forked from alejandro-carderera/SOCGS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.py
554 lines (478 loc) · 18.5 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
import numpy as np
from scipy.sparse import csr_matrix
from scipy.optimize import minimize_scalar
from scipy import sparse
"""# Objective Functions
"""
# Custom Quadratic
# sizeVectorY denotes the dimension of the y subspace.
# sizeVectorX denotes the dimension of the x subspace.
# \Sum ||y_i - Ax_i||^2 where y_i and x_i are vectors.
# The dimension of the A vector is the dimension of the x vector times the y vector.
class funcQuadraticCustom:
def __init__(self, n, sizeVectorY, sizeVectorX, AMat):
self.AMat = AMat
self.sizeY = sizeVectorY
self.sizeX = sizeVectorX
assert AMat.shape == (self.sizeY, self.sizeX), "Incorrect Input."
self.numSamples = n
# Generate the samples.
self.Y = np.zeros((self.sizeY, self.numSamples))
self.X = np.random.normal(size=(self.sizeX, self.numSamples))
for i in range(0, self.numSamples):
self.Y[:, i] = np.dot(self.AMat, self.X[:, i])
# Find the largest eigenvalue.
# The Hessian as a block diagonal matrix where each diagonal is this matrix.
self.Hessian = 2.0 * np.outer(self.X[:, 0], self.X[:, 0])
for i in range(1, self.numSamples):
self.Hessian += 2.0 * np.outer(self.X[:, i], self.X[:, i])
from scipy.linalg import eigvalsh
dim = len(self.Hessian)
self.L = eigvalsh(self.Hessian, eigvals=(dim - 1, dim - 1))[0]
self.Mu = eigvalsh(self.Hessian, eigvals=(0, 0))[0]
return
# Evaluate function.
def fEval(self, A):
assert A.shape == (int(self.sizeY * self.sizeX),), "Incorrect Input."
# Transform into a matrix of the correct size.
Ainner = A.reshape(self.sizeY, self.sizeX)
aux = np.matmul(Ainner, self.X)
val = 0.0
for i in range(self.numSamples):
val += np.dot(self.Y[:, i] - aux[:, i], self.Y[:, i] - aux[:, i])
return val
# Evaluate gradient.
def fEvalGrad(self, A):
assert A.shape == (int(self.sizeY * self.sizeX),), "Incorrect Input."
# Transform into a matrix of the correct size.
Ainner = A.reshape(self.sizeY, self.sizeX)
grad = np.zeros((self.sizeY, self.sizeX))
aux = np.matmul(Ainner, self.X)
for i in range(self.numSamples):
grad += 2 * np.outer(self.Y[:, i] - aux[:, i], self.X[:, i])
return -np.ravel(grad)
# Evaluate stochastic gradient.
def fEvalGradStoch(self, A, snapShot, snapPoint, m):
assert A.shape == (int(self.sizeY * self.sizeX),), "Incorrect Input."
# Transform into a matrix of the correct size.
Aux = A.reshape(self.sizeY, self.sizeX) - snapPoint.reshape(
self.sizeY, self.sizeX
)
grad = np.zeros((self.sizeY, self.sizeX))
for i in range(m):
index = np.random.randint(0, self.numSamples)
grad += 2 * np.outer(np.dot(Aux, self.X[:, index],), self.X[:, index])
grad *= self.numSamples / m
return np.ravel(grad) + snapShot
# Line Search.
def lineSearch(self, grad, d, x, maxStep=None):
assert d.shape == (int(self.sizeY * self.sizeX),), "Incorrect Input."
# Transform into a matrix of the correct size.
dinner = d.reshape(self.sizeY, self.sizeX)
Ainner = x.reshape(self.sizeY, self.sizeX)
matAux = np.dot(dinner.T, Ainner) + np.dot(Ainner.T, dinner)
aux1 = 0
aux2 = 0
for i in range(0, self.numSamples):
val = np.dot(dinner, self.X[:, i])
aux1 += -np.dot(self.X[:, i], np.dot(matAux, self.X[:, i])) + 2 * np.dot(
self.Y[:, i], val
)
aux2 += 2 * np.dot(val, val)
alpha = aux1 / aux2
if maxStep is None:
return min(1.0, alpha)
else:
return min(maxStep, alpha)
# Return largest eigenvalue.
def largestEig(self):
return self.L
# Return smallest eigenvalue.
def smallestEig(self):
