forked from alejandro-carderera/SOCGS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauxiliaryFunctions.py
460 lines (400 loc) · 14.2 KB
/
auxiliaryFunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import numpy as np
import time, os
ts = time.time()
from scipy.optimize import minimize_scalar
from sklearn.datasets import load_svmlight_file
import pickle
from functions import LogisticRegressionSparse, LogisticRegression, QuadApproxLogReg
import matplotlib.pyplot as plt
"""# Miscelaneous Functions
"""
def load_pickled_object(filepath):
with open(filepath, "rb") as f:
loaded_object = pickle.load(f)
return loaded_object
def dump_pickled_object(filepath, target_object):
with open(filepath, "wb") as f:
pickle.dump(target_object, f)
def get_data(filepath):
data = load_svmlight_file(filepath)
return data[0], data[1]
import requests
def get_data_realsim(mu=0.0):
file_directory = os.path.join(os.getcwd(), "Dataset")
if not os.path.isfile(os.path.join(file_directory, "real-sim")):
if not os.path.isfile(os.path.join(file_directory, "real-sim.bz2")):
print("Downloading the dataset.")
r = requests.get(
"https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/real-sim.bz2",
allow_redirects=True,
)
open(os.path.join(file_directory, "real-sim.bz2"), "wb").write(r.content)
print("Decompressing the dataset.")
import bz2
newfilepath = os.path.join(file_directory, "real-sim")
with open(newfilepath, "wb") as new_file, bz2.BZ2File(
os.path.join(file_directory, "real-sim.bz2"), "rb"
) as file:
for data in iter(lambda: file.read(100 * 1024), b""):
new_file.write(data)
data = load_svmlight_file(os.path.join(file_directory, "real-sim"))
(numSamples, dimension) = data[0].shape
return (
data[0],
data[1],
numSamples,
dimension,
)
def get_data_gisette(mu=0.0):
# Download the samples
gisette_train_data_path = os.path.join(os.getcwd(), "Dataset", "gisette_train.data")
gisette_train_labels_path = os.path.join(
os.getcwd(), "Dataset", "gisette_train.labels"
)
if not os.path.isfile(gisette_train_data_path) or not os.path.isfile(
gisette_train_labels_path
):
print("Downloading the labels and the data for the experiment.")
# Save the data.
r = requests.get(
"https://archive.ics.uci.edu/ml/machine-learning-databases/gisette/GISETTE/gisette_train.data",
allow_redirects=True,
)
open(gisette_train_data_path, "wb").write(r.content)
# Save the labels
s = requests.get(
"https://archive.ics.uci.edu/ml/machine-learning-databases/gisette/GISETTE/gisette_train.labels",
allow_redirects=True,
)
open(gisette_train_labels_path, "wb").write(s.content)
samples = np.loadtxt(gisette_train_data_path)
labels = np.loadtxt(gisette_train_labels_path)
(numSamples, dimension) = samples.shape
return (
samples,
labels,
numSamples,
dimension,
)
# Defines the type of maximum vertex dot product that we'll return.
def maxVertex(grad, activeVertex):
# See which extreme point in the active set gives greater inner product.
maxProd = np.dot(activeVertex[0], grad)
maxInd = 0
for i in range(len(activeVertex)):
if np.dot(activeVertex[i], grad) > maxProd:
maxProd = np.dot(activeVertex[i], grad)
maxInd = i
return activeVertex[maxInd], maxInd
# Finds the step with the maximum and minimum inner product.
def maxMinVertex(grad, activeVertex):
# See which extreme point in the active set gives greater inner product.
maxProd = np.dot(activeVertex[0], grad)
minProd = np.dot(activeVertex[0], grad)
maxInd = 0
minInd = 0
for i in range(len(activeVertex)):
if np.dot(activeVertex[i], grad) > maxProd:
maxProd = np.dot(activeVertex[i], grad)
maxInd = i
else:
if np.dot(activeVertex[i], grad) < minProd:
minProd = np.dot(activeVertex[i], grad)
minInd = i
return activeVertex[maxInd], maxInd, activeVertex[minInd], minInd
def newVertexFailFast(x, extremePoints):
for i in range(len(extremePoints)):
# Compare succesive indices.
for j in range(len(extremePoints[i])):
if extremePoints[i][j] != x[j]:
break
if j == len(extremePoints[i]) - 1:
