forked from alejandro-carderera/SOCGS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgorithms.py
1209 lines (1139 loc) · 37 KB
/
algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import time
from scipy.optimize import minimize_scalar
import math
# Import functions for the stepsizes and the updates.
from auxiliaryFunctions import (
performUpdate,
exitCriterion,
stepSize,
calculateStepsize,
stepSizeDI,
)
# Import functions for active set management
from auxiliaryFunctions import newVertexFailFast, deleteVertexIndex, maxMinVertex
class CGS:
"""
Run CGS
Parameters
----------
x0 : numpy array.
Initial point.
function: function being minimized
Function that we will minimize.
feasibleReg : feasible region function.
Returns LP oracles over feasible region.
tolerance : float
Tolerance to which we solve problem.
maxTime : float
Maximum number of seconds the algorithm is run.
locOpt : numpy array
Location of the optimal value (to keep track of distance to optimum)
criterion : str
Criterion for stopping: Dual gap or primal gap (DG, PG)
criterionRef : float
Value of the function evaluated at the optimum.
Returns
-------
x
Output point
FWGap
List containing FW gap for points along the run.
fVal
List containing primal gap for points along the run.
timing
List containing timing for points along the run.
iteration
List contains the number of cumulative LP oracle calls performed.
distance
List containing distance to optimum for points along the run.
"""
def __init__(self):
return
def run(
self,
x0,
function,
feasibleReg,
tolerance,
maxTime,
locOpt,
criterion="PG",
criterionRef=0.0,
):
self.iteration = 0
# Quantities we want to output.
grad = function.fEvalGrad(x0)
FWGap = [np.dot(grad, x0 - feasibleReg.LPOracle(grad))]
fVal = [function.fEval(x0)]
timing = [time.time()]
distance = [np.linalg.norm(x0 - locOpt)]
iteration = [1]
x = x0.copy()
self.limit_time = maxTime
self.initTime = timing[0]
itCount = 1.0
N = int(
np.ceil(2 * np.sqrt(6.0 * function.largestEig() / function.smallestEig()))
)
s = 1.0
while True:
x = self.CGSubroutine(function, feasibleReg, x0, FWGap[0], N, s)
if (
exitCriterion(
itCount,
fVal[-1],
FWGap[-1],
criterion=criterion,
numCriterion=tolerance,
critRef=criterionRef,
)
or time.time() - timing[0] > maxTime
):
timing[:] = [t - timing[0] for t in timing]
return "CGS", x, FWGap, fVal, timing, distance, iteration
grad = function.fEvalGrad(x)
performUpdate(
function,
x,
FWGap,
fVal,
timing,
np.dot(grad, x - feasibleReg.LPOracle(grad)),
)
itCount += 1
distance.append(np.linalg.norm(x - locOpt))
iteration.append(itCount)
s += 1.0
# Runs the subroutine with the stepsizes for the number of iterations depicted.
def CGSubroutine(self, function, feasibleRegion, x0, delta0, N, s):
L = function.largestEig()
Mu = function.smallestEig()
y = x0.copy()
x = x0.copy()
for k in range(1, N + 1):
gamma = 2.0 / (k + 1.0)
nu = 8.0 * L * delta0 * np.power(2, -s) / (Mu * N * k)
beta = 2.0 * L / k
z = (1 - gamma) * y + gamma * x
x = self.CGSuProjection(function.fEvalGrad(z), x, beta, nu, feasibleRegion)
if time.time() - self.initTime > self.limit_time:
