forked from alejandro-carderera/SOCGS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunExperimentsSOCGSBirkhoff.py
327 lines (295 loc) · 7.99 KB
/
runExperimentsSOCGSBirkhoff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
if __name__ == "__main__":
import os
# Computing parameters.
os.environ["OMP_NUM_THREADS"] = "4" # export OMP_NUM_THREADS=4
os.environ["OPENBLAS_NUM_THREADS"] = "4" # export OPENBLAS_NUM_THREADS=4
os.environ["MKL_NUM_THREADS"] = "6" # export MKL_NUM_THREADS=6
os.environ["VECLIB_MAXIMUM_THREADS"] = "4" # export VECLIB_MAXIMUM_THREADS=4
os.environ["NUMEXPR_NUM_THREADS"] = "6" # export NUMEXPR_NUM_THREADS=6
# General imports
import numpy as np
import os, sys
import time
import datetime
from algorithms import CGS, runCG, DIPFW, SOCGS, runSVRCG
"""
------------------------------Birkhoff Polytope experiment---------------------------
"""
ts = time.time()
timestamp = (
datetime.datetime.fromtimestamp(ts)
.strftime("%Y-%m-%d %H:%M:%S")
.replace(" ", "-")
.replace(":", "-")
)
from feasibleRegions import BirkhoffPolytope
from functions import funcQuadraticCustom, QuadApprox
# Parse the arguments of the function.
import argparse
parser = argparse.ArgumentParser("Parse algorithm settings")
parser.add_argument(
"--max_time",
type=int,
required=True,
help="Maximum time the algorithms are run in seconds.",
)
parser.add_argument(
"--num_samples",
type=int,
required=True,
help="Number of samples to artificially generate.",
)
parser.add_argument(
"--dimension",
type=int,
required=True,
help="Dimensionality of the problem n. This results in matrices of size nxn.",
)
parser.add_argument(
"--accuracy",
type=float,
required=True,
help="Accuracy to which the problem is solved.",
)
parser.add_argument(
"--accuracy_Hessian",
type=float,
required=True,
help="Accuracy parameter for the Hessian.",
)
parser.add_argument(
"--type_solver",
type=str,
required=True,
help="CG subsolver to use in SOCGS: CG, ACG, PCG, LazyACG, DICG.",
)
args = parser.parse_args()
TIME_LIMIT = args.max_time
TIME_LIMIT_REFERENCE_SOL = int(2.0 * args.max_time)
numSamples = args.num_samples
sizeVectorY = args.dimension
sizeVectorX = args.dimension
tolerance = args.accuracy
omega = args.accuracy_Hessian
type_of_solver = args.type_solver
# Generate a function where we know the matrix.
AMat = np.random.normal(size=(sizeVectorY, sizeVectorX))
fun = funcQuadraticCustom(numSamples, sizeVectorY, sizeVectorX, AMat)
# Initialize the quadratic approximation function.
funQuadApprox = QuadApprox()
# Initialize the function that will return the feasible region oracles.
size = int(sizeVectorY * sizeVectorX)
feasibleRegion = BirkhoffPolytope(size)
x_0 = feasibleRegion.initialPoint()
S_0 = [x_0]
alpha_0 = [1]
typeOfStep = "EL"
print("Solving the problem over the Birkhoff polytope.")
if not os.path.exists(os.path.join(os.getcwd(), "Birkhoff")):
os.makedirs(os.path.join(os.getcwd(), "Birkhoff"))
##Run to a high Frank-Wolfe primal gap accuracy for later use?
from auxiliaryFunctions import exportsolution, dump_pickled_object
print("\nFinding optimal solution to high accuracy using DIPFW.")