return False, i
return True, np.nan
# Basis generator.
# Generates a set of n-orthonormal vectors.
def rvs(dim=3):
random_state = np.random
H = np.eye(dim)
D = np.ones((dim,))
for n in range(1, dim):
x = random_state.normal(size=(dim - n + 1,))
D[n - 1] = np.sign(x[0])
x[0] -= D[n - 1] * np.sqrt((x * x).sum())
# Householder transformation
Hx = np.eye(dim - n + 1) - 2.0 * np.outer(x, x) / (x * x).sum()
mat = np.eye(dim)
mat[n - 1 :, n - 1 :] = Hx
H = np.dot(H, mat)
# Fix the last sign such that the determinant is 1
D[-1] = (-1) ** (1 - (dim % 2)) * D.prod()
# Equivalent to np.dot(np.diag(D), H) but faster, apparently
H = (D * H.T).T
return H
# Generate a random PSD quadratic with eigenvalues between certain numbers.
def randomPSDGenerator(dim, Mu, L):
eigenval = np.zeros(dim)
eigenval[0] = Mu
eigenval[-1] = L
eigenval[1:-1] = np.random.uniform(Mu, L, dim - 2)
M = np.zeros((dim, dim))
A = rvs(dim)
for i in range(dim):
M += eigenval[i] * np.outer(A[i], A[i])
return M
# Random PSD matrix with a given sparsity.
def randomPSDGeneratorSparse(dim, sparsity):
mask = np.random.rand(dim, dim) > (1 - sparsity)
mat = np.random.normal(size=(dim, dim))
Aux = np.multiply(mat, mask)
return np.dot(Aux.T, Aux) + np.identity(dim)
def calculateEigenvalues(M):
from scipy.linalg import eigvalsh
dim = len(M)
L = eigvalsh(M, eigvals=(dim - 1, dim - 1))[0]
Mu = eigvalsh(M, eigvals=(0, 0))[0]
return L, Mu
# Deletes the extremepoint from the representation.
def deleteVertexIndex(index, extremePoints, weights):
del extremePoints[index]
del weights[index]
return
def performUpdate(function, x, gap, fVal, timing, gapVal):
gap.append(gapVal)
fVal.append(function.fEval(x))
timing.append(time.time())
return
# Pick a stepsize.
def stepSize(function, d, grad, x, typeStep="EL", maxStep=None):
if typeStep == "SS":
return -np.dot(grad, d) / (function.largestEig() * np.dot(d, d))
else:
if typeStep == "GS":
options = {"xatol": 1e-08, "maxiter": 500000, "disp": 0}
def InnerFunction(t): # Hidden from outer code
return function.fEval(x + t * d)
if maxStep is None:
res = minimize_scalar(
InnerFunction, bounds=(0, 1), method="bounded", options=options
)
else:
res = minimize_scalar(
InnerFunction,
bounds=(0, maxStep),
method="bounded",
options=options,
)
return res.x
else:
if maxStep is None:
return function.lineSearch(grad, d, x, maxStep=1.0)
else:
return function.lineSearch(grad, d, x, maxStep=maxStep)
def stepSizeDI(function, feasibleReg, it, d, grad, x, typeStep="EL"):
return function.lineSearch(grad, d, x)
# Used in the DICG algorithm.
def calculateStepsize(x, d):
assert not np.any(x < 0.0), "There is a negative coordinate."
index = np.where(x == 0)[0]
if np.any(d[index] < 0.0):
return 0.0
index = np.where(x > 0)[0]
coeff = np.zeros(len(x))
for i in index:
if d[i] < 0.0:
coeff[i] = -x[i] / d[i]
val = coeff[coeff > 0]
if len(val) == 0:
return 0.0
else:
return min(val)
# Evaluate exit criterion. Evaluates to true if we must exit. Three posibilities:
# 1 - "PG": Evaluate primal gap.
# 2 - "DG": Evaluate dual gap.
# 3 - "IT": Evaluate number of iterations.
def exitCriterion(it, f, dualGap, criterion="PG", numCriterion=1.0e-3, critRef=0.0):
if criterion == "DG":
# print("Wolfe-Gap: " + str(dualGap))
return dualGap < numCriterion
else:
if criterion == "PG":
# print("Primal gap: " + str(f - critRef))
return f - critRef < numCriterion
else:
return it >= numCriterion
# Once the problem has been solved to a high accuracy, solve the problem.
def exportsolution(filepath, formatString, fOpt, xOpt, tolerance, size):
with open(filepath, "wb") as f:
np.savetxt(f, [np.array(formatString)], fmt="%s", delimiter=",")
np.savetxt(f, np.array([fOpt]), fmt="%.15f")
np.savetxt(f, [xOpt.T], fmt="%.11f", delimiter=",")
np.savetxt(f, np.array([tolerance]), fmt="%.15f")
np.savetxt(f, np.array([size]), fmt="%.15f")
return
# Once the problem has been solved to a high accuracy, solve the problem.
def importSolution(filepath):
with open(filepath) as f:
_ = f.readline()
fOpt = float(f.readline().rstrip())
xOpt = np.asarray(f.readline().rstrip().split(",")).astype(float)
tolerance = float(f.readline().rstrip())
size = int(float(f.readline().rstrip()))
return fOpt, xOpt, tolerance, size
def export_results(filepath, results, arguments, timestamp, fValOpt):