return y
y = (1 - gamma) * y + gamma * x
return y
# Subroutine used in CGS for str.cvx. smooth functions.
def CGSuProjection(self, g, u, beta, nu, feasibleRegion):
t = 1
u_t = u
while True:
grad = g + beta * (u_t - u)
v = feasibleRegion.LPOracle(grad)
self.iteration += 1
V = np.dot(g + beta * (u_t - u), u_t - v)
if time.time() - self.initTime > self.limit_time:
return u_t
if V <= nu:
return u_t
else:
d = v - u_t
alphaOpt = -np.dot(grad, d) / (beta * np.dot(d, d))
alpha = min(1, alphaOpt)
# alpha = min(1, np.dot(beta*(u - u_t) - g, v - u_t)/(beta*np.dot(v - u_t, v - u_t)))
u_t = (1 - alpha) * u_t + alpha * v
t += 1
def runSVRCG(
x0,
function,
feasibleReg,
tolerance,
maxTime,
locOpt,
criterion="PG",
criterionRef=0.0,
):
"""
Run SVRFW
Parameters
----------
x0 : numpy array.
Initial point.
function: function being minimized
Function that we will minimize.
feasibleReg : feasible region function.
Returns LP oracles over feasible region.
tolerance : float
Tolerance to which we solve problem.
maxTime : float
Maximum number of seconds the algorithm is run.
locOpt : numpy array
Location of the optimal value (to keep track of distance to optimum)
criterion : str
Criterion for stopping: Dual gap or primal gap (DG, PG)
criterionRef : float
Value of the function evaluated at the optimum.
Returns
-------
x
Output point
FWGap
List containing FW gap for points along the run.
fVal
List containing primal gap for points along the run.
timing
List containing timing for points along the run.
distance
List containing distance to optimum for points along the run.
"""
# Quantities we want to output.
grad = function.fEvalGrad(x0)
FWGap = [np.dot(grad, x0 - feasibleReg.LPOracle(grad))]
fVal = [function.fEval(x0)]
timing = [time.time()]
distance = [np.linalg.norm(x0 - locOpt)]
iteration = [1]
x = x0.copy()
itCount_t = 1
while True:
N_t = int(math.ceil(np.power(2, itCount_t + 3) - 2))
snapShot = function.fEvalGrad(x)
snapPoint = x.copy()
for k in range(0, N_t):
m_k = int(math.ceil(96.0 * (k + 2)))
StochGrad = function.fEvalGradStoch(x, snapShot, snapPoint, m_k)
v = feasibleReg.LPOracle(StochGrad)
gamma_k = 2.0 / (k + 2)
x = x + gamma_k * (v - x)
if (
exitCriterion(
itCount_t,
fVal[-1],
FWGap[-1],
criterion=criterion,
numCriterion=tolerance,
critRef=criterionRef,
)
or timing[-1] - timing[0] > maxTime
):
timing[:] = [t - timing[0] for t in timing]
return "SVRCG", x, FWGap, fVal, timing, distance, iteration
grad = function.fEvalGrad(x)
itCount_t += 1
iteration.append(itCount_t)
performUpdate(
function,
x,
FWGap,
fVal,
timing,
np.dot(grad, x - feasibleReg.LPOracle(grad)),
)
distance.append(np.linalg.norm(x - locOpt))
if (
exitCriterion(
itCount_t,
fVal[-1],
FWGap[-1],
criterion=criterion,
numCriterion=tolerance,
critRef=criterionRef,
)
or timing[-1] - timing[0] > maxTime
):
timing[:] = [t - timing[0] for t in timing]
return "SVRCG", x, FWGap, fVal, timing, distance, iteration
def runCG(
x0,
activeSet,
lambdas,
function,
feasibleReg,
tolerance,
maxTime,
locOpt,
FWVariant="ACG",
typeStep="EL",
criterion="PG",
criterionRef=0.0,
returnVar=None,
maxIter=None,
):
"""
Run CG Variant.
Parameters
----------
x0 : numpy array.
Initial point.
activeSet : list of numpy arrays.
Initial active set.
lambdas : list of floats.
Initial barycentric coordinates.
function: function being minimized
Function that we will minimize.
feasibleReg : feasible region function.