return self.Mu
# Return the Hessian as a block diagonal matrix.
# As if we had unraveled the A matrix.
def returnM(self, x, omega=None, distance=None):
from scipy.sparse import block_diag, csr_matrix, eye
auxSparse = csr_matrix(self.Hessian)
listMat = []
for i in range(0, self.sizeY):
listMat.append(auxSparse)
matrix = block_diag(listMat)
if omega is None:
return matrix
else:
dim1, dim2 = matrix.shape
val = np.random.uniform(
-omega * distance * self.largestEig() / (omega * distance + 1),
self.smallestEig() * omega * distance,
)
return block_diag(listMat) + val * eye(dim1, dim2)
from scipy.sparse.linalg import splu
# Graphical-Lasso type function.
# n is the dimension of the matrix, such that the matrices are nxn.
# S represents the second moment matrix about the mean of some data.
class GraphicalLasso:
import autograd.numpy as np
def __init__(self, n, S, lambaVal, delta=0.0):
self.dim = n
self.S = S
self.lambdaVal = lambaVal
self.largestEigenval = None
self.delta = 0.0
return
# Evaluate function.
def fEval(self, X):
self.delta = 0.0
val = X.reshape((self.dim, self.dim))
return (
-self.logdetFun(val + self.delta * np.identity(self.dim))
+ np.matrix.trace(np.matmul(self.S, val))
+ 0.5 * self.lambdaVal * np.sum(np.dot(X, X))
)
# Evaluate gradient.
def fEvalGrad(self, X):
val = X.reshape((self.dim, self.dim))
# L2 penalty parameter.
self.delta = 0.0
return (
-np.linalg.inv(val + self.delta * np.identity(self.dim)) + self.S
).flatten() + self.lambdaVal * X
# Line Search.
def lineSearch(self, grad, d, x, maxStep=None):
options = {"xatol": 1e-12, "maxiter": 5000000, "disp": 0}
def InnerFunction(t): # Hidden from outer code
return self.fEval(x + t * d)
if maxStep is None:
res = minimize_scalar(
InnerFunction, bounds=(0, 1), method="bounded", options=options
)
else:
res = minimize_scalar(
InnerFunction, bounds=(0, maxStep), method="bounded", options=options
)
return res.x
def logdetFun(self, X):
lu = splu(X)
diagL = lu.L.diagonal().astype(np.complex128)
diagU = lu.U.diagonal().astype(np.complex128)
logdet = np.log(diagL).sum() + np.log(diagU).sum()
return logdet.real
# Graphical-Lasso type function.
# n is the dimension of the matrix, such that the matrices are nxn.
# S represents the second moment matrix about the mean of some data.
class LogisticRegressionSparse:
def __init__(self, n, numSamples, samples, labels, mu=0.0):
self.samples = samples.copy()
self.labels = labels.copy()
self.numSamples = numSamples
self.dim = n
self.mu = mu
return
def fEval(self, x):
aux = np.sum(
np.logaddexp(
np.zeros(self.numSamples),
np.multiply(self.samples.dot(-x), self.labels),
)
)
return aux / self.numSamples + self.mu * np.dot(x, x) / 2.0
def fEvalGrad(self, x):
aux = -self.labels / (
1.0 + np.exp(np.multiply(self.samples.dot(x), self.labels))
)
vectors = self.samples.T.multiply(aux).sum(axis=1)
return np.squeeze(np.asarray(vectors)) / self.numSamples + self.mu * x
# Line Search.
def lineSearch(self, grad, d, x, maxStep=None):
options = {"xatol": 1e-12, "maxiter": 50000, "disp": 0}
def InnerFunction(t): # Hidden from outer code
return self.fEval(x + t * d)
if maxStep is None:
res = minimize_scalar(
InnerFunction, bounds=(0, 1), method="bounded", options=options
)
else:
res = minimize_scalar(
InnerFunction, bounds=(0, maxStep), method="bounded", options=options
)
return res.x
# Graphical-Lasso type function.
# n is the dimension of the matrix, such that the matrices are nxn.
# S represents the second moment matrix about the mean of some data.
class LogisticRegression:
def __init__(self, n, numSamples, samples, labels, mu=0.0):
self.samples = samples.copy()
self.labels = labels.copy()
self.numSamples = numSamples
self.dim = n
self.mu = mu
self.largestEigenval = None
return
def fEval(self, x):
aux = 0.0
for i in range(self.numSamples):
aux += np.logaddexp(0.0, -float(self.labels[i] * self.samples[i].dot(x)))
return aux / self.numSamples + self.mu * np.dot(x, x) / 2.0
def fEvalGrad(self, x):
aux = 0.0
for i in range(self.numSamples):
val = np.exp(self.labels[i] * self.samples[i].dot(x))
aux += -self.labels[i] * self.samples[i] / (1 + val)
