-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFeaturesML.m
173 lines (157 loc) · 5.5 KB
/
FeaturesML.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
classdef FeaturesML < Features
properties
h, h0, h1, h2, hHist
regH, regFitInfo
RRraw, RRrawDelay, RRrawDeltaT
pred, perf
perfTest, perfTrain
basis1D, basis2D, basisPrj
khat
end
methods (Abstract)
getSTEML(self)
coef2kernel(self, varargin)
kernel2coef(self, varargin)
end
methods (Access='public')
function self = FeaturesML(sr, n)
if isa(sr,'SpikeResp')
self.sr = sr;
self.n = n;
self.getSTE();
else
disp('ERROR: arg #1 is not of class SpikeResponse');
end
end
function getFeat(self, varargin)
% getFeat([mode=0, trainIdx=all idx])
% trainIdx==1 - use for training
% trainIdx==0 - use for testing
% otherwise - ignore
regMode = 0;
if nargin>1
regMode = varargin{1};
end
trainIdx = ones(size(self.Resp));
if nargin>2
trainIdx = varargin{2};
end
%% regression
switch regMode
case {1, 2} % ridge or lasso
% opts = statset('UseParallel','always');
% % parameter ALPHA interpolates between ridge (0) and lasso (1)
% if regMode == 1, alpha = 0.001; else alpha = 1; end
% [self.regH, self.regFitInfo] = lasso(self.SSraw(trainIdx,:), self.Resp(trainIdx), 'Options', opts, 'alpha', alpha, 'NumLambda', 64, 'CV', 4);
% lamOpt = self.regFitInfo.Index1SE;
% self.h = self.regH(:,lamOpt);
self.khat = runRidgeOnly(self.SSraw(trainIdx==1,:), self.Resp(trainIdx==1), size(self.SSraw,2), 1);
self.h = self.khat;
case 3 % ALDsf
self.khat = runALD(self.SSraw(trainIdx==1,:), self.Resp(trainIdx==1), size(self.SSraw,2), 1);
self.h = self.khat.khatSF;
case 4 % sparse GLM
otherwise % standard least squares
self.h = pinv(self.SSraw(trainIdx==1,:))*self.Resp(trainIdx==1);
end
% rearrange kernels to get terms corr. to diff. orders
self.coef2kernel();
% prediction
self.pred = self.SSraw*self.h;
self.perf = rsq(self.pred, self.Resp);
self.perfTrain = rsq(self.pred(trainIdx==1), self.Resp(trainIdx==1));
self.perfTest = rsq(self.pred(trainIdx==0), self.Resp(trainIdx==0));
self.feat = self.h;
end
function getBasis1D(self, varargin)
if nargin==2
xs = varargin{1};
else
xs = size(self.SSraw,2);
end
sigma = 2;
X = 1:xs;
nBasis = self.n/2;
self.basis1D = zeros(nBasis, xs);
cnt = 0;
xpts = linspace(0,xs,nBasis);
for xidx = 1:length(xpts)
x = xpts(xidx);
mpsF = x;
cpsF = sigma;
nps = normpdf(X,mpsF,cpsF);
cnt = cnt+1;
self.basis1D(cnt,:) = nps;
end
end
function getNLbasis1D(self)
kbaspr.neye = 0;
kbaspr.ncos = round(self.n/16);
kbaspr.kpeaks = round([5 self.n*.7]);
kbaspr.b = 128/50;
self.basis1D = makeBasis_StimKernel(kbaspr,self.n)';
end
function getBasis2D(self)
n = size(self.SSraw,2);
xs = n;
ys = n;
sigma = 3;
[X1, X2] = meshgrid(1:xs,1:ys);
nBasis = self.n/2;
self.basis2D = zeros((nBasis^2 + nBasis)/2, n, n);
cnt = 0;
xpts = linspace(0,xs,nBasis);
ypts = linspace(0,ys,nBasis);
for xidx = 1:length(xpts)
for yidx = xidx:length(ypts)
x = xpts(xidx);
y = ypts(yidx);
mpsF = [x,y];
cpsF = diag([sigma sigma]);
nps = mvnpdf([X1(:) X2(:)],mpsF,cpsF);
nps = reshape(nps,xs,ys)';
%nps = nps + nps';
cnt = cnt+1;
self.basis2D(cnt,:,:) = nps;
end
end
end
function prj2Basis(self)
basis = self.basis2D;
n = size(self.SSraw,2);
SSraw = self.SSraw;
basisPrj = zeros(size(basis,1),size(SSraw,1));
%%
for b = 1:size(basis,1)
bas = reshape(basis(b,:,:), n, n);
if isempty(strfind(lower(class(self)),'basis'))
basisPrj(b,:) = sum(SSraw'.*(bas*SSraw'));
else
% do this only for indices where the basis is nonzero
% FIX: turned of for delta basis
xidx = sum(abs(bas.^2))>eps;
yidx = sum(abs(bas.^2),2)>eps;
basisPrj(b,:) = sum(SSraw(:,yidx)'.*(bas(yidx,xidx)*SSraw(:,xidx)'));
end
end
%%
self.basisPrj = basisPrj;
end
function getDeltaBasis2D(self)
n = self.n;
nBasis = (n.^2+n)/2;
self.basis2D = zeros(nBasis, self.n, self.n);
cnt = 0;
template = zeros(n);
for xidx = 1:n
for yidx = xidx:n
nps = template;
nps(xidx,yidx) = 1;
%nps = nps + nps':
cnt = cnt+1;
self.basis2D(cnt,:,:) = nps;
end
end
end
end
end