Returns LP oracles over feasible region.
tolerance : float
Tolerance to which we solve problem.
maxTime : float
Maximum number of seconds the algorithm is run.
locOpt : numpy array
Location of the optimal value (to keep track of distance to optimum)
FWVariant : str
Variant used to minimize function. (AFW, PFW, Vanilla, Lazy)
typeStep : str
Type of step used (EL, SS)
criterion : str
Criterion for stopping: Dual gap or primal gap (DG, PG)
criterionRef : float
Value of the function evaluated at the optimum.
returnVar : Bool
If function returns active set and lambda
maxIter : int
Maximum number of iterations run.
Returns
-------
x
Output point
FWGap
List containing FW gap for points along the run.
fVal
List containing primal gap for points along the run.
timing
List containing timing for points along the run.
lambdaVal
List barycentric coordinates of final point
active
List containing numpy arrays with vertices in actice set.
distance
List containing distance to optimum for points along the run.
"""
# Quantities we want to output.
grad = function.fEvalGrad(x0)
FWGap = [np.dot(grad, x0 - feasibleReg.LPOracle(grad))]
fVal = [function.fEval(x0)]
timing = [time.time()]
distance = [np.linalg.norm(x0 - locOpt)]
iteration = [1]
x = x0.copy()
active = activeSet.copy()
lambdaVal = lambdas.copy()
itCount = 1
if FWVariant == "LazyACG":
phiVal = [FWGap[-1]]
while True:
if FWVariant == "ACG":
x, gap = awayStepFW(function, feasibleReg, x, active, lambdaVal, typeStep)
else:
if FWVariant == "PCG":
x, gap = pairwiseStepFW(
function, feasibleReg, x, active, lambdaVal, typeStep
)
if FWVariant == "LazyACG":
x, gap = awayStepFWLazy(
function, feasibleReg, x, active, lambdaVal, phiVal, typeStep
)
if FWVariant == "CG":
x, gap = stepFW(function, feasibleReg, x, active, lambdaVal, typeStep)
itCount += 1
performUpdate(function, x, FWGap, fVal, timing, gap)
iteration.append(itCount)
distance.append(np.linalg.norm(x - locOpt))
if (
exitCriterion(
itCount,
fVal[-1],
FWGap[-1],
criterion=criterion,
numCriterion=tolerance,
critRef=criterionRef,
)
or timing[-1] - timing[0] > maxTime
):
timing[:] = [t - timing[0] for t in timing]
if returnVar is not None:
return (
FWVariant,
x,
FWGap,
fVal,
timing,
lambdaVal[:],
active[:],
distance,
iteration,
)
else:
return FWVariant, x, FWGap, fVal, timing, distance, iteration
if maxIter is not None:
if itCount > maxIter:
timing[:] = [t - timing[0] for t in timing]
if returnVar is not None:
return (
FWVariant,
x,
FWGap,
fVal,
timing,
lambdaVal[:],
active[:],
distance,
iteration,
)
else:
return FWVariant, x, FWGap, fVal, timing, distance, iteration
def SOCGS(
x0,
activeSet,
lambdas,
function,
QuadFunApprox,
feasibleReg,
tolerance,
maxTime,
locOpt,
criterion="PG",
criterionRef=0.0,
TypeSolver="LazyACG",
updateHessian=True,
maxIter=100,
omega=0.0,
):
"""
Run SOCGS
Parameters
----------
x0 : numpy array.
Initial point.
activeSet : list of numpy arrays.
Initial active set.
lambdas : list of floats.
Initial barycentric coordinates.
function: function being minimized
Function that we will minimize.
QuadFunApprox: quadratic function.
Quadratic function that will be used in the PVM steps.
feasibleReg : feasible region function.
Returns LP oracles over feasible region.
tolerance : float
Tolerance to which we solve problem.
maxTime : float
Maximum number of seconds the algorithm is run.
locOpt : numpy array
Location of the optimal value (to keep track of distance to optimum)
criterion : str
Criterion for stopping: Dual gap or primal gap (DG, PG)
criterionRef : float
Value of the function evaluated at the optimum.