return np.squeeze(np.asarray(aux)) / self.numSamples + self.mu * x
# Line Search.
def lineSearch(self, grad, d, x, maxStep=None):
options = {"xatol": 1e-16, "maxiter": 500000, "disp": 0}
def InnerFunction(t): # Hidden from outer code
return self.fEval(x + t * d)
if maxStep is None:
res = minimize_scalar(
InnerFunction, bounds=(0, 1), method="bounded", options=options
)
else:
res = minimize_scalar(
InnerFunction, bounds=(0, maxStep), method="bounded", options=options
)
return res.x
# Takes a random PSD matrix generated by the functions above and uses them as a function.
class QuadApprox:
import numpy as np
def __init__(self):
self.alpha = 1.0
return
# Evaluate function.
def fEval(self, x):
return np.dot(self.g, x - self.x_k) + 0.5 / self.alpha * np.dot(
x - self.x_k, self.H.dot(x - self.x_k)
)
# Evaluate gradient.
def fEvalGrad(self, x):
return self.g + self.H.dot(x - self.x_k) / self.alpha
# Line Search.
def lineSearch(self, grad, d, x, maxStep=None):
alpha = -np.dot(grad, d) / np.dot(d, self.H.dot(d))
if maxStep is None:
return min(alpha, 1.0)
else:
return min(alpha, maxStep)
# Is the approximation linear.
def isLinear(self):
return False
# Return the Hessian of the function.
def fEvalHessian(self):
return self.H
# Return the Hessian of the function.
def fEvalHessianNorm(self, x):
return np.sqrt(np.dot(x, self.H.dot(x)))
# Update gradient vector
def updateApprox(self, gradient, x, hessian=None):
self.g = gradient.copy()
self.x_k = x.copy()
self.H = hessian.copy()
return
class QuadApproxLogReg:
def __init__(self, n, numSamples, samples, labels, mu=0.0):
self.samples = csr_matrix(samples.copy())
self.labels = labels.copy()
self.numSamples = numSamples
self.dim = n
self.g = np.zeros(n)
self.x_k = np.zeros(n)
self.quotient = np.zeros(numSamples)
self.mu = mu
return
def fEval(self, x):
aux = np.dot(np.square(self.samples.dot(x - self.x_k)), self.quotient)
return (
np.dot(self.g, x - self.x_k)
+ aux / (2.0 * self.numSamples)
+ self.mu * np.dot(x - self.x_k, x - self.x_k) / 2.0
)
def fEvalGrad(self, x):
aux = self.samples.T.multiply(
self.samples.dot(x - self.x_k) * self.quotient
).sum(axis=1)
return (
self.g
+ np.squeeze(np.asarray(aux)) / self.numSamples
+ self.mu * (x - self.x_k)
)
def fEvalGradBackup(self, x):
aux = 0.0
for i in range(self.numSamples):
aux += (
self.samples[i]
* self.quotient[i]
* np.dot(x - self.x_k, self.samples[i])
)
return self.g + aux / self.numSamples + self.mu * (x - self.x_k)
def lineSearch(self, grad, d, x, maxStep=None):
aux = np.dot(np.square(self.samples.dot(d)), self.quotient)
if maxStep is None:
return -np.dot(grad, d) / (aux / self.numSamples + self.mu * np.dot(d, d))
else:
return min(
-np.dot(grad, d) / (aux / self.numSamples + self.mu * np.dot(d, d)),
maxStep,
)
def lineSearchBackup(self, grad, d, x):
aux = 0.0
for i in range(self.numSamples):
aux += self.quotient[i] * np.dot(self.samples[i], d) ** 2
return -np.dot(grad, d) / (aux / self.numSamples + self.mu * np.dot(d, d))
# Return the Hessian of the function.
def fEvalHessianNorm(self, x):
aux = np.dot(np.square(self.samples.dot(x)), self.quotient)
return np.sqrt(aux / self.numSamples + self.mu * np.dot(x, x))
# Update gradient vector
def updateApprox(self, gradient, x, hessian=None):
self.g = gradient.copy()
self.x_k = x.copy()
aux = np.multiply(self.samples.dot(x), self.labels)
self.quotient = 1.0 / (1.0 + np.exp(aux)) / (1.0 + np.exp(-aux))
return
from numpy.core.umath_tests import inner1d
class QuadApproxGLasso:
def __init__(self, n, lambdaValue, delta):
self.dim = n
self.lambdaVal = lambdaValue
self.delta = delta
return
# Evaluate function.
def fEval(self, X):
val = X.reshape((self.dim, self.dim))
aux = val - self.x_k
return (
0.5 * np.linalg.norm(np.matmul(self.inv_x_k, aux)) ** 2
+ 0.5 * self.lambdaVal * np.linalg.norm(val - self.x_k) ** 2
+ np.sum(inner1d(self.g, aux.T))
)