# Save the data from the run.
if not os.path.exists(os.path.join(filepath, "Results")):
os.makedirs(os.path.join(filepath, "Results"))
with open(
os.path.join(filepath, "Results", "SOCGS_" + str(timestamp) + ".txt"), "w"
) as f:
f.write(str(arguments).replace("[", "").replace("]", "") + "\n")
for i in range(len(results)):
algType, x, FWGap, fVal, timing, distance, iteration = results[i]
f.write(algType + "\n")
f.write(
str([x - fValOpt for x in fVal]).replace("[", "").replace("]", "")
+ "\n"
)
f.write(str(fVal).replace("[", "").replace("]", "") + "\n")
f.write(str(FWGap).replace("[", "").replace("]", "") + "\n")
f.write(str(timing).replace("[", "").replace("]", "") + "\n")
f.write(str(distance).replace("[", "").replace("]", "") + "\n")
f.write(str(iteration).replace("[", "").replace("]", "") + "\n")
return
def plot_results(filepath, results, arguments, timestamp, fValOpt, save_images=True):
# Plot the data from the run.
if not os.path.exists(os.path.join(filepath, "Images")):
os.makedirs(os.path.join(filepath, "Images"))
# Plot Frank-Wolfe gap in terms of iteration.
for i in range(len(results)):
plt.semilogy(
np.asarray(results[i][6], dtype=int), results[i][2], label=results[i][0]
)
plt.legend()
plt.xlabel(r"$k$")
plt.ylabel("Frank-Wolfe gap")
plt.grid()
plt.tight_layout()
if save_images is False:
plt.show()
else:
plt.savefig(
os.path.join(
filepath, "Images", "SOCGS_DG_Iteration_" + str(timestamp) + ".pdf"
),
format="pdf",
bbox_inches="tight",
pad_inches=0,
)
plt.close()
# Plot Frank-Wolfe gap in terms of time.
for i in range(len(results)):
plt.semilogy(results[i][4], results[i][2], label=results[i][0])
plt.legend()
plt.xlabel("Time [s]")
plt.ylabel("Frank-Wolfe gap")
plt.grid()
plt.tight_layout()
if save_images is False:
plt.show()
else:
plt.savefig(
os.path.join(
filepath, "Images", "SOCGS_DG_Time_" + str(timestamp) + ".pdf"
),
format="pdf",
bbox_inches="tight",
pad_inches=0,
)
plt.close()
# Plot primal gap in terms of iteration.
for i in range(len(results)):
plt.semilogy(
np.asarray(results[i][6], dtype=int),
[(x - fValOpt) for x in results[i][3]],
label=results[i][0],
)
plt.legend()
plt.xlabel(r"$k$")
plt.ylabel("Primal gap")
plt.grid()
plt.tight_layout()
if save_images is False:
plt.show()
else:
plt.savefig(
os.path.join(
filepath, "Images", "SOCGS_PG_Iteration_" + str(timestamp) + ".pdf"
),
format="pdf",
bbox_inches="tight",
pad_inches=0,
)
plt.close()
# Plot primal gap in terms of time.
for i in range(len(results)):
plt.semilogy(
results[i][4], [(x - fValOpt) for x in results[i][3]], label=results[i][0]
)
plt.legend()
plt.xlabel("Time [s]")
plt.ylabel("Primal gap")
plt.grid()
plt.tight_layout()
if save_images is False:
plt.show()
else:
plt.savefig(
os.path.join(
filepath, "Images", "SOCGS_PG_Time_" + str(timestamp) + ".pdf"
),
format="pdf",
bbox_inches="tight",
pad_inches=0,
)
plt.close()
# Plot distance in terms of iteration.
for i in range(len(results)):
plt.semilogy(
np.asarray(results[i][6], dtype=int), results[i][5], label=results[i][0]
)
plt.legend()
plt.xlabel(r"$k$")
plt.ylabel("Distance to optimum")
plt.grid()
plt.tight_layout()
if save_images is False:
plt.show()
else:
plt.savefig(
os.path.join(
filepath,
"Images",
"SOCGS_Distance_Iteration_" + str(timestamp) + ".pdf",
),
format="pdf",
bbox_inches="tight",
pad_inches=0,
)
plt.close()
# Plot primal gap in terms of time.
for i in range(len(results)):
plt.semilogy(results[i][4], results[i][5], label=results[i][0])
plt.legend()
plt.xlabel("Time [s]")
plt.ylabel("Distance to optimum")
plt.grid()
plt.tight_layout()
if save_images is False:
plt.show()
else:
plt.savefig(
os.path.join(
filepath, "Images", "SOCGS_Distance_Time_" + str(timestamp) + ".pdf"
),
format="pdf",
bbox_inches="tight",
pad_inches=0,
)
plt.close()
return