TypeSolver : str
Variant used to minimize function. (AFW, PFW, Vanilla, Lazy, DICG)
updateHessian : bool
If the quadratic approximation explicitly requires updating Hessian.
maxIter : int
Maximum number of inner iterations used per outer iteration.
omega : float
Value of omega when returning inexact Hessian.
Returns
-------
x
Output point
FWGap
List containing FW gap for points along the run.
fVal
List containing primal gap for points along the run.
timing
List containing timing for points along the run.
lambdaVal
List barycentric coordinates of final point
active
List containing numpy arrays with vertices in actice set.
distance
List containing distance to optimum for points along the run.
"""
# Quantities we want to output.
grad = function.fEvalGrad(x0)
FWGap = [np.dot(grad, x0 - feasibleReg.LPOracle(grad))]
fVal = [function.fEval(x0)]
timing = [time.time()]
distance = [np.linalg.norm(x0 - locOpt)]
iteration = [1]
# Initialize SOCGS iterates
x = x0.copy()
activeSet = activeSet.copy()
lambdaVal = lambdas.copy()
# Initialize PVM iterates
xPVM = x0.copy()
activeSetPVM = activeSet.copy()
lambdaValPVM = lambdas.copy()
# Initialize CG iterate
xCG = x0.copy()
activeSetCG = activeSet.copy()
lambdaValCG = lambdas.copy()
# Create the approximate quadratic function
if updateHessian:
QuadFunApprox.updateApprox(
grad, x, function.returnM(x, omega, distance[-1] ** 2)
)
else:
QuadFunApprox.updateApprox(grad, x)
# Used for the Lazy AFW algorithm.
phiVal = [FWGap[-1]]
itCount = 0
while True:
# Compute Projected Variable Metric step
subprobTol = max(
tolerance, ((fVal[-1] - criterionRef) / np.linalg.norm(grad)) ** 4
)
if TypeSolver == "DICG":
_, xPVM, _, _, _, _, _ = DIPFW(
x,
QuadFunApprox,
feasibleReg,
subprobTol,
maxTime,
np.zeros(len(x)),
typeStep="EL",
criterion="DG",
maxIter=maxIter,
)
xCG, _, _ = stepDICG(function, feasibleReg, xCG, "EL")
else:
_, xPVM, _, _, _, lambdaValPVM[:], activeSetPVM[:], _, _ = runCG(
x,
activeSet,
lambdaVal,
QuadFunApprox,
feasibleReg,
subprobTol,
maxTime,
np.zeros(len(x)),
FWVariant=TypeSolver,
typeStep="EL",
criterion="DG",
returnVar=True,
maxIter=maxIter,
)
if TypeSolver == "LazyACG":
xCG, _ = awayStepFWLazy(
function, feasibleReg, xCG, activeSetCG, lambdaValCG, phiVal, "EL"
)
if TypeSolver == "PCG":
xCG, _ = pairwiseStepFW(
function, feasibleReg, xCG, activeSetCG, lambdaValCG, "EL"
)
if TypeSolver == "CG":
xCG, _ = stepFW(
function, feasibleReg, xCG, activeSetCG, lambdaValCG, "EL"
)
if TypeSolver == "ACG":
xCG, _ = awayStepFW(
function, feasibleReg, xCG, activeSetCG, lambdaValCG, "EL"
)
if function.fEval(xCG) <= function.fEval(xPVM):
x = xCG.copy()
activeSet = activeSetCG.copy()
lambdaVal = lambdaValCG.copy()
else:
x = xPVM.copy()
activeSet = activeSetPVM.copy()
lambdaVal = lambdaValPVM.copy()
grad = function.fEvalGrad(x)
itCount += 1
iteration.append(itCount)
performUpdate(
function,
x,
FWGap,
fVal,
timing,
np.dot(grad, x - feasibleReg.LPOracle(grad)),
)
distance.append(np.linalg.norm(x - locOpt))