# Evaluate gradient.
def fEvalGrad(self, X):
val = X.reshape((self.dim, self.dim))
aux = val - self.x_k
return (
self.g
+ self.lambdaVal * (val - self.x_k)
+ np.matmul(self.inv_x_k, np.matmul(aux, self.inv_x_k))
).flatten()
# Line Search.
def lineSearch(self, grad, d, x, maxStep=None):
D = d.reshape((self.dim, self.dim))
Gradient = grad.reshape((self.dim, self.dim))
alpha = -np.sum(inner1d(Gradient, D.T)) / (
self.lambdaVal * np.linalg.norm(D) ** 2
+ np.linalg.norm(np.matmul(self.inv_x_k, D)) ** 2
)
if maxStep is not None:
return min(alpha, maxStep)
else:
return alpha
# Update gradient vector
def updateApprox(self, gradient, x, hessian=None):
self.g = gradient.reshape((self.dim, self.dim)).copy()
self.x_k = x.reshape((self.dim, self.dim)).copy()
self.inv_x_k = np.linalg.inv(self.x_k + self.delta * np.identity(self.dim))
return
# Return the Hessian of the function.
def fEvalHessianNorm(self, X):
val = X.reshape((self.dim, self.dim))
return np.sqrt(
np.linalg.norm(np.matmul(self.inv_x_k, val)) ** 2
+ self.lambdaVal * np.linalg.norm(val) ** 2
)
# return np.sqrt(scipy.linalg.norm(np.matmul(self.inv_x_k, val))**2 + self.lambdaVal*scipy.linalg.norm(val)**2)
# Creates a compact Hessian Approximation.
# m is the number of elements we'll use to calculate the matrix.
class QuadApproxInexactHessianLBFGS:
import numpy as np
def __init__(self, dimension, m):
self.dim = dimension
self.m = m
self.g = None
self.x_k = None
self.left = None
self.center = None
self.S = None
self.Y = None
self.delta = None
self.I = sparse.eye(dimension)
self.L = 1.0
self.Mu = 1.0
return
# Update the function
def updateApprox(self, gradient, xk):
if self.g is None and self.x_k is None:
self.gOld = gradient.copy()
self.x_kOld = xk.copy()
self.g = gradient.copy()
self.x_k = xk.copy()
else:
self.gOld = self.g.copy()
self.x_kOld = self.x_k.copy()
self.g = gradient.copy()
self.x_k = xk.copy()
s = self.x_k - self.x_kOld
y = self.g - self.gOld
if self.S is None and self.Y is None:
self.S = s.copy().reshape(self.dim, 1)
self.Y = y.copy().reshape(self.dim, 1)
else:
self.S = np.hstack((self.S, s.reshape(self.dim, 1)))
self.Y = np.hstack((self.Y, y.reshape(self.dim, 1)))
self.delta = np.dot(y, y) / np.dot(s, y)
# if self.delta <= 0.0:
# print("The direction was not a descent direction.")
# quit()
# Need to delete the first element in the matrix.
if self.S.shape[1] >= self.m:
self.S = np.delete(self.S, 0, 1)
self.Y = np.delete(self.Y, 0, 1)
self.left = np.hstack((self.delta * self.S, self.Y))
# Build the L matrix.
L = np.tril(np.matmul(self.S.T, self.Y), -1)
N = self.S.shape[1]
D = np.zeros((N, N))
for i in range(N):
D[i, i] = np.dot(self.S[:, i], self.Y[:, i])
self.center = np.linalg.pinv(
np.block([[self.delta * np.matmul(self.S.T, self.S), L], [L.T, -D]])
)
self.hessian = self.delta * np.identity(self.dim) - np.matmul(
np.matmul(self.left, self.center), self.left.T
)
return
# Evaluate function.
def fEval(self, x):
if self.S is not None:
aux1 = np.dot(x - self.x_k, self.left)
aux = 0.5 * self.delta * np.dot(x - self.x_k, x - self.x_k) - 0.5 * np.dot(
np.dot(aux1, self.center), aux1
)
return np.dot(self.g, x - self.x_k) + aux
else:
return np.dot(self.g, x - self.x_k)
# Evaluate gradient.
def fEvalGrad(self, x):
if self.S is not None:
return (
self.g
+ self.delta * (x - self.x_k)
- np.dot(
np.dot(self.left, self.center), np.dot(x - self.x_k, self.left)
)
)
else:
return self.g
# Line Search.
def lineSearch(self, grad, d, x, maxStep=None):
if self.S is not None:
aux1 = np.dot(d, self.left)
aux = self.delta * np.dot(d, d) - np.dot(np.dot(aux1, self.center), aux1)
alpha = -np.dot(grad, d) / aux
else:
alpha = 100000.0
if maxStep is not None:
return min(maxStep, alpha)
else:
return alpha