py
82 lines (65 loc) · 2.82 KB
/
exact_deduplication.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import time
from nemo_curator.datasets import DocumentDataset
from nemo_curator.modules import ExactDuplicates
from nemo_curator.utils.distributed_utils import get_client, write_to_disk
from nemo_curator.utils.script_utils import ArgumentHelper
def pre_imports():
import cudf # noqa: F401
def main(args):
dataset_dir = "/path/to/data"
log_dir = "./"
output_dir = "./"
dataset_id_field = "id"
dataset_text_field = "text"
client = get_client(**ArgumentHelper.parse_client_args(args))
backend = "cudf" if args.device == "gpu" else "pandas"
if args.device == "gpu":
client.run(pre_imports)
t0 = time.time()
input_dataset = DocumentDataset.read_json(
dataset_dir, backend=backend, blocksize="1GiB", files_per_partition=None
)
exact_dup = ExactDuplicates(
logger=log_dir,
id_field=dataset_id_field,
text_field=dataset_text_field,
# Decides whether output of the module is deduplicated dataset or duplicates
# If true, you should set cache_dir for performance improvement
perform_removal=False,
# cache_dir=output_dir # Optionally write the output to disk
)
# When perform_removal=False, it will only call .identify_duplicates() and return the list of duplicate IDs.
# When perform_removal=True, then exact_dup outputs the dataset with the duplicates removed.
# It will behave by calling .identify_duplicates() and .remove() in sequence.
duplicates = exact_dup(
dataset=input_dataset
) # or exact_dup.identify_duplicates(input_dataset)
# If caching, result is a path to the output dataset.
if isinstance(duplicates, str):
duplicates = DocumentDataset.read_parquet(duplicates, backend=backend)
# It's easy to apply dataframe operations to the dataset by using the underlying df.
result = exact_dup.remove(input_dataset, duplicates)
write_to_disk(result, output_dir, output_type="parquet")
print(time.time() - t0)
def attach_args(
parser=argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
),
):
return ArgumentHelper(parser).add_distributed_args()
if __name__ == "__main__":
main(attach_args().parse_args())