# Check the exit criterion.
if (
exitCriterion(
itCount,
fVal[-1],
FWGap[-1],
criterion=criterion,
numCriterion=tolerance,
critRef=criterionRef,
)
or timing[-1] - timing[0] > maxTime
):
timing[:] = [t - timing[0] for t in timing]
return "SOCGS", x, FWGap, fVal, timing, distance, iteration
# Update the approximation.
if updateHessian:
QuadFunApprox.updateApprox(
grad, x, function.returnM(x, omega, distance[-1] ** 2)
)
else:
QuadFunApprox.updateApprox(grad, x)
class NCG:
"""
Run NCG
Parameters
----------
x0 : numpy array.
Initial point.
activeSet : list of numpy arrays.
Initial active set.
lambdas : list of floats.
Initial barycentric coordinates.
function: function being minimized
Function that we will minimize.
QuadFunApprox: quadratic function.
Quadratic function that will be used in the PVM steps.
feasibleReg : feasible region function.
Returns LP oracles over feasible region.
tolerance : float
Tolerance to which we solve problem.
maxTime : float
Maximum number of seconds the algorithm is run.
locOpt : numpy array
Location of the optimal value (to keep track of distance to optimum)
criterion : str
Criterion for stopping: Dual gap or primal gap (DG, PG)
criterionRef : float
Value of the function evaluated at the optimum.
TypeSolver : str
Variant used to minimize function. (AFW, PFW, Vanilla, Lazy, DICG)
updateHessian : bool
If the quadratic approximation explicitly requires updating Hessian.
maxIter : int
Maximum number of inner iterations used per outer iteration.
Returns
-------
x
Output point
FWGap
List containing FW gap for points along the run.
fVal
List containing primal gap for points along the run.
timing
List containing timing for points along the run.
lambdaVal
List barycentric coordinates of final point
active
List containing numpy arrays with vertices in actice set.
distance
List containing distance to optimum for points along the run.
"""
def __init__(self, sigma, beta, C):
self.sigma = sigma
self.beta = beta
self.C = C
# Verify that we satisfy the conditions.
assert (
1 / (C * (1 - beta)) + beta / ((1 - 2 * beta) * (1 - beta) ** 2) <= sigma
), "First condition not satisfied."
assert 1 / C + 1 / (1 - 2 * beta) <= 2, "Second condition not satisfied."
return
def run(
self,
x0,
activeSet,
lambdas,
function,
QuadFunApprox,
feasibleReg,
tolerance,
maxTime,
locOpt,
criterion="PG",
criterionRef=0.0,
TypeSolver="Vanilla",
updateHessian=True,
maxIter=100,
):
# Quantities we want to output.
grad = function.fEvalGrad(x0)
FWGap = [np.dot(grad, x0 - feasibleReg.LPOracle(grad))]
fVal = [function.fEval(x0)]
timing = [time.time()]
distance = [np.linalg.norm(x0 - locOpt)]
iteration = [1]
x = x0.copy()
activeSet = activeSet.copy()
lambdasValues = lambdas.copy()
itCount = 1.0
C_1 = 0.25
delta = 0.99
lambdaVal = self.beta / self.sigma
hValBeta = (
self.beta
* (1 - 2.0 * self.beta + 2.0 * self.beta ** 2)
/ ((1 - 2.0 * self.beta) * (1 - self.beta) ** 2 - self.beta ** 2)
)
etaVal = min(self.beta / self.C, C_1 / hValBeta)
if updateHessian:
QuadFunApprox.updateApprox(grad, x, function.returnM(x))
else:
QuadFunApprox.updateApprox(grad, x)
while True:
if TypeSolver == "CG":
_, z, _, _, _, _, _ = runCG(
x,
activeSet,
lambdasValues,
QuadFunApprox,
feasibleReg,
etaVal ** 2,
maxTime,
np.zeros(len(x)),
FWVariant="CG",
typeStep="EL",
criterion="DG",
maxIter=maxIter,
)
else:
_, z, _, _, _, _, _ = DIPFW(
x,
QuadFunApprox,
feasibleReg,
etaVal ** 2,
maxTime,
np.zeros(len(x)),
typeStep="EL",
criterion="DG",
maxIter=maxIter,
)
d = z - x
gamma = QuadFunApprox.fEvalHessianNorm(d)
