From 9fa4aff25128a1530272cbd66b06ebb9f487ab5b Mon Sep 17 00:00:00 2001 From: Michael Clerx Date: Tue, 5 Feb 2019 12:46:38 +0000 Subject: [PATCH 1/4] Added an example of combining opt. and mcmc, and optimising on a loglikelihood. Closes #159. --- examples/optimisation-followed-by-mcmc.ipynb | 322 +++++++++++++++++++ 1 file changed, 322 insertions(+) create mode 100644 examples/optimisation-followed-by-mcmc.ipynb diff --git a/examples/optimisation-followed-by-mcmc.ipynb b/examples/optimisation-followed-by-mcmc.ipynb new file mode 100644 index 000000000..55344bf9e --- /dev/null +++ b/examples/optimisation-followed-by-mcmc.ipynb @@ -0,0 +1,322 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Optimisation followed by MCMC\n", + "\n", + "As well as minimising error functions, Pints' optimisers can be used to maximise likelihoods (or actually any [LogPDF](https://pints.readthedocs.io/en/latest/log_pdfs.html#pints.LogPDF)).\n", + "\n", + "This makes it easy to combine optimisation and sampling. For example, you may have found a best solution through optimisation, but suspect it is not unique. You could then run an MCMC routine to explore the space around your best solution. This is particularly useful when the parameter space is large, so that MCMC on its own might be too computationally demanding." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, we need a model without a unique best parameter set. To get this, we'll adapt the logistic model from pints set of toy models:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pints\n", + "import pints.plot\n", + "\n", + "\n", + "class BadLogisticModel(pints.ForwardModel):\n", + " \"\"\"\n", + " Logistic model of population growth with unidentifiable parameters.\n", + " \"\"\"\n", + "\n", + " def __init__(self):\n", + " super(BadLogisticModel, self).__init__()\n", + " \n", + " # Initial population size\n", + " self._p0 = 2\n", + " \n", + " # Fixed growth rate\n", + " self._r = 0.1\n", + " \n", + " def n_parameters(self):\n", + " return 2\n", + "\n", + " def simulate(self, parameters, times):\n", + " \n", + " k1, k2 = parameters\n", + " times = np.asarray(times)\n", + "\n", + " # Combine k1 and k2 into a single parameter, k\n", + " k = 41 + np.sqrt(k1**2 + k2**2)\n", + " \n", + " return k / (1 + (k / self._p0 - 1) * np.exp(-self._r * times))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this adaptation, we've fixed to growth rate to be 0.1 (reducing the number of parameters by 1), but then artificially split the carrying capacity parameter into two.\n", + "\n", + "We can still easily generate some data though:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHoBJREFUeJzt3X+QXWWd5/H3l4AoTAzS3RJIjE3fhICDwTa90DYr6Y0ji4OzQNU4NbJkkaVISJlC1tkakZkqdqxaVqtWnLFwm8SRyEQRHPkpWIAV7ETTYzCxpQckge7eiE2AdGcgZtVCknz3j76nOX37/jj33nN/nHM/r6quvvf0vfc8t0/yvU9/n+/zPObuiIhI8h3X6AaIiEg8FNBFRFJCAV1EJCUU0EVEUkIBXUQkJRTQRURSQgFdRCQlFNBFRFJCAV1EJCWOr+fJ2tvbvbOzs56nFBFJvN27d0+5e0epx9U1oHd2drJr1656nlJEJPHM7FdRHqeUi4hISiigi4ikhAK6iEhKRMqhm9k+4DBwFDji7j1mdipwL9AJ7AP+wt1fq00zRUSklHJ66P/B3T/g7j3Z+zcBW919GbA1e19ERBqkmpTLZcBd2dt3AZdX3xwRqZU7to0xNDY169jQ2BR3bBtrUIskblEDugNPmNluM1ubPXaau78MkP3+7nxPNLO1ZrbLzHZNTk5W32IRqciKxQvYcPfwTFAfGptiw93DrFi8oMEtS4YkfCBGDegXuvsHgY8Bnzazi6KewN03uXuPu/d0dJSsixeRGunLtHP7ld1suHuY257Yy4a7h7n9ym76Mu2NblpkjQyqSfhAjBTQ3X1/9vsB4AHgfOBVMzsdIPv9QK0aKSLx6Mu0c9UFS/jqk6NcdcGSRAVzaGxQTcIHYsmAbmYnm9n84DZwMfAM8DBwdfZhVwMP1aqRIhKPobEpvrXzRW5YvZRv7XxxTm+32TU6qDb7B2KUHvppwE/M7GngKeBRd38M+CLwUTN7Afho9r6INKmgN3v7ld189uLlM4ExiUG9UUG12T8QS9ahu/s4cF6e4weBj9SiUSISv5GJQ7N6s0Fvd2TiUNP1NIvJDaq9mba6tD/8gdiXaac309Z0aRdz97qdrKenx7U4l0gy3bFtjBWLF8wKXkNjU4xMHOL6VZm6tCE3qOber6VGvn8z2x2aA1SQpv6LtLiolSPNUOVR7K+MWrt+VWbOh0Zwv1nKGRXQRVpc1EDd6AFJKBxU6/UXQj7N8EEXUEAXaXHlBOpKByTrXT8ePl9wO3y+OM/dDB90AQV0EYkcqCut8qh3LzZ8vhWLF7Buy27WbdnNisULSp67kg+fZilnVEAXkUiBOjwAedKJx7O+v2tOkC4U9Ordiw2f76djB2eO/3TsYMlzV/Lh0yzljHXdgk5Emk/UcrzcAckNdw+zvr9rZkAyeE4h4V7sDauXzgmo4SqS4HZw3utXZcquKMk9H1Dw3LnPCz4MrrpgCd/a+WLRD4BmKmdUD12kydU6/xy1ciQ8IBk8ZmBwnN+9cSRSACvVi60mTVLqfJuH9rF5aF/kHnQ5KZRGVt7kUkAXiUmtAm+hFMCvDv42lvNVWjmSL+gV+h18/v6RkrNUq0mTwOzff/A7Wt/fxeT/e2PmMb2ZtkgzZMtJoTRT5Y0CukhMajXwVyj//GfnnVHyfLXs3ecLeoV+B0CkXmz4Q+Kavk6u6euMPNAYPvfIxCHW93cxMDgOwMY1K9m4ZuXMrNhiPehEL5Hg7nX7WrlypYuk2Y7RSe/+whP+5cf3ePcXnvAdo5M+MDjqO0Yn5zxuYHC0rNf+8uN7/L2fe8S//PieoufL157geO79ShV73VJtivK6X358j597y2N+7i2PlfU61Zw7EOV6FXrM1XfujOVa5wJ2eYQYqx66SIzypSEq6bnn9qyHxqbYPLSPvkzbrBRAqVxvrapLSq0LU0kJX7hn3JtpmzkeNU0StKPaOvkghRL+SyY3hVLoml64tK2hk4xU5SISo0ILR5VTNQFvBYygamTdlt0AbMhWa4R/VmqhqlLVJYWUu3ZJX6Z9JhBWsnhW+EPijm1jbFyzcub49asykRYSq/Tc4d937hox+RS7pn98xvRrnbNwPiMvHWLjmpWzlgio6dovUbrxcX0p5SJpViq9kS9lEuX1rtz0L37uLY/N+lN+x+ik33Tf05HSKeWkIcKphOB5m7aPzhwv9fxapXhKtTU417m3POY33fd0ReeuJF1T6JoGx5f/7Q9i+V2glItIfRVLQ1Qy8SToWe8YO8g1fZ2zepp9mXbe23ZyyYHGQgN8n79/JO9g6a8O/nYmZdCXaWd9fxe3PrqHva8cjpSuqWcJX27a4/tP7wfgz847o6Jzl1O1ExzPd03Dx0+Ydxzrtuyu35IAUaJ+XF/qoUsrqrTXWssBvmK9+9zz3njPcFl/WdRTHL+jYq9V6Npt2j4a+fjyv/1B1b8/IvbQFdBFaiAcSIPb4WqHUpUP9UhdFAuGQcrgxnt+HlvArJVyU1n5lFu1E7XKJUgDfXLTv1T1+1NAF2mgQgHipvuejlTWFlepYynFSiFvvOfn3vm5R3zT9tFZx6sN6nG+t7h66KXaVMmHRpwfygroIg1Wzp/wjej5lmrfwOBo3hRCtR8qcf0O6vW7rPRDI84PLgV0kRop5z9qJZOB6qHavyDiOn+tJwBVq1k+gKMGdFW5iJQp6kShQlUQtV47O8p0/0LVKO9tO7nsdUmqXT981Vntc2rdoyxNUI81VJpp4a1IokT9uL7UQ5e0KNXDLHeQrRZtq1evspLz1TpPnzZE7KHb9GPro6enx3ft2lW384nU0m1P7J2ZffnZi5fP+lmhWZbff3o/jz/7as13rQ9eN+rM1HqeL/c9f/3HY9z66B4u717EtucnG7Z9WzMzs93u3lPqcUq5iFSg1EShQumAKJOB4lDvLdGqWT/8ug9nuLx7EQ8Mv5T3ufXejzTJFNBFylTN8qr1Wju73luiVbN++NDYFNuen4y08UXw+HoueJUoUfIycX0phy5pUK8a8UolIYde7nPrVW/erFAOXaQ1lbtKYiPPV85zi41ZRBX+62pk4hDzjoOBwfFZYxo1XQ2xQlFz6AroItL04hzkDV5r1VntPDi8n5svPZvrPpyp2QB1HKIGdK2HLtJA9e5NJ1FuoO3NtFUVeMMDuFd0n8HA4DiHf3+kLtVAtaZBUZEGSvOAX1zVKXFP7gkP4G57fopVZ3XUrRqo1iIHdDObZ2bDZvZI9v6ZZrbTzF4ws3vN7G21a6ZIOpW7RVyhIPmpzU81XWlfXB9WcVYG5VYore/v4sHhl7iie1FdqoFqrZwe+meA50L3vwR8xd2XAa8