-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
203 lines (151 loc) · 6.74 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import glob
import random
import pandas as pd
import numpy as np
from tqdm import tqdm
from sklearn.model_selection import train_test_split
from finalized_code import helpers
truthPath = './processed_truth/'
liePath = './processed_lie/'
featuresToKeep = helpers.featuresToKeep
newFeaturesToKeep = ["gaze_0_x","gaze_0_y","gaze_0_z","gaze_angle_x", "gaze_angle_y", "AU01_r","AU04_r","AU10_r","AU12_r","AU45_r"]
#["pose_Tx","pose_Ty", "pose_Tz", "pose_Ry"]
# create a single dataset from a specified patha (must be all truth or all lie)
def createDatasetSingle(path, truth):
df = pd.concat(map(pd.read_csv, glob.glob(os.path.join(path+"*.csv")))).reset_index()
helpers.addGazeDelta(df)
helpers.addTFLabel(df, truth)
df = helpers.filterColumn(df)
return df
# input a truthpath and a liepath, create a dual dataset and create a train
# test split based on the testRatio
# outputs total train, train with x, train with y, test with x, and test with y
def createDatasetRF(truthPath, liePath, testRatio, byPerson = False, personlst = []):
dfT = createDatasetSingle(truthPath, True)
dfL = createDatasetSingle(liePath, False)
dfTotal = helpers.veticalMerge(dfT, dfL, shuffle=True)
if byPerson:
Train, Test = helpers.shuffleByPerson(dfTotal, testRatio, personlst)
else:
Train, Test = train_test_split(dfTotal, test_size=testRatio, shuffle=False)
Xtrain, Ytrain = Train.reset_index().drop(columns = ["Result", "Person", "index", "level_0"]), Train["Result"]
Xtest, Ytest = Test.reset_index().drop(columns = ["Result", "Person", "index", "level_0"]), Test["Result"]
Train = Train.reset_index().drop(columns = ["index", "Person", "level_0"])
return Train, Xtrain, Ytrain, Xtest, Ytest
def createDatasetLSTM(truthPath, liePath, testRatio, numFrames=10, minConfidence=0.9, byPerson=False, personlst = []):
dfT = createDatasetSingle(truthPath, True)
dfL = createDatasetSingle(liePath, False)
dfMap = {1:dfT, 0:dfL}
Xtrain, Ytrain, Xtest, Ytest = [], [], [], []
idxTotext = {0:"Lie", 1:"Truth"}
for idx in dfMap:
print(f'Processing {idxTotext[idx]}')
if byPerson:
Train, Test = helpers.shuffleByPerson(dfMap[idx], lst = personlst)
elif not byPerson:
Train, Test = helpers.shuffleByPerson(dfMap[idx], ratio = testRatio)
print(f'Processing Train')
trainGroups = Train.groupby("Person")
for i in trainGroups.groups:
currData = trainGroups.get_group(i).sort_index()
bad_frames = np.where(currData["confidence"] < minConfidence)[0]
print(f'Processing Person {i}, shape of data is {currData.shape}')
blocksLst = helpers.getLSTMBlocks(bad_frames.tolist(), currData.shape[0], blockSize=numFrames, start=0)
for i, j in tqdm(blocksLst):
Xtrain.append(currData.iloc[i:j].reset_index().drop(columns = ["index", "confidence", "Result", "Person"]).to_numpy())
Ytrain.append(idx)
print(f'Processing Test')
testGroups = Test.groupby("Person")
for i in testGroups.groups:
currData = testGroups.get_group(i).sort_index()
bad_frames = np.where(currData["confidence"] < minConfidence)[0]
print(f'Processing Person {i}, shape of data is {currData.shape}')
blocksLst = helpers.getLSTMBlocks(bad_frames.tolist(), currData.shape[0], blockSize=numFrames, start=0)
for i, j in tqdm(blocksLst):
Xtest.append(currData.iloc[i:j].reset_index().drop(columns = ["index", "confidence", "Result", "Person"]).to_numpy())
Ytest.append(idx)
Xtrain = np.array(Xtrain)
Ytrain = np.array(Ytrain)
Xtest = np.array(Xtest)
Ytest = np.array(Ytest)
random.seed(random.randint(1, 100))
# Create an array of indices, then shuffle it
indices = np.arange(len(Xtrain)).astype(int)
np.random.shuffle(indices)
# Same order of indices for both X and Y
Xtrain = Xtrain[indices]
Ytrain = Ytrain[indices]
random.seed(random.randint(1, 100))
# Create an array of indices, then shuffle it
indices = np.arange(len(Xtest)).astype(int)
np.random.shuffle(indices)
# Same order of indices for both X and Y
Xtest = Xtest[indices]
Ytest = Ytest[indices]
return Xtrain, Ytrain, Xtest, Ytest
def prep(truthpath):
for i in truthpath:
os.listdir(i)
def preprocessing(truthPath, liePath, additionalPath=None, minConfidence = 0.9, numOfFrames = 10):
data = []
label = []
for datasetPath in truthPath:
print(f"Processing {datasetPath}")
for file in sorted(os.listdir(datasetPath)):
if file.endswith(".csv"):
df = pd.read_csv(datasetPath + file)
bad_frame = set(np.where(df["confidence"] < minConfidence)[0])
df = helpers.filterColumn(df, colList=newFeaturesToKeep)
index = numOfFrames
next_index = numOfFrames
while index < len(df):
if index not in bad_frame and index >= next_index:
data.append((df.iloc[index-numOfFrames:index]).to_numpy())
label.append(1)
elif index in bad_frame:
next_index = index + numOfFrames
index += 1
for datasetPath in liePath:
for file in sorted(os.listdir(datasetPath)):
if file.endswith(".csv"):
df = pd.read_csv(datasetPath + file)
bad_frame = set(np.where(df["confidence"] < minConfidence)[0])
df= helpers.filterColumn(df, colList=newFeaturesToKeep)
index = numOfFrames
next_index = numOfFrames
while index < len(df):
if index not in bad_frame and index >= next_index:
data.append((df.iloc[index-numOfFrames:index]).to_numpy())
label.append(0)
elif index in bad_frame:
next_index = index + numOfFrames
index += 1
# if additionalPath:
# for file in sorted(os.listdir(additionalPath)):
# if file.endswith(".csv"):
# df = pd.read_csv(additionalPath + file)
# bad_frame = set(np.where(df["confidence"] < minConfidence)[0])
# df= helpers.filterColumn(df, colList=newFeaturesToKeep)
# index = numOfFrames
# next_index = numOfFrames
# while index < len(df):
# if index not in bad_frame and index >= next_index:
# data.append((df.iloc[index-numOfFrames:index]).to_numpy())
# if file.endswith("T.csv"):
# label.append(1)
# elif file.endswith("L.csv"):
# label.append(0)
# elif index in bad_frame:
# next_index = index + numOfFrames
# index += 1
data = np.array(data)
label = np.array(label)
random.seed(random.randint(1, 100))
# Create an array of indices, then shuffle it
indices = np.arange(len(data)).astype(int)
np.random.shuffle(indices)
# Same order of indices for both X and Y
data = data[indices]
label = label[indices]
return data, label