# Take a full step.
if gamma + etaVal <= 1 / hValBeta or lambdaVal <= self.beta:
lambdaVal = self.sigma * lambdaVal
etaVal = self.sigma * etaVal
alpha = 1.0
x = x + alpha * d
else:
alpha = min(
delta
* (gamma ** 2 - etaVal ** 2)
/ (gamma ** 3 + gamma ** 2 - gamma * etaVal ** 2),
1.0,
)
x = x + alpha * d
grad = function.fEvalGrad(x)
itCount += 1
iteration.append(itCount)
performUpdate(
function,
x,
FWGap,
fVal,
timing,
np.dot(grad, x - feasibleReg.LPOracle(grad)),
)
distance.append(np.linalg.norm(x - locOpt))
if (
exitCriterion(
itCount,
fVal[-1],
FWGap[-1],
criterion=criterion,
numCriterion=tolerance,
critRef=criterionRef,
)
or timing[-1] - timing[0] > maxTime
):
timing[:] = [t - timing[0] for t in timing]
return "NCG", x, FWGap, fVal, timing, distance, iteration
if updateHessian:
QuadFunApprox.updateApprox(grad, x, function.returnM(x))
else:
QuadFunApprox.updateApprox(grad, x)
def DIPFW(
x0,
function,
feasibleReg,
tolerance,
maxTime,
locOpt,
typeStep="EL",
criterion="PG",
criterionRef=0.0,
maxIter=None,
):
"""
Run DIPFW for 0-1 polytopes.
Parameters
----------
x0 : numpy array.
Initial point.
function: function being minimized
Function that we will minimize.
feasibleReg : feasible region function.
Returns LP oracles over feasible region.
tolerance : float
Tolerance to which we solve problem.
maxTime : float
Maximum number of seconds the algorithm is run.
locOpt : numpy array
Location of the optimal value (to keep track of distance to optimum)
typeStep : str
Type of step size used.
criterion : str
Criterion for stopping: Dual gap or primal gap (DG, PG)
criterionRef : float
Value of the function evaluated at the optimum.
maxIter : int
Maximum number of inner iterations used per outer iteration.
Returns
-------
x
Output point
FWGap
List containing FW gap for points along the run.
fVal
List containing primal gap for points along the run.
timing
List containing timing for points along the run.
lambdaVal
List barycentric coordinates of final point
active
List containing numpy arrays with vertices in actice set.
distance
List containing distance to optimum for points along the run.
"""
x = x0.copy()
FWGap, fVal, timing, distance, iteration = ([] for i in range(5))
itCount = 1
timeRef = time.time()
while True:
x, xOld, oldGap = stepDICG(function, feasibleReg, x, typeStep)
distance.append(np.linalg.norm(xOld - locOpt))
performUpdate(function, xOld, FWGap, fVal, timing, oldGap)
iteration.append(itCount)
itCount += 1
if (
exitCriterion(
itCount,
fVal[-1],
FWGap[-1],
criterion=criterion,
numCriterion=tolerance,
critRef=criterionRef,
)
or timing[-1] - timeRef > maxTime
):
distance.append(np.linalg.norm(x - locOpt))
grad = function.fEvalGrad(x)
performUpdate(
function,
x,
FWGap,
fVal,
timing,
np.dot(grad, x - feasibleReg.LPOracle(grad)),
)
iteration.append(itCount)
timing[:] = [t - timeRef for t in timing]
return "DICG", x, FWGap, fVal, timing, distance, iteration
if maxIter is not None:
if itCount > maxIter:
distance.append(np.linalg.norm(x - locOpt))
grad = function.fEvalGrad(x)
performUpdate(
function,
x,
FWGap,
fVal,
timing,
np.dot(grad, x - feasibleReg.LPOracle(grad)),
)
iteration.append(itCount)
timing[:] = [t - timeRef for t in timing]
return "DICG", x, FWGap, fVal, timing, distance, iteration
def stepDICG(function, feasibleReg, x, typeStep):
"""
Performs a single step of the DICG/DIPFW algorithm.