B18bZMJFWUU4Nd7PuZZlPrfYzrUa4tz80NsXA4Dg3X3o2yxfOL6v8tGlFKYUBFgNbgdXAI4ABU8Dx2Z9/CHi81OuobFFqLc6ytHqVuJVbklfo8c2w6Fc+caxXXgtJKmEk5sW5/h74a+BY9n4b8Lq7H8nenwAW5Xuima01s11mtmtycrLsDxyRclT7Z344pRG81td/PManNj/F1388Nuu14khpVDJJqVCPvt6zQ6Oo9wSnctRrklc9lQzoZvZx4IC77w4fzvPQvPWP7r7J3Xvcvaejo6PCZopEU+zP/Cj553AQH5k4NLOn5pGjzq2P7mF9f9esNViqTWlUMuAXZS/LZgie1cyolQqV6sID/4vpHvg+4BXgd8C3UcpFmlixdchzUxS5mzhs2j7qnZ97xG+8Z3jWnpq13o4tSgog6ntohlULk5TSaHbUYqaomfUD/93dP25m/wzc5+73mNkdwIi7/59iz9fEIqmHYpNQCv0s9/iqszp4YPglrug+g23PT805Xs1sxVLtLrYSY6G69U3bx1l7UZfq2VOqJjNFcwJ6F3APcCowDFzl7m8Ue74CutRalKBYaAp5cDwI4rkzCeuxzGu9l72VZNDUf2kZ4V5rcBuYyUPPOw6OHpseBBsam2Ldlt28f9EC9rxyeE7gDwfxo8eYWetjfX/XzPejx97Ktdci4MaxZomki9ZDl5YRrmwJ0gvBgOWKxQsYGBxnxeIFM8EcYMPqpTODdEH1yu1XdrN84Tu5+dKzZ55z3Ycz3H5lNztGD3L7ld1c9+HMTHXE7Vd2s2n7eKwTepptYFOSRT10SaTcXHKhnnfwsw13D3POwvmMvHSIjWtWzvpZNfnnKCmeqOJ8LUkX9dAl1XLrzQHePHqMobGDc2qwg/rsHWMHuaavc87PvnnN+RXXI8c5GzJxGxJL09Fqi5JI4UB61QVL2Dy0jxPmHcfaD3fxrZ0v0ptpm9ULD6cxwj+Lqy3BhJ4bVi+t+LXzfYD0ZdrVO5fIFNAlscKB9O0nHMedn/p3c5ZXBWJdejWfWn9giESllIskVhBIL8y0ccK8t/4ph1MVtU5jaDakNBMNikpihAdCg0BajzLCqG0KaEKPxE116JI6Sd0PUqRaCuiSSppJKa1IZYuSSs24RKxIs1BAl0TRTEqRwhTQJTFUUSJSnAK6JIZmUooUp0FREZEmp0FRaXqFtoSrdp9OkValgC4NU+2GziIym9ZykYbJXWBLdeUi1VEPXRqqUXXlSvdIGimgS0M1qq5c6R5JI6VcpGFyd+SpxdK2hSjdI2mkgC4NE64rD1YtDPbpDATbwwWPDzZ6jmMRrrg2phBpFkq5SMMEmy3DWykQgLUXdbFuy27WbdnNhUvbZm4HGz3HlRrRMgKSNuqhS1PITYEEDv/+yMztn44djC010sh0j0itKKBLXZXaECKcAgHy3o4j4BZbRkABXZJKAV3qKndnoXBPOZwC2Ty0D2DO7bj27NSGzJJGCuhSc+FeedATXrdlN+9ftIA9rxyes5kzMBPE57/jrX+ivZk2pUZEitCgqNRcbs03wJtHjzE0dnBmMlE4BTIycYiNa1aycc1KdowenLkdpEO0wqJIflptUeoivHVc0Pu+pq9T9d8iEWi1RWkq4ZrvN48eY+OaldqkQiRmCuhSF8GA54WZNk6Y99Y/O6VQROJTMqCb2dvN7Ckze9rMnjWzv8seP9PMdprZC2Z2r5m9rfbNlWYTZZGrcCXLt6/rZeOalbN65X2Z9qpnfYpItB76G8Bqdz8P+ABwiZn1Al8CvuLuy4DXgGtr10xpVlEWudLWcSL1UdagqJmdBPwEWA88Cix09yNm9iHgf7j7fyz2fA2KplN4wFODnCLxi3VQ1MzmmdkvgAPAD4Ex4HV3D+ZlTwCLKm2sJFuj1jQXkdkiBXR3P+ruHwAWA+cD5+R7WL7nmtlaM9tlZrsmJycrb6k0LS1yJdIcyqpycffXgUGgFzjFzIJpfIuB/QWes8nde9y9p6Ojo5q2ShMKD3iqDFGksaJUuXSY2SnZ2+8A/gR4DvgR8OfZh10NPFSrRkrz0oCnSPMoOShqZiuAu4B5TH8AfNfdv2BmXcA9wKnAMHCVu79R7LU0KCoiUr6og6IlF+dy9xGgO8/xcabz6SJzlFomV0Tip5miUhPahFmk/rR8rtSENmEWqT/10KVmVJ8uUl8K6FIzqk8XqS8FdIlNeKGuIGe+vr+Lk048XvXpInWggC4lRVlREWYPhI5MHGJ9fxcDg+Mz1S6qTxepLQ2KSknhjZ1HJg4x7zgYGByf2f8zXI5YbCBUmzCL1JZ66C0oao87EK5Y2fvKb7j10T2s7++iL9M+pxxRA6EijaOA3oIqqREPAvUDw/u5vPsMBgbHue2JvTM99yBwayBUpHGUcmlBldSI5wbqVWd18NUnR7lh9dJZwTwc4HszbXMCvojUjnroLaqc1Ejuiorr+7t4cPglruheNKsXroW6RBpLPfQWldvj7s20FQzq4UA9NDbFwOA4N196NkePwSd6Fs8E+3xrtGggVKR+FNBbUJTUSHhxrSBQD41NsWn7+JwUStALV+AWaSylXFpQlNRIoYHTtRd1zQnc4aAvIo1T1ibR1dJ66MmizZ9FmkOsm0RLa1JNuUiyKKBLQaopF0kWBXTJS5s/iySPArrkpZpykeTRoKiISJPToKiISItRQG8R5a6wKCLJo4DeIipZYVFEkkVT/1tEoRUWg0HOcI15eMMKEUkO9dBbSL6JQuq5i6SHeugtpNAKi0HP/ZyF8xl56RAb16yctca5eusiyaAeeosoNlEo6LnvGDvIm0ePzXmOeusiyaAeeosoNVEo6LlvHtrHui27uaavUwtyiSSMAnqLKLT5BDBnbfT/+s2fzdleTkSan1IuLS635w5wwrzj6Mu0aUEukYQp2UM3s/cA/wQsBI4Bm9z9H8zsVOBeoBPYB/yFu79Wu6ZKLYR77kHOPBgUzd3ZSESaW5Qe+hHgr9z9HKAX+LSZvQ+4Cdjq7suArdn7kmBakEsk2cpenMvMHgJuz371u/vLZnY6MOjuy4s9V4tz1Vd4X9CAyhBFkqcmi3OZWSfQDewETnP3lwGy399dfjOlljRpSKS1RK5yMbM/Au4DbnT335hZ1OetBdYCLFmypJI2SoUKTfdXPlwknSL10M3sBKaD+bfd/f7s4VezqRay3w/ke667b3L3Hnfv6ejoiKPNUgbtCyrSOkoGdJvuin8DeM7dbwv96GHg6uztq4GH4m+eVEv7goq0jigplwuBNcC/mtkvssduBr4IfNfMrgVeBD5RmyZKpXLLDnszbSpDFEmxkgHd3X8CFEqYfyTe5kicipUhKqCLpI/2FBURaXLaU1REpMUooKeA9gsVEVBATwVNIBIR0PK5qaAJRCIC6qGnhiYQiYgCekpoApGIKKAnVHggNMiZr+/v4qQTj5+1X6iItA4F9IQKD4SOTBxifX8XA4PjM8vlah1zkdajgJ5Q4YHQ371xhIHB8ZkgPjQ2RV+mfWbNc5UwirQGBfQEyzcQqhJGkdalssUEyx0I7c20qYRRpIWph96Eosz8DK+k+NmLl88aCFUJo0hrUg+9CQVpkyAnPu84ZnLkMB3MN20fL7qhc76eu4ikmwJ6EwqnTVad1c6Dw/u5+dKz6cu0z1njPPd5gNZAF2lRCuhNKpw2uaL7DAYGxzn8+yMlc+JaA12kdSmgN6ncAc9VZ3Xw1SdHuWH10qKBOShVDOvLtCuYi7QABfQmlJtWmf+O47n10T1c0b1IOXERKUhVLk0onDYZGptiYHCcmy89m+UL52tav4gUpB56EwqnTXJz4oBy4iKSl/YUFRFpctpTVESkxSigi4ikhAK6iEhKKKCLiKSEAnoTiLIYl4hIKQroTUBrmItIHBTQm0B4Ma7bnthbcDEt9eRFpBgF9CYRZQ1z9eRFpBjNFG0ShXYfCtNuRCJSTMkeupndaWYHzOyZ0LFTzeyHZvZC9vu7atvMdCu2+1Au7UYkIoVESbl8E7gk59hNwFZ3XwZszd6XEgrlwEvtPpT7+HBPXot0iUigZEB39+3Av+Ucvgy4K3v7LuDymNuVSoVy4Gsv6sqbXsld27ycnryItJ5KB0VPc/eXAbLf3x1fk9IrajVLIcV2IxIRqXmVi5mtNbNdZrZrcnKy1qerq0rKCMM58FVnzd5JqNRzr1+VidSTF5HWVGlAf9XMTgfIfj9Q6IHuvsnde9y9p6Ojo8LTNacoZYS5QX9obIrNQ/v44zPeyYPD+/n6j8cKPldEpByVli0+DFwNfDH7/aHYWpQgUcoIg6B/+5XdAKzbshuAv7n0HJ7df4hbH93DL/cfZtvzkypBFJGqlAzoZvYdoB9oN7MJ4BamA/l3zexa4EXgE7VsZDMLp1DybeAcDvrnLJwPwMY1K2c2bv7l/sM8MPxSyc2fRURKiVLl8kl3P93dT3D3xe7+DXc/6O4fcfdl2e+5VTAtI0oZYRD0d4wd5Jq+zpnAPTQ2xbbnJ1WCKCKx0NT/MoVz4kHee31/FyedeHzBMsJ8QV8liCISNwX0MoUHQkcmDrG+v4uBwXFWLF6Qt4ywUOD+/tP7VYIoIrHSJtEVCIJ0lPVU7tg2NhPsw88fmTikckMRiUSbRNdQqfVUwmmZoHY8XGOu2nERqQUF9AqUGgjVMrci0ghaPrdM4Zx4X6ad3kzbnCn8WuZWRBpBPfQyRV1PRcvciki9KaCXqdB6KkDeKf59mTbVmItIXSigRxBlEa5w3nxobGpmiv+G1UtVYy4idaGAHkGUQc5w3vxrT44Cs6f4q8ZcRGpNdegRRa09v+2JvTPrunz24uUNaKmIpI3q0GMWZZBT28OJSCMpoEdUKlhrbRYRabTEB/RKdg0qV5Rgre3hRKTREh/Q6zErM0qw1vZwItJoqRgULWexLBGRpGmpQVHNyhQRSUlAr6a6pB45eBGRekh8QK+2ukQrI4pIWiQmoBfqSW/aPl5VdUl4hudtT+yds3KiiEhSJCagF+pJr72oayb4BkE/XF0SJX2SLwevVIyIJE1iAnqUnnSl6ZN8OXilYkQkaRK1wUW4J33D6qV5677zbSwRpF/y7esZBO58G1ZokwoRSZLE9NAhWjVLvvRJsd52sUlDKocUkSRJTA89XM0yMnGI9f1ds3rW4R53OOj3ZtqKbgmXL0gHx3M/QILXEhFpRonpoYd70isWL2BgcJz1/V2MTByaCfbzjqNgCWO4t33OwvlzXj93wFOLbYlI0iR26n++6f5BD71YrvyqC5aweWgf8NYGFLkbP8N0xUyh19L6LCJST1Gn/ic2oEP0zSRyA3Z4i7hr+jo14CkiTS31a7mUM90/38DnxjUref+iBRrwFJHUSGRAj5LfDk8MCpa2zc2T73nlsHYXEpHUqCqgm9klZrbXzEbN7Ka4GlVKlPXJi5UqasBTRNKo4hy6mc0Dngc+CkwAPwM+6e6/LPScem8SXWiddA14ikiS1COHfj4w6u7j7v4H4B7gsipeb45q11MpNDFIuwuJSBpVE9AXAb8O3Z/IHotNteupVLNOuohI0lQzU9TyHJuTvzGztcBagCVLlpR1gmIzPEvJLVUMr9GiihYRSaNqeugTwHtC9xcD+3Mf5O6b3L3H3Xs6OjrKPkml66lEGTjNpSVzRSTJqgnoPwOWmdmZZvY24C+Bh+Np1lsqTZtUkifXkrkikmQVp1zc/YiZbQAeB+YBd7r7s7G1jPqnTapJ8YiINFpVdeju/gN3P8vdM+7+P+NqVKCStEm1tGSuiCRVUy+fmy89UmjJ27hoyVwRSapETv2vFc0gFZEkU0APaUSKR0QkLolePldEpBWkfvlcERGZTQFdRCQlFNBFRFJCAV1EJCUU0EVEUqKuVS5mNgn8qsKntwOtVhCu99wa9J7Tr9r3+153L7m6YV0DejXMbFeUsp000XtuDXrP6Vev96uUi4hISiigi4ikRJIC+qZGN6AB9J5bg95z+tXl/SYmhy4iIsUlqYcuIiJFJCKgm9klZrbXzEbN7KZGtyduZvYeM/uRmT1nZs+a2Weyx081sx+a2QvZ7+9qdFvjZmbzzGzYzB7J3j/TzHZm3/O92e0NU8PMTjGz75nZnuz1/lDar7OZ/bfsv+tnzOw7Zvb2tF1nM7vTzA6Y2TOhY3mvq037ajaejZjZB+NqR9MHdDObB3wN+BjwPuCTZva+xrYqdkeAv3L3c4Be4NPZ93gTsNXdlwFbs/fT5jPAc6H7XwK+kn3PrwHXNqRVtfMPwGPufjZwHtPvPbXX2cwWATcAPe5+LtPbVf4l6bvO3wQuyTlW6Lp+DFiW/VoLDMTViKYP6MD5wKi7j7v7H4B7gMsa3KZYufvL7v7z7O3DTP8nX8T0+7wr+7C7gMsb08LaMLPFwKXAP2bvG7Aa+F72Ial6z2b2TuAi4BsA7v4Hd3+dlF9npndGe4eZHQ+cBLxMyq6zu28H/i3ncKHrehnwTz7tp8ApZnZ6HO1IQkBfBPw6dH8ieyyVzKwT6AZ2Aqe5+8swHfSBdzeuZTXx98BfA8ey99uA1939SPZ+2q51FzAJbM6mmf7RzE4mxdfZ3V8C/jfwItOB/BCwm3Rf50Ch61qzmJaEgG55jqWyNMfM/gi4D7jR3X/T6PbUkpl9HDjg7rvDh/M8NE3X+njgg8CAu3cDvyVF6ZV8snnjy4AzgTOAk5lOOeRK03UupWb/zpMQ0CeA94TuLwb2N6gtNWNmJzAdzL/t7vdnD78a/CmW/X6gUe2rgQuB/2Rm+5hOo61musd+SvZPc0jftZ4AJtx9Z/b+95gO8Gm+zn8C/F93n3T3N4H7gT7SfZ0Dha5rzWJaEgL6z4Bl2VHxtzE9oPJwg9sUq2zu+BvAc+5+W+hHDwNXZ29fDTxU77bVirt/3t0Xu3sn09f0SXf/z8CPgD/PPixt7/kV4Ndmtjx76CPAL0nxdWY61dJrZidl/50H7zm11zmk0HV9GPgv2WqXXuBQkJqpmrs3/Rfwp8DzwBjwN41uTw3e379n+k+uEeAX2a8/ZTqnvBV4Ifv91Ea3tUbvvx94JHu7C3gKGAX+GTix0e2L+b1+ANiVvdYPAu9K+3UG/g7YAzwDbAFOTNt1Br7D9BjBm0z3wK8tdF2ZTrl8LRvP/pXpCqBY2qGZoiIiKZGElIuIiESggC4ikhIK6CIiKaGALiKSEgroIiIpoYAuIpISCugiIimhgC4ikhL/H69oZIUX09XTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "model = BadLogisticModel()\n", + "\n", + "real_parameters = [3, 3]\n", + "times = np.linspace(0, 100, 100)\n", + "\n", + "experiment = model.simulate(real_parameters, times)\n", + "\n", + "sigma_noise = 2\n", + "noisy_experiment = experiment + np.random.normal(0, sigma_noise, size=experiment.shape)\n", + "\n", + "plt.figure()\n", + "plt.plot(times, noisy_experiment, 'x')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can now define a log likelihood, and use optimisation to try and find back these parameters" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found solution with loglikelihood -227.92214178156237\n", + "[ 4.32515472 -0.94969629]\n" + ] + } + ], + "source": [ + "problem = pints.SingleOutputProblem(model, times, noisy_experiment)\n", + "\n", + "log_likelihood = pints.KnownNoiseLogLikelihood(problem, sigma_noise)\n", + "\n", + "opt = pints.Optimisation(log_likelihood, [6, 2], method=pints.XNES)\n", + "opt.set_log_to_screen(False)\n", + "x1, f1 = opt.run()\n", + "\n", + "print('Found solution with loglikelihood ' + str(f1))\n", + "print(x1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can inspect the output:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl41NXZ//H3IQEk7CSRJWwmLOICRqLEoIK41F1c27Ko1JZFqVr7dLPtz9an9amta4tlc0dQUcQNK1gUUIc1RVKRsExkCSAkIGGHLOf3x8zEySSTmSQzmSWf13Xlysw3M/M9k4H7e3Kfc+5jrLWIiEjsaxbpBoiISGgooIuIxAkFdBGROKGALiISJxTQRUTihAK6iEicUEAXEYkTCugiInFCAV1EJE4kNubJUlJSbO/evRvzlCIiMS83N7fYWpsa6HGNGtB79+7NmjVrGvOUIiIxzxizLZjHKeUiIhInFNBFROKEArqISJwIKodujNkKHALKgTJrbZYxphPwOtAb2ArcZq39NjzNFBGRQOrSQ7/EWnuOtTbLff/XwGJrbV9gsfu+iIhESENSLjcAL7lvvwSMbHhzRCRcpi114nAWVznmcBYzbakzQi2SUAs2oFtgkTEm1xgz3n2ss7V2N4D7+6k1PdEYM94Ys8YYs6aoqKjhLRaRehnYvT2T56ytDOoOZzGT56xlYPf2EW5ZbIiFC2KwAX2otfZc4CrgHmPMxcGewFo7w1qbZa3NSk0NOC9eRMIkJyOFKaMymTxnLU8s2sjkOWuZMiqTnIyUSDctaJEMqrFwQQwqoFtrd7m/7wXmA+cDe4wxXQHc3/eGq5EiEho5GSmMGdKTv3+8hTFDesZUMIfIBtVYuCAGDOjGmNbGmLae28AVwJfAu8Ad7ofdAbwTrkaKSGg4nMW8snI7947owysrt1fr7Ua7SAfVaL8gBtND7wx8ZoxZB6wCFlhrPwT+AlxujNkMXO6+LyJRytObnTIqkweu6F8ZGGMxqEcqqEb7BTHgPHRrbQEwqIbj+4BLw9EoEQm9vMKSKr1ZT283r7Ak6nqatfENqtkZyY3Sfu8LYk5GCtkZyVGXdjHW2kY7WVZWllVxLpHYNG2pk4Hd21cJXg5nMXmFJUwcltEobfANqr73wymS798Yk+u1BsgvLf0XaeKCnTkSDbM8avsrI9wmDsuodtHw3I+W6YwK6CJNXLCBOtIDkuA/qDbWXwg1iYYLnYcCukgTV5dAXd8BycaeP+59Ps9t7/OF8tzRcKHzUEAXkaADdX1neTR2L9b7fAO7t2fCrFwmzMplYPf2Ac9dn4tPtExnVEAXkaACtfcAZFLLRCYNT68WpP0FvcbuxXqfb4VzX+XxFc59Ac9dn4tPtExnbNQt6EQk+gQ7Hc93QHLynLVMGp5eOSDpeY4/3r3Ye0f0qRZQvWeReG57zjtxWEadZ5T4ng/we27f53kuBmOG9OSVldtrvQBE03RG9dBFoly488/BzhzxHpD0PGbqkgKOnigLKoAF6sU2JE0S6HwvOLbygmNr0D3ouqRQIjnzxpcCukiIhCvw+ksBbNt3JCTnq+/MkZqCnr/fwW/eygu4SrUhaRKo+vv3/I4mDU+n6PCJysdkZyQHtUK2LimUaJp5o4AuEiLhGvjzl3++blC3gOcLZ+++pqDn73cABNWL9b5IjMvpzbic3kEPNHqfO6+whEnD05m6pACA6WMHM33s4MpVsbX1oGO6RIK1ttG+Bg8ebEXi2edbimzmw4vs4wvzbebDi+znW4rs1CVb7Odbiqo9buqSLXV67ccX5ttev3rfPr4wv9bz1dQez3Hf+/VV2+sGalMwr/v4wnx71kMf2rMe+rBOr9OQc3sE83n5e8wdz68MyWftC1hjg4ixGhQVCSF/A3/+lqv747vM3OEs5gXHVnIykqvULwk00FjXAb5g1ZY3njgso9Y2+eP7e3nBsRVwpUmCHWj87vexmfsuOY2cnm3gxCGoKIOKcvf3Mq/75WDLmbt6K/1PTWJQtzZMTK8AW8SXjlUU7D3E9QO7kEMFOWnlsMkJtoJh9gAzZzvpdFFvTj+1NRu/KeHdzwq4/YxUPnjlPVJzetI3tTVb9hzkoxVbGT2kBxwbDa06NOj3HohquYiEkCco+QZPf8cDvY4nuE2YlQu4UgdQdUZJMK/7xKKNlQH2gSv6B/Ve6lu7pPK9nt+deSs389SNfTivW0s4ecT1VXoESo/ByaNQehTKjkPpUdZs2U3X1pDWxrBhRxHJrSzNyk9y+PBhendIpOTwEY4dO0aX1gbKS6H8pPur1PVVUUp56UkqyktpTllQ77FR3bMax8FO9ar9EmwtF/XQRUIk0PS1uvRavXvWA7q0BVzB3PO8KaMyeW/dLhau3xNwulxdqhN6B/GB3dtz/+zV3JvTkRYnDnBGh1LmL17LxPM6wKdlcPwAHC/x+jrI0cMHyCjZz6rmJ0lcfoQHsDAvuN9fFkDiKZB4CgMSW8Ix1+2U5i3geEvan9KS9q2TIbElJDRny74TtGvfmlM7tIVmzdl1uIxF+fvondqe4QPS2F5yknfy9nJdZk96p7aHZomQkOj6bhJc35slgGkGzRLYsPco05ZtZVj/Lvx7YzH3jOjHmWmdXD/3fHkebwyYBF5esZ3Zq3bwwyG9uXNohvt4M577fCsvLt9Gi8QEHr01k6xenVi+N4HJr9X+l1lDKaCLhEig6Wt1Lfla20UgJyMlqHK4/i4y153elpEZhsz2R+HQbjj0DbsLvybnmx2UffINx9odJ+fkflZVlMBn37XpbwAr3XcSWsApHeCU9u6vduw+2ZE2fc4lMSUFWraFFm1wHoStB+HSgenQIgmat4bmraBFa1cAb94Kmie5ArUxQf++9zqLuW3OWqYMdb23f7yVx/vsZvqVgyEjhZ7A4IHFfFhYwsQLAveIB5wBvU5u5IGPt3DviBzOvLB/rX+lDOzenqe+3MOYS0bw95Xb6Xd2p8q/xp5ZV8GYS4bygmMr497azbicliFLd9VGKReRMKtvyde6pmmqKD0O327lX586OL3lPk5LKIYD2+HADsq+3UbiyYPVnnKIJBLadaG0VSor9yaQ2jmN5Xuakdo5jY+3lzMisz+3XjQIWnV0fTVvVacAHA4N+h0F8VpQ8/iHZwZNMMd/9OJqjpdW1Cnd5SvYlIsCukgYNHTVY9AXgWMHYO8GKNoARZugeCPs2wIHdgBe/7dbtIEOPaF9D+jQA9p3Z9Px9vzVcZCcQWfx7LrjPDY6u/K1PTn3GzO7sXRTcUgHVEOtPuMDvmr7fUP1cQpPD9235z5jWQHjL06v8hfShFm5nJ3WnvxvDtX796eALhJB/gLE987szHWDugUcaKz2p7615OblUbR5FVd22gO782DPejhY+N1JmydBSl9I7gvJGZDcBzqeBp1Og6TkGnvTNQVDT1uH9Uvh7bW7ePCa0/nJRRkh20wilBtFhKqHHqhN9blohHIzDgV0kQiry5/w1f6TnzwKO3Nhx0ooXAM718CRItfPTDNI6Q9dzoJTz4DOZ0Lq6a7ed7Pg1woGal9eYQkJzaiWQmjoDj2hCnSNtXtRfS8aobxwKaCLhEld/qPW1gOuEiB6tILtK2Drp/D1p7D7C9dcaYCUfpCWBWnnQrdMVxBvkdSg99DQvyAaKhQ968bYEq6xLhqBKKCLhEmw/8lrC1pPLMxn0ZJPeLBfIRc3y4Nty6Gi1DWVLi0LeuVAzwugx3muAcg6CCbQhTIY1ve1vPP0T34/s07PbSzRsI8qKKCLhFWgHmZNQf/+2at5YcRJOu34CDb+i664aoMc6dCf1mdcAenDoUc2tGwTkrY1Vq+yPucLd54+3mhhkUgYBVooVDlHvHcHcH5Mzvr5fJ74Ls3/fYBjtOBY94sh83rWtBjM+Ld3MyUjdAEsXMv9Q3U+36B9Rrd2PLIgn692HWLppiIF8wZQQBeph0CrLyf2Pwbrnof5b8DhPdCiDc37X8WHNpsOZ3+P7P49ANfqyClJXaosBgqFuq5Mbczz+S6I+slFGXy16xDz1+4MuPGFRzSlZaKJArpIHflbffnPW/uSffgTyH3RNajZrDn0+x4M/D70vRyat+LKGl7PU2Qr1G2s68rUxjqfbxB2OItZuqnI73M9ZXHrUtysyQqmJGOovlQ+V+JBtdKpe/Pt7tkT7cmHO1v7UDtr/5lj7Yrp1h7ZF5H2hatkbjjOF+xzQ1EW19rgSuNGI4Isn6tBUZH6sBacH8PyZ8C5GBJawtm3QNaPIG1wRJfEN3aKoiHna+gU0Lry7t2Ha559OGiWi0g4VJTDhvfgsydg9zpo0wXO+zFkjYPWGsgLl3DUbImlGTaa5SISShUVsOEd+OT/XPVSOmXA9f9w5ccTW9b7ZTXgF1igssR15T2Ae2NmN6YuKeDQsbKorVVTF9pTVKQ21sLGD2H6RfDGna5Uyi3Pw+TVcO7tDQrmEL59SKNBqPYzDVSWuK68B3CXbipmWL/UoPctjXZBB3RjTIIxZq0x5n33/dOMMSuNMZuNMa8bY1qEr5kiEbDrC3jpOnj1+66ddW6aCZMccNbNro0OQsB7Drf3BtC1bUBRU5C884VVYdsMur5CdbGaOCyj2u8jJyOlXn/B+G4APWl4Om+v3cmNmWmVG13Hsrr00O8DNnjdfxR40lrbF/gWuCuUDROJmEN7YP4kmDEM9n4FVz8G96yCgbeFLJB7804BBOol+guSQ/skR11Pv64Xq8bg3dt3OIuZuqSAB685nf5d2la2NaaDejBTYYDuwGJgBPA+YIBiINH98wuAhYFeR9MWJdwaNC2trNTaFdOsfaS7tQ+n2P88d69d8VVB/V6rDuo6Jc/f40M1tS/UHl+Yb3v96n37+ML8SDeliliawkiQ0xaD7aE/BfwSqHDfTwYOWGs9O7EWAmk1PdEYM94Ys8YYs6aoqKjOFxyRuqj3n/m7voCZw+Ffv+TbToNg0nKODfs9k97cwsxPndz5wipmfuqs8lqhSGn4pgCC6SX669HXpaffWHwXHEVT7zeUqZxoETCgG2OuBfZaa3O9D9fw0BrnP1prZ1hrs6y1WampqfVspkhwavszv6b884qNhSx4Yjx25gg4XMTGi6dw6Z57mbnBkFdYwqTh6TyyIJ+ycssjC/KZNDy9ymrFhqY06jPg5y9IRlvwrM/FShommGmLQ4HrjTFXA6cA7XD12DsYYxLdvfTuwK7wNVMkeP7qivguIc9buZgu/5pMNruYby6l2zWPMWRAOpOaO3lkQT4jM9NYuqmIkZlpzF+7MyxT3PztUuS9hZn3FEZ/U/h897Js6NS+UAhmE2sJrTotLDLGDAf+x1p7rTHmDWCetfY1Y8w0IM9a+8/anq+FRdIYaluE4nAWc9/sNTydtpjzdzxLeVJnWt48FQdnV3nOsH6plUHce09Nz/GGrFYM1O7aytD6m7fuu5el57jms8eHsKwU9Qno6cBrQCdgLTDGWnuitucroEu4BQyK325j13Oj6Hb4SzakXMmAu6ZDqw5A9Y2RfVcSzvy0as89HL3fUK6IlPihpf/SZHj3Wj23gco8dEIzKK+AiZ3zKXtrIsdOlvJix/t54eDgaoHfO4iXV1BZ68OT0pg0PJ3yiurpm1AKRc0SiS9a+i9NhndwnTisak0OgPtnr+bt/h/BJ8+xkXT+h5/x+2uvZjBUyz/nFZbw4DXtquSjz+zWnhnLCqoF7ymjMpmxrAAgZKmOxi57K3EmmLmNofrSPHQJFd85xJ9vKbJnPfSh/eGM5VXnYB/aaw88c5m1D7WzC/862mY+9F61593x/Mp6z0cOZanaxi57K7EDlc+VeFZTrvxHL67meGnFd6mKXV/Aa6PhaDH/Ou03TPpv37AOZjY0761CXeKPcugS97wD6QuOrQCMy+nNKyu38+rQ3fR3/AKSUlh34RTGLSwL60Cj8t4STsEGdFVblJjlPd+8tLyC6WMH88Dl/Zg/cBX9l/2Ugx3PYPUV8xi3sCysi1uibUGPNF0K6BKzPIF0aEYyzROaYSpK4b376LX2rxT3uobXBzxD7r7mIS29WlMbtBpSooVSLhIzvHPMnkDqmUZ4TpcWlL56OxfxH7jof+CS30Kz8PdXlPeWxqAcusQdf/tBTr05nSHL78buWMmn/X7DxaN+FemmioSUcugSd7wLbx09UcbUJQVMH5nGkCVjYWcu5tYXFMylSdPCIokp3gOhDw5ty3mfjIFD38DoNyDjkkg3TySiFNAlpngGQn+Xk8SVuXdR1vwoiWPnQ88hkW6aSMQp5SIxw5NDn3ldMj92/pQuLY5zZ/nvcJRq8FEE1EOXGJJXWMLM609l8Mej4eRhEse9z91H01RfW8RNAV1ixsRzToEXb4ITB+GO96DrIHJAwVzETSkXiZiatoTzu0/noT3w8vVwZB+MmQ9dBzVSK0VihwK6REzQGzof+xZm3QgHd8OYN6H74Ai0ViT6KeUiEeM9r9xv4ayTR2HOD2DfZhg1F3pmR67BIlFOPXSJKO955WOG9KwazMtL4Y07YMdKuGlmSOeZ1yndIxIjFNAlovxWKrQW3pkMmxfBtU/CmSNDet6g0z0iMUQpF4kY300qsjOSv7u/bRrkvQbDH4SscSE/d1DpHpEYox66RExeYUllEPWkOqaMyiR/wRRY9jf29LmNOwuG43AWV0mHhCo1Umu6RyQGKaBLxEwcllEZRD0pkA47lzLu27/zGYO4cstIhvZNYcKsXCbMymVg9/YhTY1oYwqJN0q5SFTIyUjh+auS6Pn+WIqS0vn50QcoI5FDx8oqH7PCuS9kqZFa0z3qqUuMUkCXRuVvQ4hNBVu5c/1EDjdP4vr99/L9EQMAKvfp9L4dioDrne6BqjsZKaBLrFJAl0blSa14gqnDWczPZq/io+THKD+0h4n2j9w2Ykjlps/3juhT5fYrK7eTnZHc4KBb025CORkpCuYS0xTQJey8e+WenvCEWbmcndae/N0H+fC0N2nnzOVX5gHuHnMrQGUQb9vqu3+i2RnJSo2I1EKDohJ2vnO+AUrLK3A49/F4rxWc6pzHmt7juWHMPeRkpJBXWML0sYOZPnYwn2/ZV3nbkw4J5SbPIvFEe4pKo/AMQo4Z0rOy9/3/zizmxvWTKelxKcnj5jbKps4isUh7ikpU8Z7zXVpewYs3duHWr3/PyfbpjNw5FsfX+yPdRJGYp4AujcIz53toRjJtEsrov3QSlJeRNPZ1Hh09VCkUkRAIGNCNMacYY1YZY9YZY9YbY/7oPn6aMWalMWazMeZ1Y0yL8DdXok0wRa6853zP/kk2CzLeoc3+9WzIeQxSXNMQa5p1IiJ1E0wP/QQwwlo7CDgHuNIYkw08Cjxpre0LfAvcFb5mSrQKpshVlTnf/3mZzs432HH2PSxFdc1FQqlOg6LGmCTgM2ASsADoYq0tM8ZcAPzBWvu92p6vQdH45D3gWetKzl1fwHNXQK8cGDMPmiU0fmNFYlBIB0WNMQnGmC+AvcBHgBM4YK31rMsuBNLq21iJbUEVuTr2Lcy9HVqnws3PKZiLhEFQAd1aW26tPQfoDpwPDKjpYTU91xgz3hizxhizpqioqP4tlagVsMiVp7b5wZ1w64vQOjki7RSJd3Wa5WKtPQAsAbKBDsYYzzK+7sAuP8+ZYa3NstZmpaamNqStEoW8BzwfuKJ/ZY3xKkF95TTIfx8ufxh6nBe5xorEuWBmuaQaYzq4b7cCLgM2AJ8At7gfdgfwTrgaKdGrtiJXABTmwqLfQ/+rIfvuCLZUJP4FHBQ1xgwEXgIScF0A5lprHzbGpAOvAZ2AtcAYa+2J2l5Lg6JNzLEDMP0iVzJuwlJI6hTpFonEpGAHRQMW57LW5gGZNRwvwJVPF6lm2pIt3PL170k5uAvGfQhJnXA4i8krLNGcc5Ew0UpRCYvLjn9IyrYP2DboAehxnjZhFmkEKp8robc3nz5r/sSBrhdy07osRrfaqE2YRRqBeugSWqXH4M0fQcs2dBj1PKOze2sTZpFGooAuofXRQ7B3PYychmNvgjZhFmlECugSMh+89RKsmg7Zd+Nodg6T56xl0vB0klom1jw/XURCSgFdAgqmoiKH93LZpj+yiV4sT59MXmEJk4anM3VJQeX2c9ppSCS8NCgqAXlv7JxXWEJCM5i6pIApo1yzWR1bikj7YBy9yo5w5LpXuOf1r2os1KVNmEXCSz30JiioHrcXT+968py1bPzmII8syGfS8HRyMlJwOItZNvv/6LX/M7jiT2QOzglcqEtEwkIBvQkKpoa5L09FxflrdzEysxtTlxTwxKKNPD77PX7R7BXoczmc9+PAhbpEJGyUcmmCvHvcAWuYu/kG6mH9Upn6cT6fJU8jwbaBG57BUbCvMjWTk5FCdkZylfsiEl7qoTdRQdUwd/OtqDhpeDpvr93JP9MW0vlIPvnn/Qnadg5cqEtEwko99CbKt8ednZHsN6h7B2qHs5ipSwp4eugxLs19lT19bmPUZ6lM6VlcY40WDYSKNB4F9CbIu8ftLzUybamzcrqhJ1A7nMXMWFbAP2/tS/aH10OHHnS+9QmmFJ4gr7BEgVskwpRyaYKCSY34Gzgdf3E62Rsfg5IdcNMMaNm2StAXkcip0ybRDaV66LGlxs2fS1fBaz+EC38Gl/0h0k0UaRJCukm0NE3VBk67AO/dC53PhuEPRrp5IuJDAV38qjJwumIb+16bBMdL4KbpkNgi0s0TER8aFJUa+Q6cXsdSkh2L2Hrur+nd+cxIN09EaqAeutSoysDpgR30zf1fSk49j4Xtbo5000TED/XQpUaVs1YqKuCdu6GinPY/mMmETqdFtmEi4pcCutRu9Uz4ehlc9zQomItENaVcmoi6VlgEoHgzfPT/oO8VcO4dYW6hiDSUAnoTUecKi+VlMH8CNG8F1/8DjGnE1opIfSjl0kT4q7DoWR3qvWzf4Swm8bPHOX9nLtzyPLTtEqlmi0gdqIfehNRUYbGmnvs/Zs8ja+sMOOtm15eIxAT10JsQfxUWPT33AV3akr+ziGUdnqVZWQpc/RgOZzF5hSWq1SISA9RDbyJ8a5p7grjDWVzZc//cuY9JFa/T+sAmuGEKjt0VAXcyEpHooR56ExGowuIrK7fzaNYhbv3yfeZyGYVf9+SVldptSCSWKKA3Ef42nwCYPGetu8b5zznepgd/KRnD/o+3cO+IPgrmIjFEKZcmztNzz970BBzYzuahf6M0IYmcjGRt8iwSYwIGdGNMD2PMJ8aYDcaY9caY+9zHOxljPjLGbHZ/7xj+5kqoTRyWQU7ZGvjPSxSeOZ47/p3A9LGDmfOT7Cp5dhGJfsH00MuAn1trBwDZwD3GmDOAXwOLrbV9gcXu+xJrjhTDuz+FzmfxQco4bfIsEsMC5tCttbuB3e7bh4wxG4A04AZguPthLwFLgF+FpZVSL977gnpUmYZoLbx/Pxw/ALe/zfjOA6q9hjZ5FokddcqhG2N6A5nASqCzO9h7gv6poW6cNEzA5f7rXoMN78GI34FqnIvEvKBnuRhj2gDzgPuttQdNkLU9jDHjgfEAPXv2rE8bpZ78LffPyUiBb7fBB7+AnjlwweRIN1VEQiCoHroxpjmuYD7bWvuW+/AeY0xX98+7Antreq61doa1Nstam5WamhqKNksd1LTcn4pyV+EtgBunQbOEyDZSREIimFkuBngO2GCtfcLrR+8CnpqqdwDvhL550lC+y/0dzmL4/GnYvhyu/ht07BXpJopIiASTchkKjAX+a4z5wn3sQeAvwFxjzF3AduDW8DRR6st3X9DsjGSmzJ5Htv0zzc4YCYN+EOkmikgIBTPL5TPAX8L80tA2R0Kp2nL/Hkmc02Y6x453pPW1T6rGuUic0dL/OFZtuf+i35J00Alj34akTpFplIiEjZb+NxX5H8Ca5yHnp5BxSaRbIyJhoIAeBwLuF3roG3h3MnQ5G0b8PgItFJHGoIAeB2pdQFRRAfMnwsmjcPPzkNgywq0VkXBRDj0O1LqA6POnoeATuPZJSO0X6aaKSBiphx4nalxAVJgLix+GAdfD4HGRbqKIhJkCepzwXUC0csPXMO9H0LYrXP93TVEUaQIU0GOU90CoJ2c+aXg6SS0TmfLDc9g/dzL2wA64+TlopVL1Ik2BAnqM8h4IzSssYdLwdKYuKXCVyy35gKvsZ6zuPQF6Dol0U0WkkSigxyjvgdCjJ8qYuqSAKaMyKcxfTfkHv4D0Szh/7J8BnymMIhK3FNBjWLWB0O4tuW7jb9hfnsTqc/8CzZpVr4EuInFL0xZjWJWB0BXbGLvrT6Qe2obz8llMmL+DMbtM1SmMIhLX1EOPQgFXflK1kuIDV/TnjawNpG59l+0D7+OsoddWn8IoInFPAT0KeQ94TlvqZOanzippE4ezmBnLCr7reRfmkrHmf/m22zA+6Di65hroIhL3FNCjkPeA58ZvDvLIgnwmDU8nJyOlsmc+/mLXfY7sg7m3Q9uudBzzIgN7dKzSc/e8joK6SPxTDj1KeQ943pjZjalLCjh0rKxqTryiHN76MRzZC3ctgqRO5BU6q9ZAd18c8gpLlHoRiXMK6FHKN20yrF8qf/94C/eO6PNdYF78MDg/huuehm6ZQA010HEFdQVzkfingB6FfLeOa9sqkUcW5HNjZhqvrNxOdkYyOceWwedPuWq0DL4z0k0WkSiggB6FvLeOcziLmbqkgAevOZ3yCrg1qztPz57PEPN7EnoMgav+GunmikiUUECPQt5pE999QTmyj3OTnub4yTa0vu1lSGwRoVaKSLRRQI9yVXLiZSdh7lhOObYX7lwAbbtErmEiEnUU0GOFtbDgAdj2Odz0LPQ4L9ItEpEoo3nosWLFP2HtLLj4FzDw1ki3RkSikAJ6LMj/ABb9zrXz0PAHI90aEYlSCujRbmcuvPkj6HoO3DgNmukjE5GaKTpEAX/FuGZ/uBTmfB/anAqjXocWrSPUQhGJBQroUcC7GBe4gvlvZy/jxq/uh4oyGDPPFdRFRGqhgB4FvItxPbFoI7+Y7eDdjk+RdGQn/GAOpPQFgiurKyJNlwJ6lPAU45r6cT6z202h7f7/wq0vQK+cysfU1JPXbkTbtB7VAAAM0ElEQVQi4qF56FHC4SxmzoqveS9tFr33rWTLBY/S5/RrqjzGuyc/ZkhP7UYkIlUE7KEbY543xuw1xnzpdayTMeYjY8xm9/eO4W1mfHM4i/np7FwWpM/j9H0fsfXcX3Lbqowaa5hX20dUwVxE3IJJubwIXOlz7NfAYmttX2Cx+74E4C8HPmOpk/f7vkfnLXPhov+h9/W/raxh7ku7EYmIPwEDurV2GbDf5/ANwEvu2y8BI0PcrrhUYw589n/4c5u5dN04Cy6YDCN+B7h64r61zX33EdVuRCLirb6Dop2ttbsB3N81py4IvrNZJs/+D+8OWEzaV8/CeT+BK/4Exvh9vm/lRe/diEREwj7LxRgz3hizxhizpqioKNyna1T1mUb4XQ58M493eIPu66e5Nqm46q84CvbV+tyJwzKq5cxr6smLSNNU34C+xxjTFcD9fa+/B1prZ1hrs6y1WampqfU8XXQKZhqhb9B3OIt5wfE1/2j/Kpfsn8uX3X8A1z6J4+v9moIoIg1S32mL7wJ3AH9xf38nZC2KIcFMI/QE/SmjXHt+3j1rFX9gJted+Ji8nmO4YdNVjJy7jqWbijQFUUQaJGBAN8a8CgwHUowxhcBDuAL5XGPMXcB2oMnWc/WeRlhlA2evn3uC/sDOLXmMJ7mMVXDxLxl4yYOMnLuO+Wt31vhcEZG6CBjQrbU/9POjS0PclpjkO40wOyO5xqD+o8GdOHf5ZHISvoIrH4XsiTicxSzdVFTrc0VEgqWl/3XknRP35MwnDU8nqWWi32mEa/L+yxWrxjEkcSO/NffiSL1FUxBFJOQU0OvIeyA0r7CEScPTmbqkgIHd29c4jfCL1cvo+db1pDffR8LoN7hmzH1MnrOW99bt0hREEQkpY61ttJNlZWXZNWvWNNr5wsXTuw5YT2XTQk6+fie2ZXta3jEPOp9Z+fy8whJNNxSRoBhjcq21WYEepx56PQSqpzJtyRa2vf0wzPk+LU7tS8uJn+A43LlyjrnmjotIOCig10Ot9VROHuGWr39Pry8ep6j3tTDuQxxFzTXHXETCTuVz68h7MDMnI4XsjOTv7rfbD2/cQUpRPlvP/RU3fZHFmCU7VOZWRBqFAnod+auncmzNq7Dl/6D5KTD6TXr3uZQxp2z0Oz9dRCTUFNDrqFru+8Rhctb/ETa8zMFTs2g3Zha06+Ze4r+VnIxkzTEXkUahgB6EaUudldMSPRzOYr756nNu+voPsP9rCs+cwE0bLuGpohZQVMyEWbkATB7Rx/XdK00jIhIOCuhB8K7HkpORwvJNu8h79SEmMA/adYM736d77wt5yp1fH9ClLQDTxw6uDOCeOeYK6CISLpqHHiTPYOjPzzzMeXkP0Y9tcPZtcPXfoFWHysc9sei7vPkDV/SPYItFJF4EOw9dPfQg5fRoxfTOb3Puutkca5EMN78Kp19d5THB1HUREQkXzUMPxFr46l1OPDWY83a9wobO13J1+eM4mp9f5WGqzSIikRbzAb0+uwYFbW8+vHIzzB3LtqMt+O/3Xuesu1/hL6MvrBastT2ciERazAf0YHYNqrPDRfD+z2BqDhSu4fM+P6d49CLOvuBKoOZgre3hRCTS4mJQNOhiWYEcOwDLn4EV/4Sy45B1Fwz7FbRODnmbRUSC1aQGRQPtGhTQ8YOwagY4/gHHD8AZI2HE7yClb3gaLCISBnER0Os9u+RIMblzH2HQrrkklh6CflfCJQ/iOJpG3voSJg4Lf9tFREIl5nPo9ZpdUrTRlSN/8izO3fY8S0rPZN3Vb8Oo13EcTVNlRBGJSTHTQ/e3/H7GsgK/s0uq9NLLy2DzIlj9LDgXQ0JLGHgbJudekg52YtyctYw5sFGVEUUkZsVMQPddfu9bxhaqBn3Psdwv1mK/mE3WvgVwaBe06QKX/A6yxkFr90UglWo5eH8XEO00JCLRKmYCuqfnXdtsFk/Qn3pLBkOOfU7JipcZvHcVFgMZI+Dqv7ry5AnNq7x2TTn42i4gIiLRKGYCOgSYzXK8hJzDi/l319dp8/pSoIxv6caBcx7g01YjSO8zoMbetm/g9t6wItAFREQkmsTUoKhvTzp33TpYNRNeHgl/TYf54+l0MJ+8rrcx8sTDvHXBfHqNfIj0PgP8Lj6qbYVnoL1DRUSiScz00B3OYn4528Erw09QtuktxrV00HH+VtcPk/uw8/RxrDolh85nXMjkV9cx5hJXrzq7T0qt6ZqagrTnuIptiUgsiY2AvvwZ0pe/xqd2PebjciqatWBFxRmYvj9na6eh9Oo3iMlz1jJpeDr/++q6mvf79OptD82ovvLTd8Cz1r1DFdRFJArFRsplz3q6tGuJufB+uP0dmv1mO4ydxz0FF7A7oXtloC2vwG/6xLu3nbezhAmzcmut/6JiWyISa2Kjlou1YEy1w8FuJuHb23Y4v9siblxObw14ikhUC7aWS2z00GsI5r757dpWhtbU254+djBnp7XXgKeIxI3YCOg+glnu710n3VPa1rdOev43h4K6IIiIxIIGBXRjzJXGmI3GmC3GmF+HqlGBBJPfrq1OunYXEpF4VO8cujEmAdgEXA4UAquBH1prv/L3nMbeJNpfnXQt6xeRWNIYOfTzgS3W2gJr7UngNeCGBrxeNQ3dXs7fwiDtLiQi8aghAT0N2OF1v9B9LGQaur1cXQZORURiXUMWFlWfegLV8jfGmPHAeICePXvW6QTBFOTyRwuDRKSpaUgPvRDo4XW/O7DL90HW2hnW2ixrbVZqamqdT1Lfeir1WRjU0BSPiEgkNSSgrwb6GmNOM8a0AH4AvBuaZn2nvmmT+uTJG5riERGJpHqnXKy1ZcaYycBCIAF43lq7PmQto/HTJg1J8YiIRFqD5qFbaz+w1vaz1mZYa/8cqkZ5RKKeikrmikisiupqizWlR/yVvA0VlcwVkVgVk0v/w0UrSEUklimge1HJXBGJZbFRPldEpAmLr/K5IiISkAK6iEicUEAXEYkTCugiInFCAV1EJE406iwXY0wRsK2eT08BmtqEcL3npkHvOf419P32stYGrG7YqAG9IYwxa4KZthNP9J6bBr3n+NdY71cpFxGROKGALiISJ2IpoM+IdAMiQO+5adB7jn+N8n5jJocuIiK1i6UeuoiI1CImArox5kpjzEZjzBZjzK8j3Z5QM8b0MMZ8YozZYIxZb4y5z328kzHmI2PMZvf3jpFua6gZYxKMMWuNMe+7759mjFnpfs+vu7c3jBvGmA7GmDeNMfnuz/uCeP+cjTE/c/+7/tIY86ox5pR4+5yNMc8bY/YaY770Olbj52pc/u6OZ3nGmHND1Y6oD+jGmATgGeAq4Azgh8aYMyLbqpArA35urR0AZAP3uN/jr4HF1tq+wGL3/XhzH7DB6/6jwJPu9/wtcFdEWhU+TwMfWmtPBwbheu9x+zkbY9KAe4Esa+1ZuLar/AHx9zm/CFzpc8zf53oV0Nf9NR6YGqpGRH1AB84HtlhrC6y1J4HXgBsi3KaQstbuttb+x337EK7/5Gm43udL7oe9BIyMTAvDwxjTHbgGeNZ93wAjgDfdD4mr92yMaQdcDDwHYK09aa09QJx/zrh2RmtljEkEkoDdxNnnbK1dBuz3Oezvc70BeNm6rAA6GGO6hqIdsRDQ04AdXvcL3cfikjGmN5AJrAQ6W2t3gyvoA6dGrmVh8RTwS6DCfT8ZOGCtLXPfj7fPOh0oAl5wp5meNca0Jo4/Z2vtTuAxYDuuQF4C5BLfn7OHv881bDEtFgK6qeFYXE7NMca0AeYB91trD0a6PeFkjLkW2GutzfU+XMND4+mzTgTOBaZaazOBI8RReqUm7rzxDcBpQDegNa6Ug694+pwDCdu/81gI6IVAD6/73YFdEWpL2BhjmuMK5rOttW+5D+/x/Cnm/r43Uu0Lg6HA9caYrbjSaCNw9dg7uP80h/j7rAuBQmvtSvf9N3EF+Hj+nC8DvrbWFllrS4G3gBzi+3P28Pe5hi2mxUJAXw30dY+Kt8A1oPJuhNsUUu7c8XPABmvtE14/ehe4w337DuCdxm5buFhrf2Ot7W6t7Y3rM/3YWjsa+AS4xf2weHvP3wA7jDH93YcuBb4ijj9nXKmWbGNMkvvfuec9x+3n7MXf5/oucLt7tks2UOJJzTSYtTbqv4CrgU2AE/htpNsThvd3Ia4/ufKAL9xfV+PKKS8GNru/d4p0W8P0/ocD77tvpwOrgC3AG0DLSLcvxO/1HGCN+7N+G+gY758z8EcgH/gSmAW0jLfPGXgV1xhBKa4e+F3+PldcKZdn3PHsv7hmAIWkHVopKiISJ2Ih5SIiIkFQQBcRiRMK6CIicUIBXUQkTiigi4jECQV0EZE4oYAuIhInFNBFROLE/wcwE7QKf6UtoAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.plot(times, noisy_experiment, 'x')\n", + "plt.plot(times, model.simulate(x1, times))\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It looks fine, but what happens if we run it again?" