-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_generation_procthor.py
68 lines (58 loc) · 2.52 KB
/
run_generation_procthor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from src.pred import predict_outputs, predict_outputs_multiple
from src.pred import load_model, load_dataset
import os
import numpy as np
import json
import sys
import argparse
def filter_key_in_list(dicts, filter_out='prompt'):
return [{key: value for key, value in d.items() if key != filter_out} for d in dicts]
def main(args):
jobid = os.getenv('SLURM_ARRAY_TASK_ID')
num_samples = args.num_samples
version = args.version
exprm_search = ['full_prompt','mask','preset_mask']
if jobid is not None:
jobid = int(jobid)
exprm = exprm_search[jobid%3]
if num_samples == 1:
start_idx = 200 * (jobid//3)
end_idx = start_idx + 200
elif num_samples > 1:
start_idx = 20 * (jobid//3)
end_idx = start_idx + 20
else:
start_idx = 0
end_idx = 100
if num_samples == 1:
end_idx = 1000
exprm = args.exprm
print(f'exprm: {exprm}, num_samples: {num_samples}!!')
print(f'exprm: {exprm}, num_samples: {num_samples}!!')
print(f'exprm: {exprm}, num_samples: {num_samples}!!')
print(f'exprm: {exprm}, num_samples: {num_samples}!!')
if version == 'bd':
model_dir = "models/procthor_weights_BD_variants/"
else:
model_dir = "models/procthor_weights_nonBD_variants/"
model, tokenizer = load_model(model_dir=model_dir,exprm=exprm)
#use validation set here because test set was used for validation, just naming difference.
test_dataset = load_dataset(dataset_name="datasets/procthor_converted",split="validation")
np.random.seed(12345)
idx_select = np.random.permutation(len(test_dataset))[start_idx:end_idx]
test_dataset = test_dataset.select(idx_select)
if num_samples > 1:
result_dir = f'generations/procthor_{version}_sampling'
else:
result_dir = f'generations/procthor_{version}_greedy'
predict_outputs_multiple(model, tokenizer, test_dataset, exprm, num_samples=num_samples,prompt_style={version}, result_dir=result_dir, start_idx=start_idx, end_idx=end_idx)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--exprm',type=str,help='model variant',default='dropout')
parser.add_argument('--num_samples',type=int,help='number of samples to generate',default=1)
parser.add_argument('--version',type=str,help='version of procthor model is trained on, "bd" or "nonbd"',default='bd')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_arguments()
main(args)