Parameters
----------
function: function being minimized
Function that we will minimize.
feasibleReg : feasible region function.
Returns LP oracles over feasible region.
x : numpy array.
Point.
typeStep : str
Type of step size used.
Returns
-------
x + alpha*d
Output point
x
Input point
oldGap
FW gap at initial point.
"""
grad = function.fEvalGrad(x)
v = feasibleReg.LPOracle(grad)
oldGap = np.dot(grad, x - v)
gradAux = grad.copy()
for i in range(len(gradAux)):
if x[i] == 0.0:
gradAux[i] = -1.0e15
a = feasibleReg.LPOracle(-gradAux)
# Find the weight of the extreme point a in the decomposition.
d = v - a
alphaMax = calculateStepsize(x, d)
optStep = stepSizeDI(function, feasibleReg, 1, d, grad, x, typeStep)
alpha = min(optStep, alphaMax)
return x + alpha * d, x, oldGap
def awayStepFW(function, feasibleReg, x, activeSet, lambdas, typeStep):
"""
Performs a single step of the ACG/AFW algorithm.
Parameters
----------
function: function being minimized
Function that we will minimize.
feasibleReg : feasible region function.
Returns LP oracles over feasible region.
x : numpy array.
Point.
activeSet : list of numpy arrays.
Initial active set.
lambdas : list of floats.
Initial barycentric coordinates.
typeStep : str
Type of step size used.
Returns
-------
x + alpha*d
Output point
FWGap
FW gap at initial point.
"""
grad = function.fEvalGrad(x)
v = feasibleReg.LPOracle(grad)
a, indexMax = feasibleReg.AwayOracle(grad, activeSet)
# Choose FW direction, can overwrite index.
FWGap = np.dot(grad, x - v)
if FWGap == 0.0:
return x, FWGap
if FWGap > np.dot(grad, a - x):
d = v - x
alphaMax = 1.0
optStep = stepSize(function, d, grad, x, typeStep)
alpha = min(optStep, alphaMax)
if function.fEval(x + alpha * d) > function.fEval(x):
options = {"xatol": 1e-12, "maxiter": 500000, "disp": 0}
def InnerFunction(t): # Hidden from outer code
return function.fEval(x + t * d)
res = minimize_scalar(
InnerFunction, bounds=(0, alphaMax), method="bounded", options=options
)
alpha = min(res.x, alphaMax)
if alpha != alphaMax:
# newVertex returns true if vertex is new.
flag, index = newVertexFailFast(v, activeSet)
lambdas[:] = [i * (1 - alpha) for i in lambdas]
if flag:
activeSet.append(v)
lambdas.append(alpha)
else:
# Update existing weights
lambdas[index] += alpha
# Max step length away step, only one vertex now.
else:
activeSet[:] = [v]
lambdas[:] = [alphaMax]
else:
d = x - a
alphaMax = lambdas[indexMax] / (1.0 - lambdas[indexMax])
optStep = stepSize(function, d, grad, x, typeStep, maxStep=alphaMax)
alpha = min(optStep, alphaMax)
if function.fEval(x + alpha * d) > function.fEval(x):
options = {"xatol": 1e-12, "maxiter": 500000, "disp": 0}