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found solution with loglikelihood -227.9221417815624\n", + "[0.82350715 4.35094502]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl41NXZ//H3IQEk7CSRJWwmLOICRqLEoIK41F1c27Ko1JZFqVr7dLPtz9an9amta4tlc0dQUcQNK1gUUIc1RVKRsExkCSAkIGGHLOf3x8zEySSTmSQzmSWf13Xlysw3M/M9k4H7e3Kfc+5jrLWIiEjsaxbpBoiISGgooIuIxAkFdBGROKGALiISJxTQRUTihAK6iEicUEAXEYkTCugiInFCAV1EJE4kNubJUlJSbO/evRvzlCIiMS83N7fYWpsa6HGNGtB79+7NmjVrGvOUIiIxzxizLZjHKeUiIhInFNBFROKEArqISJwIKodujNkKHALKgTJrbZYxphPwOtAb2ArcZq39NjzNFBGRQOrSQ7/EWnuOtTbLff/XwGJrbV9gsfu+iIhESENSLjcAL7lvvwSMbHhzRCRcpi114nAWVznmcBYzbakzQi2SUAs2oFtgkTEm1xgz3n2ss7V2N4D7+6k1PdEYM94Ys8YYs6aoqKjhLRaRehnYvT2T56ytDOoOZzGT56xlYPf2EW5ZbIiFC2KwAX2otfZc4CrgHmPMxcGewFo7w1qbZa3NSk0NOC9eRMIkJyOFKaMymTxnLU8s2sjkOWuZMiqTnIyUSDctaJEMqrFwQQwqoFtrd7m/7wXmA+cDe4wxXQHc3/eGq5EiEho5GSmMGdKTv3+8hTFDesZUMIfIBtVYuCAGDOjGmNbGmLae28AVwJfAu8Ad7ofdAbwTrkaKSGg4nMW8snI7947owysrt1fr7Ua7SAfVaL8gBtND7wx8ZoxZB6wCFlhrPwT+AlxujNkMXO6+LyJRytObnTIqkweu6F8ZGGMxqEcqqEb7BTHgPHRrbQEwqIbj+4BLw9EoEQm9vMKSKr1ZT283r7Ak6nqatfENqtkZyY3Sfu8LYk5GCtkZyVGXdjHW2kY7WVZWllVxLpHYNG2pk4Hd21cJXg5nMXmFJUwcltEobfANqr73wymS798Yk+u1BsgvLf0XaeKCnTkSDbM8avsrI9wmDsuodtHw3I+W6YwK6CJNXLCBOtIDkuA/qDbWXwg1iYYLnYcCukgTV5dAXd8BycaeP+59Ps9t7/OF8tzRcKHzUEAXkaADdX1neTR2L9b7fAO7t2fCrFwmzMplYPf2Ac9dn4tPtExnVEAXkaACtfcAZFLLRCYNT68WpP0FvcbuxXqfb4VzX+XxFc59Ac9dn4tPtExnbNQt6EQk+gQ7Hc93QHLynLVMGp5eOSDpeY4/3r3Ye0f0qRZQvWeReG57zjtxWEadZ5T4ng/we27f53kuBmOG9OSVldtrvQBE03RG9dBFoly488/BzhzxHpD0PGbqkgKOnigLKoAF6sU2JE0S6HwvOLbygmNr0D3ouqRQIjnzxpcCukiIhCvw+ksBbNt3JCTnq+/MkZqCnr/fwW/eygu4SrUhaRKo+vv3/I4mDU+n6PCJysdkZyQHtUK2LimUaJp5o4AuEiLhGvjzl3++blC3gOcLZ+++pqDn73cABNWL9b5IjMvpzbic3kEPNHqfO6+whEnD05m6pACA6WMHM33s4MpVsbX1oGO6RIK1ttG+Bg8ebEXi2edbimzmw4vs4wvzbebDi+znW4rs1CVb7Odbiqo9buqSLXV67ccX5ttev3rfPr4wv9bz1dQez3Hf+/VV2+sGalMwr/v4wnx71kMf2rMe+rBOr9OQc3sE83n5e8wdz68MyWftC1hjg4ixGhQVCSF/A3/+lqv747vM3OEs5gXHVnIykqvULwk00FjXAb5g1ZY3njgso9Y2+eP7e3nBsRVwpUmCHWj87vexmfsuOY2cnm3gxCGoKIOKcvf3Mq/75WDLmbt6K/1PTWJQtzZMTK8AW8SXjlUU7D3E9QO7kEMFOWnlsMkJtoJh9gAzZzvpdFFvTj+1NRu/KeHdzwq4/YxUPnjlPVJzetI3tTVb9hzkoxVbGT2kBxwbDa06NOj3HohquYiEkCco+QZPf8cDvY4nuE2YlQu4UgdQdUZJMK/7xKKNlQH2gSv6B/Ve6lu7pPK9nt+deSs389SNfTivW0s4ecT1VXoESo/ByaNQehTKjkPpUdZs2U3X1pDWxrBhRxHJrSzNyk9y+PBhendIpOTwEY4dO0aX1gbKS6H8pPur1PVVUUp56UkqyktpTllQ77FR3bMax8FO9ar9EmwtF/XQRUIk0PS1uvRavXvWA7q0BVzB3PO8KaMyeW/dLhau3xNwulxdqhN6B/GB3dtz/+zV3JvTkRYnDnBGh1LmL17LxPM6wKdlcPwAHC/x+jrI0cMHyCjZz6rmJ0lcfoQHsDAvuN9fFkDiKZB4CgMSW8Ix1+2U5i3geEvan9KS9q2TIbElJDRny74TtGvfmlM7tIVmzdl1uIxF+fvondqe4QPS2F5yknfy9nJdZk96p7aHZomQkOj6bhJc35slgGkGzRLYsPco05ZtZVj/Lvx7YzH3jOjHmWmdXD/3fHkebwyYBF5esZ3Zq3bwwyG9uXNohvt4M577fCsvLt9Gi8QEHr01k6xenVi+N4HJr9X+l1lDKaCLhEig6Wt1Lfla20UgJyMlqHK4/i4y153elpEZhsz2R+HQbjj0DbsLvybnmx2UffINx9odJ+fkflZVlMBn37XpbwAr3XcSWsApHeCU9u6vduw+2ZE2fc4lMSUFWraFFm1wHoStB+HSgenQIgmat4bmraBFa1cAb94Kmie5ArUxQf++9zqLuW3OWqYMdb23f7yVx/vsZvqVgyEjhZ7A4IHFfFhYwsQLAveIB5wBvU5u5IGPt3DviBzOvLB/rX+lDOzenqe+3MOYS0bw95Xb6Xd2p8q/xp5ZV8GYS4bygmMr497azbicliFLd9VGKReRMKtvyde6pmmqKD0O327lX586OL3lPk5LKIYD2+HADsq+3UbiyYPVnnKIJBLadaG0VSor9yaQ2jmN5Xuakdo5jY+3lzMisz+3XjQIWnV0fTVvVacAHA4N+h0F8VpQ8/iHZwZNMMd/9OJqjpdW1Cnd5SvYlIsCukgYNHTVY9AXgWMHYO8GKNoARZugeCPs2wIHdgBe/7dbtIEOPaF9D+jQA9p3Z9Px9vzVcZCcQWfx7LrjPDY6u/K1PTn3GzO7sXRTcUgHVEOtPuMDvmr7fUP1cQpPD9235z5jWQHjL06v8hfShFm5nJ3WnvxvDtX796eALhJB/gLE987szHWDugUcaKz2p7615OblUbR5FVd22gO782DPejhY+N1JmydBSl9I7gvJGZDcBzqeBp1Og6TkGnvTNQVDT1uH9Uvh7bW7ePCa0/nJRRkh20wilBtFhKqHHqhN9blohHIzDgV0kQiry5/w1f6TnzwKO3Nhx0ooXAM718CRItfPTDNI6Q9dzoJTz4DOZ0Lq6a7ed7Pg1woGal9eYQkJzaiWQmjoDj2hCnSNtXtRfS8aobxwKaCLhEld/qPW1gOuEiB6tILtK2Drp/D1p7D7C9dcaYCUfpCWBWnnQrdMVxBvkdSg99DQvyAaKhQ968bYEq6xLhqBKKCLhEmw/8lrC1pPLMxn0ZJPeLBfIRc3y4Nty6Gi1DWVLi0LeuVAzwugx3muAcg6CCbQhTIY1ve1vPP0T34/s07PbSzRsI8qKKCLhFWgHmZNQf/+2at5YcRJOu34CDb+i664aoMc6dCf1mdcAenDoUc2tGwTkrY1Vq+yPucLd54+3mhhkUgYBVooVDlHvHcHcH5Mzvr5fJ74Ls3/fYBjtOBY94sh83rWtBjM+Ld3MyUjdAEsXMv9Q3U+36B9Rrd2PLIgn692HWLppiIF8wZQQBeph0CrLyf2Pwbrnof5b8DhPdCiDc37X8WHNpsOZ3+P7P49ANfqyClJXaosBgqFuq5Mbczz+S6I+slFGXy16xDz1+4MuPGFRzSlZaKJArpIHflbffnPW/uSffgTyH3RNajZrDn0+x4M/D70vRyat+LKGl7PU2Qr1G2s68rUxjqfbxB2OItZuqnI73M9ZXHrUtysyQqmJGOovlQ+V+JBtdKpe/Pt7tkT7cmHO1v7UDtr/5lj7Yrp1h7ZF5H2hatkbjjOF+xzQ1EW19rgSuNGI4Isn6tBUZH6sBacH8PyZ8C5GBJawtm3QNaPIG1wRJfEN3aKoiHna+gU0Lry7t2Ha559OGiWi0g4VJTDhvfgsydg9zpo0wXO+zFkjYPWGsgLl3DUbImlGTaa5SISShUVsOEd+OT/XPVSOmXA9f9w5ccTW9b7ZTXgF1igssR15T2Ae2NmN6YuKeDQsbKorVVTF9pTVKQ21sLGD2H6RfDGna5Uyi3Pw+TVcO7tDQrmEL59SKNBqPYzDVSWuK68B3CXbipmWL/UoPctjXZBB3RjTIIxZq0x5n33/dOMMSuNMZuNMa8bY1qEr5kiEbDrC3jpOnj1+66ddW6aCZMccNbNro0OQsB7Drf3BtC1bUBRU5C884VVYdsMur5CdbGaOCyj2u8jJyOlXn/B+G4APWl4Om+v3cmNmWmVG13Hsrr00O8DNnjdfxR40lrbF/gWuCuUDROJmEN7YP4kmDEM9n4FVz8G96yCgbeFLJB7804BBOol+guSQ/skR11Pv64Xq8bg3dt3OIuZuqSAB685nf5d2la2NaaDejBTYYDuwGJgBPA+YIBiINH98wuAhYFeR9MWJdwaNC2trNTaFdOsfaS7tQ+n2P88d69d8VVB/V6rDuo6Jc/f40M1tS/UHl+Yb3v96n37+ML8SDeliliawkiQ0xaD7aE/BfwSqHDfTwYOWGs9O7EWAmk1PdEYM94Ys8YYs6aoqKjOFxyRuqj3n/m7voCZw+Ffv+TbToNg0nKODfs9k97cwsxPndz5wipmfuqs8lqhSGn4pgCC6SX669HXpaffWHwXHEVT7zeUqZxoETCgG2OuBfZaa3O9D9fw0BrnP1prZ1hrs6y1WampqfVspkhwavszv6b884qNhSx4Yjx25gg4XMTGi6dw6Z57mbnBkFdYwqTh6TyyIJ+ycssjC/KZNDy9ymrFhqY06jPg5y9IRlvwrM/