forked from alejandro-carderera/SOCGS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunExperimentsSOCGSL1Ball.py
292 lines (265 loc) · 7.47 KB
/
runExperimentsSOCGSL1Ball.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
if __name__ == "__main__":
import os
# Computing parameters.
os.environ["OMP_NUM_THREADS"] = "4" # export OMP_NUM_THREADS=4
os.environ["OPENBLAS_NUM_THREADS"] = "4" # export OPENBLAS_NUM_THREADS=4
os.environ["MKL_NUM_THREADS"] = "6" # export MKL_NUM_THREADS=6
os.environ["VECLIB_MAXIMUM_THREADS"] = "4" # export VECLIB_MAXIMUM_THREADS=4
os.environ["NUMEXPR_NUM_THREADS"] = "6" # export NUMEXPR_NUM_THREADS=6
# General imports
import numpy as np
import os, sys
import time
import datetime
from algorithms import runCG, SOCGS, NCG
from auxiliaryFunctions import (
exportsolution,
importSolution,
get_data_realsim,
get_data_gisette,
)
from functions import LogisticRegressionSparse, LogisticRegression, QuadApproxLogReg
"""
------------------------------Logistic Regression L1 Ball----------------------------
"""
ts = time.time()
timestamp = (
datetime.datetime.fromtimestamp(ts)
.strftime("%Y-%m-%d %H:%M:%S")
.replace(" ", "-")
.replace(":", "-")
)
from feasibleRegions import L1UnitBallPolytope
# Parse the arguments of the function.
import argparse
parser = argparse.ArgumentParser("Parse algorithm settings")
parser.add_argument(
"--max_time",
type=int,
required=True,
help="Maximum time the algorithms are run in seconds.",
)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="Dataset that will be used. Either gisette or real-sim.",
)
parser.add_argument(
"--accuracy",
type=float,
required=True,
help="Accuracy to which the problem is solved.",
)
parser.add_argument(
"--lambda_value",
type=float,
required=True,
help="Lambda value for l2 regularization.",
)
parser.add_argument(
"--max_iter",
type=int,
required=True,
help="Maximum number of inner iterations in second-order algorithms.",
)
parser.add_argument(
"--type_solver",
type=str,
required=True,
help="CG subsolver to use in SOCGS: CG, ACG, PCG, LazyACG.",
)
args = parser.parse_args()
dataset = args.dataset
TIME_LIMIT = args.max_time
TIME_LIMIT_REFERENCE_SOL = int(2.0 * args.max_time)
tolerance = args.accuracy
lambdaVal = args.lambda_value
maxIter = args.max_iter
type_of_solver = args.type_solver
if not os.path.exists(os.path.join(os.getcwd(), "Dataset")):
os.makedirs(os.path.join(os.getcwd(), "Dataset"))
if dataset == "gisette":
samples, labels, numSamples, dimension = get_data_gisette(mu=lambdaVal)
fun = LogisticRegression(dimension, numSamples, samples, labels, mu=lambdaVal)
funQuadApprox = QuadApproxLogReg(
dimension, numSamples, samples, labels, mu=lambdaVal
)
else:
samples, labels, numSamples, dimension = get_data_realsim(mu=lambdaVal)
fun = LogisticRegressionSparse(
dimension, numSamples, samples, labels, mu=lambdaVal
)
funQuadApprox = QuadApproxLogReg(
dimension, numSamples, samples, labels, mu=lambdaVal
)
# Initialize the feasible region.
feasibleRegion = L1UnitBallPolytope(dimension, 1.0)
typeOfStep = "EL"
# Initial starting point by calling the LPOracle.
x_0 = feasibleRegion.initialPoint()
S_0 = [x_0]
alpha_0 = [1]
print("Solving the problem over the l1Ball polytope.")
if not os.path.exists(os.path.join(os.getcwd(), "l1Ball")):
os.makedirs(os.path.join(os.getcwd(), "l1Ball"))
print("\nFinding optimal solution to high accuracy using ACG.")
nameAlg, xTest, FWGapTest, fValTest, timingTest, distTest, iterationTest = runCG(
x_0,
S_0,
alpha_0,
fun,
feasibleRegion,
tolerance / 2.0,
TIME_LIMIT_REFERENCE_SOL,
np.zeros(len(x_0)),
FWVariant="ACG",
typeStep=typeOfStep,
criterion="DG",
)
fValOpt = fValTest[-1]
tolerance = max(tolerance, min(np.asarray(FWGapTest)))
if not os.path.exists(os.path.join(os.getcwd(), "l1Ball", "Solutions")):
os.makedirs(os.path.join(os.getcwd(), "l1Ball", "Solutions"))
# Saving solution.
exportsolution(
os.path.join(
os.getcwd(), "l1Ball", "Solutions", "Solution_" + str(timestamp) + ".txt"
),
sys.argv,
fValOpt,
xTest,
min(np.asarray(FWGapTest)),
dimension,
)
# #Importing solution
# fValOpt, xTest, importTolerance, sizeSol = importSolution(os.path.join(os.getcwd(), "LogReg", "Solution_2020-06-03-16-55-30_size20958_TypeStep_EL_Mu_0.05.txt"))
# tolerance = max(tolerance, importTolerance)
# Create list to store all the results.
results = []
# Run Newton CG
print("\nRunning NCG.")
FrankWolfeProjNewton = NCG(0.96, 1 / 6.0, 2.0)
resultsNCG = FrankWolfeProjNewton.run(
x_0,
S_0,
alpha_0,
fun,
funQuadApprox,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
criterion="PG",
criterionRef=fValOpt,
TypeSolver="CG",
maxIter=maxIter,
updateHessian=False,
)
# PCG
print("\nRunning PCG.")
resultsPFW = runCG(
x_0,
S_0,
alpha_0,
fun,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
FWVariant="PCG",
typeStep=typeOfStep,
criterion="PG",
criterionRef=fValOpt,
)
# Run SOCGS
print("\nSOCGS.")
resultsSOCGS = SOCGS(
x_0,
S_0,
alpha_0,
fun,
funQuadApprox,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
criterion="PG",
criterionRef=fValOpt,
TypeSolver=type_of_solver,
updateHessian=False,
maxIter=maxIter,
)
# Run Lazy ACG
print("\nRunning Lazy ACG.")
resultsAFWLazy = runCG(
x_0,
S_0,
alpha_0,
fun,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
FWVariant="LazyACG",
typeStep=typeOfStep,
criterion="PG",
criterionRef=fValOpt,
)
# CG
print("\nRunning CG.")
resultsFW = runCG(
x_0,
S_0,
alpha_0,
fun,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
FWVariant="CG",
typeStep=typeOfStep,
criterion="PG",
criterionRef=fValOpt,
)
# ACG
print("\nRunning ACG.")
resultsAFW = runCG(
x_0,
S_0,
alpha_0,
fun,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
FWVariant="ACG",
typeStep=typeOfStep,
criterion="PG",
criterionRef=fValOpt,
)
# Store all the results.
results = [
resultsSOCGS,
resultsNCG,
resultsAFWLazy,
resultsFW,
resultsAFW,
resultsPFW,
]
# Export results
# Save the data from the run.
from auxiliaryFunctions import export_results
export_results(
os.path.join(os.getcwd(), "l1Ball"), results, sys.argv, timestamp, fValOpt
)
# Plot the results.
from auxiliaryFunctions import plot_results
plot_results(
os.path.join(os.getcwd(), "l1Ball"),
results,
sys.argv,
timestamp,
fValOpt,
save_images=True,
)