(
nameAlg,
xTest,
FWGapTest,
fValTest,
timingTest,
distanceTest,
iterationTest,
) = DIPFW(
x_0,
fun,
feasibleRegion,
tolerance / 2.0,
TIME_LIMIT_REFERENCE_SOL,
np.zeros(len(x_0)),
criterion="DG",
)
fValOpt = fValTest[-1]
tolerance = max(tolerance, min(np.asarray(FWGapTest)))
if not os.path.exists(os.path.join(os.getcwd(), "Birkhoff", "Solutions")):
os.makedirs(os.path.join(os.getcwd(), "Birkhoff", "Solutions"))
# Saving solution.
exportsolution(
os.path.join(
os.getcwd(),
"Birkhoff",
"Solutions",
"Solution_Birkhoff_"
+ str(timestamp)
+ "_sizeVector"
+ str(sizeVectorY)
+ "_TypeStep_"
+ typeOfStep
+ ".txt",
),
sys.argv,
fValOpt,
xTest,
min(np.asarray(FWGapTest)),
sizeVectorY,
)
dump_pickled_object(
os.path.join(
os.getcwd(),
"Birkhoff",
"Solutions",
"function_" + str(timestamp) + ".pickle",
),
fun,
)
# #Importing solution
# from auxiliaryFunctions import importSolution, load_pickled_object
# fValOpt, xTest, importTolerance, sizeSol = importSolution(os.path.join(os.getcwd(), "Birkhoff", "Solution_Birkhoff_2020-06-01-16-13-27_sizeVector20_TypeStep_EL.txt"))
# tolerance = max(tolerance, importTolerance)
# fun = load_pickled_object(os.path.join(os.getcwd(), "Birkhoff", "function_2020-06-01-16-13-27.pickle"))
# Create list to store all the results.
results = []
# Run the projected Newton method.
print("\nRunning SOCGS.")
resultsSOCGS = SOCGS(
x_0,
S_0,
alpha_0,
fun,
funQuadApprox,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
criterion="PG",
criterionRef=fValOpt,
TypeSolver=type_of_solver,
omega=omega,
)
# CGS
print("\nRunning CGS.")
CSGAlg = CGS()
resultsCGS = CSGAlg.run(
x_0,
fun,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
criterion="PG",
criterionRef=fValOpt,
)
# SVRFW
print("\nRunning SVRCG.")
resultsSVRCG = runSVRCG(
x_0,
fun,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
criterion="PG",
criterionRef=fValOpt,
)
# Decomposition Invariant CG
print("\nRunning DICG.")
resultsDICG = DIPFW(
x_0,
fun,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
typeStep=typeOfStep,
criterion="PG",
criterionRef=fValOpt,
)
# Lazy AFW
print("\nRunning Lazy ACG.")
resultsAFWLazy = runCG(
x_0,
S_0,
alpha_0,
fun,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
FWVariant="LazyACG",
typeStep=typeOfStep,
criterion="PG",
criterionRef=fValOpt,
)
# Vanilla FW
print("\nRunning CG.")
resultsFW = runCG(
x_0,
S_0,
alpha_0,
fun,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
FWVariant="CG",
typeStep=typeOfStep,
criterion="PG",
criterionRef=fValOpt,
)
# ACG
print("\nRunning ACG.")
resultsAFW = runCG(
x_0,
S_0,
alpha_0,
fun,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
FWVariant="ACG",
typeStep=typeOfStep,
criterion="PG",
criterionRef=fValOpt,
)
# PCG
print("\nRunning PCG.")
resultsPFW = runCG(
x_0,
S_0,
alpha_0,
fun,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
FWVariant="PCG",
typeStep=typeOfStep,
criterion="PG",
criterionRef=fValOpt,
)
# Store all the results.
results = [
resultsSOCGS,
resultsCGS,
resultsSVRCG,
resultsDICG,
resultsAFWLazy,
resultsFW,
resultsAFW,
resultsPFW,
]
# Export results
# Save the data from the run.
from auxiliaryFunctions import export_results
export_results(
os.path.join(os.getcwd(), "Birkhoff"), results, sys.argv, timestamp, fValOpt
)
# Plot the results.
from auxiliaryFunctions import plot_results
plot_results(
os.path.join(os.getcwd(), "Birkhoff"),
results,
sys.argv,
timestamp,
fValOpt,
save_images=True,
)