FShommGmLQ4HrjTFXA6cA7XD12DsYYxLdvfTuwK7wNVMkeP7qivguIc9buZgu/5pMNruYby6l2zWPMWRAOpOaO3lkQT4jM9NYuqmIkZlpzF+7MyxT3PztUuS9hZn3FEZ/U/h897Js6NS+UAhmE2sJrTotLDLGDAf+x1p7rTHmDWCetfY1Y8w0IM9a+8/anq+FRdIYaluE4nAWc9/sNTydtpjzdzxLeVJnWt48FQdnV3nOsH6plUHce09Nz/GGrFYM1O7aytD6m7fuu5el57jms8eHsKwU9Qno6cBrQCdgLTDGWnuitucroEu4BQyK325j13Oj6Hb4SzakXMmAu6ZDqw5A9Y2RfVcSzvy0as89HL3fUK6IlPihpf/SZHj3Wj23gco8dEIzKK+AiZ3zKXtrIsdOlvJix/t54eDgaoHfO4iXV1BZ68OT0pg0PJ3yiurpm1AKRc0SiS9a+i9NhndwnTisak0OgPtnr+bt/h/BJ8+xkXT+h5/x+2uvZjBUyz/nFZbw4DXtquSjz+zWnhnLCqoF7ymjMpmxrAAgZKmOxi57K3EmmLmNofrSPHQJFd85xJ9vKbJnPfSh/eGM5VXnYB/aaw88c5m1D7WzC/862mY+9F61593x/Mp6z0cOZanaxi57K7EDlc+VeFZTrvxHL67meGnFd6mKXV/Aa6PhaDH/Ou03TPpv37AOZjY0761CXeKPcugS97wD6QuOrQCMy+nNKyu38+rQ3fR3/AKSUlh34RTGLSwL60Cj8t4STsEGdFVblJjlPd+8tLyC6WMH88Dl/Zg/cBX9l/2Ugx3PYPUV8xi3sCysi1uibUGPNF0K6BKzPIF0aEYyzROaYSpK4b376LX2rxT3uobXBzxD7r7mIS29WlMbtBpSooVSLhIzvHPMnkDqmUZ4TpcWlL56OxfxH7jof+CS30Kz8PdXlPeWxqAcusQdf/tBTr05nSHL78buWMmn/X7DxaN+FemmioSUcugSd7wLbx09UcbUJQVMH5nGkCVjYWcu5tYXFMylSdPCIokp3gOhDw5ty3mfjIFD38DoNyDjkkg3TySiFNAlpngGQn+Xk8SVuXdR1vwoiWPnQ88hkW6aSMQp5SIxw5NDn3ldMj92/pQuLY5zZ/nvcJRq8FEE1EOXGJJXWMLM609l8Mej4eRhEse9z91H01RfW8RNAV1ixsRzToEXb4ITB+GO96DrIHJAwVzETSkXiZiatoTzu0/noT3w8vVwZB+MmQ9dBzVSK0VihwK6REzQGzof+xZm3QgHd8OYN6H74Ai0ViT6KeUiEeM9r9xv4ayTR2HOD2DfZhg1F3pmR67BIlFOPXSJKO955WOG9KwazMtL4Y07YMdKuGlmSOeZ1yndIxIjFNAlovxWKrQW3pkMmxfBtU/CmSNDet6g0z0iMUQpF4kY300qsjOSv7u/bRrkvQbDH4SscSE/d1DpHpEYox66RExeYUllEPWkOqaMyiR/wRRY9jf29LmNOwuG43AWV0mHhCo1Umu6RyQGKaBLxEwcllEZRD0pkA47lzLu27/zGYO4cstIhvZNYcKsXCbMymVg9/YhTY1oYwqJN0q5SFTIyUjh+auS6Pn+WIqS0vn50QcoI5FDx8oqH7PCuS9kqZFa0z3qqUuMUkCXRuVvQ4hNBVu5c/1EDjdP4vr99/L9EQMAKvfp9L4dioDrne6BqjsZKaBLrFJAl0blSa14gqnDWczPZq/io+THKD+0h4n2j9w2Ykjlps/3juhT5fYrK7eTnZHc4KBb025CORkpCuYS0xTQJey8e+WenvCEWbmcndae/N0H+fC0N2nnzOVX5gHuHnMrQGUQb9vqu3+i2RnJSo2I1EKDohJ2vnO+AUrLK3A49/F4rxWc6pzHmt7juWHMPeRkpJBXWML0sYOZPnYwn2/ZV3nbkw4J5SbPIvFEe4pKo/AMQo4Z0rOy9/3/zizmxvWTKelxKcnj5jbKps4isUh7ikpU8Z7zXVpewYs3duHWr3/PyfbpjNw5FsfX+yPdRJGYp4AujcIz53toRjJtEsrov3QSlJeRNPZ1Hh09VCkUkRAIGNCNMacYY1YZY9YZY9YbY/7oPn6aMWalMWazMeZ1Y0yL8DdXok0wRa6853zP/kk2CzLeoc3+9WzIeQxSXNMQa5p1IiJ1E0wP/QQwwlo7CDgHuNIYkw08Cjxpre0LfAvcFb5mSrQKpshVlTnf/3mZzs432HH2PSxFdc1FQqlOg6LGmCTgM2ASsADoYq0tM8ZcAPzBWvu92p6vQdH45D3gWetKzl1fwHNXQK8cGDMPmiU0fmNFYlBIB0WNMQnGmC+AvcBHgBM4YK31rMsuBNLq21iJbUEVuTr2Lcy9HVqnws3PKZiLhEFQAd1aW26tPQfoDpwPDKjpYTU91xgz3hizxhizpqioqP4tlagVsMiVp7b5wZ1w64vQOjki7RSJd3Wa5WKtPQAsAbKBDsYYzzK+7sAuP8+ZYa3NstZmpaamNqStEoW8BzwfuKJ/ZY3xKkF95TTIfx8ufxh6nBe5xorEuWBmuaQaYzq4b7cCLgM2AJ8At7gfdgfwTrgaKdGrtiJXABTmwqLfQ/+rIfvuCLZUJP4FHBQ1xgwEXgIScF0A5lprHzbGpAOvAZ2AtcAYa+2J2l5Lg6JNzLEDMP0iVzJuwlJI6hTpFonEpGAHRQMW57LW5gGZNRwvwJVPF6lm2pIt3PL170k5uAvGfQhJnXA4i8krLNGcc5Ew0UpRCYvLjn9IyrYP2DboAehxnjZhFmkEKp8robc3nz5r/sSBrhdy07osRrfaqE2YRRqBeugSWqXH4M0fQcs2dBj1PKOze2sTZpFGooAuofXRQ7B3PYychmNvgjZhFmlECugSMh+89RKsmg7Zd+Nodg6T56xl0vB0klom1jw/XURCSgFdAgqmoiKH93LZpj+yiV4sT59MXmEJk4anM3VJQeX2c9ppSCS8NCgqAXlv7JxXWEJCM5i6pIApo1yzWR1bikj7YBy9yo5w5LpXuOf1r2os1KVNmEXCSz30JiioHrcXT+968py1bPzmII8syGfS8HRyMlJwOItZNvv/6LX/M7jiT2QOzglcqEtEwkIBvQkKpoa5L09FxflrdzEysxtTlxTwxKKNPD77PX7R7BXoczmc9+PAhbpEJGyUcmmCvHvcAWuYu/kG6mH9Upn6cT6fJU8jwbaBG57BUbCvMjWTk5FCdkZylfsiEl7qoTdRQdUwd/OtqDhpeDpvr93JP9MW0vlIPvnn/Qnadg5cqEtEwko99CbKt8ednZHsN6h7B2qHs5ipSwp4eugxLs19lT19bmPUZ6lM6VlcY40WDYSKNB4F9CbIu8ftLzUybamzcrqhJ1A7nMXMWFbAP2/tS/aH10OHHnS+9QmmFJ4gr7BEgVskwpRyaYKCSY34Gzgdf3E62Rsfg5IdcNMMaNm2StAXkcip0ybRDaV66LGlxs2fS1fBaz+EC38Gl/0h0k0UaRJCukm0NE3VBk67AO/dC53PhuEPRrp5IuJDAV38qjJwumIb+16bBMdL4KbpkNgi0s0TER8aFJUa+Q6cXsdSkh2L2Hrur+nd+cxIN09EaqAeutSoysDpgR30zf1fSk49j4Xtbo5000TED/XQpUaVs1YqKuCdu6GinPY/mMmETqdFtmEi4pcCutRu9Uz4ehlc9zQomItENaVcmoi6VlgEoHgzfPT/oO8VcO4dYW6hiDSUAnoTUecKi+VlMH8CNG8F1/8DjGnE1opIfSjl0kT4q7DoWR3qvWzf4Swm8bPHOX9nLtzyPLTtEqlmi0gdqIfehNRUYbGmnvs/Zs8ja+sMOOtm15eIxAT10JsQfxUWPT33AV3akr+ziGUdnqVZWQpc/RgOZzF5hSWq1SISA9RDbyJ8a5p7grjDWVzZc//cuY9JFa/T+sAmuGEKjt0VAXcyEpHooR56ExGowuIrK7fzaNYhbv3yfeZyGYVf9+SVldptSCSWKKA3Ef42nwCYPGetu8b5zznepgd/KRnD/o+3cO+IPgrmIjFEKZcmztNzz970BBzYzuahf6M0IYmcjGRt8iwSYwIGdGNMD2PMJ8aYDcaY9caY+9zHOxljPjLGbHZ/7xj+5kqoTRyWQU7ZGvjPSxSeOZ47/p3A9LGDmfOT7Cp5dhGJfsH00MuAn1trBwDZwD3GmDOAXwOLrbV9gcXu+xJrjhTDuz+FzmfxQco4bfIsEsMC5tCttbuB3e7bh4wxG4A04AZguPthLwFLgF+FpZVSL977gnpUmYZoLbx/Pxw/ALe/zfjOA6q9hjZ5FokddcqhG2N6A5nASqCzO9h7gv6poW6cNEzA5f7rXoMN78GI34FqnIvEvKBnuRhj2gDzgPuttQdNkLU9jDHjgfEAPXv2rE8bpZ78LffPyUiBb7fBB7+AnjlwweRIN1VEQiCoHroxpjmuYD7bWvuW+/AeY0xX98+7Antreq61doa1Nstam5WamhqKNksd1LTcn4pyV+EtgBunQbOEyDZSREIimFkuBngO2GCtfcLrR+8CnpqqdwDvhL550lC+y/0dzmL4/GnYvhyu/ht07BXpJopIiASTchkKjAX+a4z5wn3sQeAvwFxjzF3AduDW8DRR6st3X9DsjGSmzJ5Htv0zzc4YCYN+EOkmikgIBTPL5TPAX8L80tA2R0Kp2nL/Hkmc02Y6x453pPW1T6rGuUic0dL/OFZtuf+i35J00Alj34akTpFplIiEjZb+NxX5H8Ca5yHnp5BxSaRbIyJhoIAeBwLuF3roG3h3MnQ5G0b8PgItFJHGoIAeB2pdQFRRAfMnwsmjcPPzkNgywq0VkXBRDj0O1LqA6POnoeATuPZJSO0X6aaKSBiphx4nalxAVJgLix+GAdfD4HGRbqKIhJkCepzwXUC0csPXMO9H0LYrXP93TVEUaQIU0GOU90CoJ2c+aXg6SS0TmfLDc9g/dzL2wA64+TlopVL1Ik2BAnqM8h4IzSssYdLwdKYuKXCVyy35gKvsZ6zuPQF6Dol0U0WkkSigxyjvgdCjJ8qYuqSAKaMyKcxfTfkHv4D0Szh/7J8BnymMIhK3FNBjWLWB0O4tuW7jb9hfnsTqc/8CzZpVr4EuInFL0xZjWJWB0BXbGLvrT6Qe2obz8llMmL+DMbtM1SmMIhLX1EOPQgFXflK1kuIDV/TnjawNpG59l+0D7+OsoddWn8IoInFPAT0KeQ94TlvqZOanzippE4ezmBnLCr7reRfmkrHmf/m22zA+6Di65hroIhL3FNCjkPeA58ZvDvLIgnwmDU8nJyOlsmc+/mLXfY7sg7m3Q9uudBzzIgN7dKzSc/e8joK6SPxTDj1KeQ943pjZjalLCjh0rKxqTryiHN76MRzZC3ctgqRO5BU6q9ZAd18c8gpLlHoRiXMK6FHKN20yrF8qf/94C/eO6PNdYF78MDg/huuehm6ZQA010HEFdQVzkfingB6FfLeOa9sqkUcW5HNjZhqvrNxOdkYyOceWwedPuWq0DL4z0k0WkSiggB6FvLeOcziLmbqkgAevOZ3yCrg1qztPz57PEPN7EnoMgav+GunmikiUUECPQt5pE999QTmyj3OTnub4yTa0vu1lSGwRoVaKSLRRQI9yVXLiZSdh7lhOObYX7lwAbbtErmEiEnUU0GOFtbDgAdj2Odz0LPQ4L9ItEpEoo3nosWLFP2HtLLj4FzDw1ki3RkSikAJ6LMj/ABb9zrXz0PAHI90aEYlSCujRbmcuvPkj6HoO3DgNmukjE5GaKTpEAX/FuGZ/uBTmfB/anAqjXocWrSPUQhGJBQroUcC7GBe4gvlvZy/jxq/uh4oyGDPPFdRFRGqhgB4FvItxPbFoI7+Y7eDdjk+RdGQn/GAOpPQFgiurKyJNlwJ6lPAU45r6cT6z202h7f7/wq0vQK+cysfU1JPXbkTbtB7VAAAM0ElEQVQi4qF56FHC4SxmzoqveS9tFr33rWTLBY/S5/RrqjzGuyc/ZkhP7UYkIlUE7KEbY543xuw1xnzpdayTMeYjY8xm9/eO4W1mfHM4i/np7FwWpM/j9H0fsfXcX3Lbqowaa5hX20dUwVxE3IJJubwIXOlz7NfAYmttX2Cx+74E4C8HPmOpk/f7vkfnLXPhov+h9/W/raxh7ku7EYmIPwEDurV2GbDf5/ANwEvu2y8BI0PcrrhUYw589n/4c5u5dN04Cy6YDCN+B7h64r61zX33EdVuRCLirb6Dop2ttbsB3N81py4IvrNZJs/+D+8OWEzaV8/CeT+BK/4Exvh9vm/lRe/diEREwj7LxRgz3hizxhizpqioKNyna1T1mUb4XQ58M493eIPu66e5Nqm46q84CvbV+tyJwzKq5cxr6smLSNNU34C+xxjTFcD9fa+/B1prZ1hrs6y1WampqfU8XXQKZhqhb9B3OIt5wfE1/2j/Kpfsn8uX3X8A1z6J4+v9moIoIg1S32mL7wJ3AH9xf38nZC2KIcFMI/QE/SmjXHt+3j1rFX9gJted+Ji8nmO4YdNVjJy7jqWbijQFUUQaJGBAN8a8CgwHUowxhcBDuAL5XGPMXcB2oMnWc/WeRlhlA2evn3uC/sDOLXmMJ7mMVXDxLxl4yYOMnLuO+Wt31vhcEZG6CBjQrbU/9POjS0PclpjkO40wOyO5xqD+o8GdOHf5ZHISvoIrH4XsiTicxSzdVFTrc0VEgqWl/3XknRP35MwnDU8nqWWi32mEa/L+yxWrxjEkcSO/NffiSL1FUxBFJOQU0OvIeyA0r7CEScPTmbqkgIHd29c4jfCL1cvo+db1pDffR8LoN7hmzH1MnrOW99bt0hREEQkpY61ttJNlZWXZNWvWNNr5wsXTuw5YT2XTQk6+fie2ZXta3jEPOp9Z+fy8whJNNxSRoBhjcq21WYEepx56PQSqpzJtyRa2vf0wzPk+LU7tS8uJn+A43LlyjrnmjotIOCig10Ot9VROHuGWr39Pry8ep6j3tTDuQxxFzTXHXETCTuVz68h7MDMnI4XsjOTv7rfbD2/cQUpRPlvP/RU3fZHFmCU7VOZWRBqFAnod+auncmzNq7Dl/6D5KTD6TXr3uZQxp2z0Oz9dRCTUFNDrqFru+8Rhctb/ETa8zMFTs2g3Zha06+Ze4r+VnIxkzTEXkUahgB6EaUudldMSPRzOYr756nNu+voPsP9rCs+cwE0bLuGpohZQVMyEWbkATB7Rx/XdK00jIhIOCuhB8K7HkpORwvJNu8h79SEmMA/adYM736d77wt5yp1fH9ClLQDTxw6uDOCeOeYK6CISLpqHHiTPYOjPzzzMeXkP0Y9tcPZtcPXfoFWHysc9sei7vPkDV/SPYItFJF4EOw9dPfQg5fRoxfTOb3Puutkca5EMN78Kp19d5THB1HUREQkXzUMPxFr46l1OPDWY83a9wobO13J1+eM4mp9f5WGqzSIikRbzAb0+uwYFbW8+vHIzzB3LtqMt+O/3Xuesu1/hL6MvrBastT2ciERazAf0YHYNqrPDRfD+z2BqDhSu4fM+P6d49CLOvuBKoOZgre3hRCTS4mJQNOhiWYEcOwDLn4EV/4Sy45B1Fwz7FbRODnmbRUSC1aQGRQPtGhTQ8YOwagY4/gHHD8AZI2HE7yClb3gaLCISBnER0Os9u+RIMblzH2HQrrkklh6CflfCJQ/iOJpG3voSJg4Lf9tFREIl5nPo9ZpdUrTRlSN/8izO3fY8S0rPZN3Vb8Oo13EcTVNlRBGJSTHTQ/e3/H7GsgK/s0uq9NLLy2DzIlj9LDgXQ0JLGHgbJudekg52YtyctYw5sFGVEUUkZsVMQPddfu9bxhaqBn3Psdwv1mK/mE3WvgVwaBe06QKX/A6yxkFr90UglWo5eH8XEO00JCLRKmYCuqfnXdtsFk/Qn3pLBkOOfU7JipcZvHcVFgMZI+Dqv7ry5AnNq7x2TTn42i4gIiLRKGYCOgSYzXK8hJzDi/l319dp8/pSoIxv6caBcx7g01YjSO8zoMbetm/g9t6wItAFREQkmsTUoKhvTzp33TpYNRNeHgl/TYf54+l0MJ+8rrcx8sTDvHXBfHqNfIj0PgP8Lj6qbYVnoL1DRUSiScz00B3OYn4528Erw09QtuktxrV00HH+VtcPk/uw8/RxrDolh85nXMjkV9cx5hJXrzq7T0qt6ZqagrTnuIptiUgsiY2AvvwZ0pe/xqd2PebjciqatWBFxRmYvj9na6eh9Oo3iMlz1jJpeDr/++q6mvf79OptD82ovvLTd8Cz1r1DFdRFJArFRsplz3q6tGuJufB+uP0dmv1mO4ydxz0FF7A7oXtloC2vwG/6xLu3nbezhAmzcmut/6JiWyISa2Kjlou1YEy1w8FuJuHb23Y4v9siblxObw14ikhUC7aWS2z00GsI5r757dpWhtbU254+djBnp7XXgKeIxI3YCOg+glnu710n3VPa1rdOev43h4K6IIiIxIIGBXRjzJXGmI3GmC3GmF+HqlGBBJPfrq1OunYXEpF4VO8cujEmAdgEXA4UAquBH1prv/L3nMbeJNpfnXQt6xeRWNIYOfTzgS3W2gJr7UngNeCGBrxeNQ3dXs7fwiDtLiQi8aghAT0N2OF1v9B9LGQaur1cXQZORURiXUMWFlWfegLV8jfGmPHAeICePXvW6QTBFOTyRwuDRKSpaUgPvRDo4XW/O7DL90HW2hnW2ixrbVZqamqdT1Lfeir1WRjU0BSPiEgkNSSgrwb6GmNOM8a0AH4AvBuaZn2nvmmT+uTJG5riERGJpHqnXKy1ZcaYycBCIAF43lq7PmQto/HTJg1J8YiIRFqD5qFbaz+w1vaz1mZYa/8cqkZ5RKKeikrmikisiupqizWlR/yVvA0VlcwVkVgVk0v/w0UrSEUklimge1HJXBGJZbFRPldEpAmLr/K5IiISkAK6iEicUEAXEYkTCugiInFCAV1EJE406iwXY0wRsK2eT08BmtqEcL3npkHvOf419P32stYGrG7YqAG9IYwxa4KZthNP9J6bBr3n+NdY71cpFxGROKGALiISJ2IpoM+IdAMiQO+5adB7jn+N8n5jJocuIiK1i6UeuoiI1CImArox5kpjzEZjzBZjzK8j3Z5QM8b0MMZ8YozZYIxZb4y5z328kzHmI2PMZvf3jpFua6gZYxKMMWuNMe+7759mjFnpfs+vu7c3jBvGmA7GmDeNMfnuz/uCeP+cjTE/c/+7/tIY86ox5pR4+5yNMc8bY/YaY770Olbj52pc/u6OZ3nGmHND1Y6oD+jGmATgGeAq4Azgh8aYMyLbqpArA35urR0AZAP3uN/jr4HF1tq+wGL3/XhzH7DB6/6jwJPu9/wtcFdEWhU+TwMfWmtPBwbheu9x+zkbY9KAe4Esa+1ZuLar/AHx9zm/CFzpc8zf53oV0Nf9NR6YGqpGRH1AB84HtlhrC6y1J4HXgBsi3KaQstbuttb+x337EK7/5Gm43udL7oe9BIyMTAvDwxjTHbgGeNZ93wAjgDfdD4mr92yMaQdcDDwHYK09aa09QJx/zrh2RmtljEkEkoDdxNnnbK1dBuz3Oezvc70BeNm6rAA6GGO6hqIdsRDQ04AdXvcL3cfikjGmN5AJrAQ6W2t3gyvoA6dGrmVh8RTwS6DCfT8ZOGCtLXPfj7fPOh0oAl5wp5meNca0Jo4/Z2vtTuAxYDuuQF4C5BLfn7OHv881bDEtFgK6qeFYXE7NMca0AeYB91trD0a6PeFkjLkW2GutzfU+XMND4+mzTgTOBaZaazOBI8RReqUm7rzxDcBpQDegNa6Ug694+pwDCdu/81gI6IVAD6/73YFdEWpL2BhjmuMK5rOttW+5D+/x/Cnm/r43Uu0Lg6HA9caYrbjSaCNw9dg7uP80h/j7rAuBQmvtSvf9N3EF+Hj+nC8DvrbWFllrS4G3gBzi+3P28Pe5hi2mxUJAXw30dY+Kt8A1oPJuhNsUUu7c8XPABmvtE14/ehe4w337DuCdxm5buFhrf2Ot7W6t7Y3rM/3YWjsa+AS4xf2weHvP3wA7jDH93YcuBb4ijj9nXKmWbGNMkvvfuec9x+3n7MXf5/oucLt7tks2UOJJzTSYtTbqv4CrgU2AE/htpNsThvd3Ia4/ufKAL9xfV+PKKS8GNru/d4p0W8P0/ocD77tvpwOrgC3AG0DLSLcvxO/1HGCN+7N+G+gY758z8EcgH/gSmAW0jLfPGXgV1xhBKa4e+F3+PldcKZdn3PHsv7hmAIWkHVopKiISJ2Ih5SIiIkFQQBcRiRMK6CIicUIBXUQkTiigi4jECQV0EZE4oYAuIhInFNBFROLE/wcwE7QKf6UtoAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "problem = pints.SingleOutputProblem(model, times, noisy_experiment)\n", + "\n", + "log_likelihood = pints.KnownNoiseLogLikelihood(problem, sigma_noise)\n", + "\n", + "opt = pints.Optimisation(log_likelihood, [2, 6], method=pints.XNES)\n", + "opt.set_log_to_screen(False)\n", + "x2, f2 = opt.run()\n", + "\n", + "print('Found solution with loglikelihood ' + str(f2))\n", + "print(x2)\n", + "\n", + "plt.figure()\n", + "plt.plot(times, noisy_experiment, 'x')\n", + "plt.plot(times, model.simulate(x2, times))\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now try out a bit of MCMC, to see what's going on in the parameter space:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "mcmc = pints.MCMCSampling(log_likelihood, 2, [x1, x2])\n", + "mcmc.set_max_iterations(6000)\n", + "mcmc.set_log_to_screen(False)\n", + "chains = mcmc.run()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAEYCAYAAABBWFftAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXecXuV94Pt9zlund/WRRhWEEE2SJcDBwjbEIVlIHDt2EnadYmObte+u9+Zzr7PX2WS98vXmrmP7et0gsAEX7CQO2IZgG4MoBgQICSHU64w0ozK9vDPz1vPsH6eXt8xopBnh5/v5SHPec552yjvz+51fE1JKFAqFQqFQKBQKhUJx4WizvQCFQqFQKBQKhUKheLugFCyFQqFQKBQKhUKhmCGUgqVQKBQKhUKhUCgUM4RSsBQKhUKhUCgUCoVihlAKlkKhUCgUCoVCoVDMEErBUigUCoVCoVAoFIoZQilYCoVCoVAoFAqFQjFDRGd7AQqFQqFQXA4IITqBMaAA5KWUG2d3RQqFQqGYiygFS6FQKBSKyrlVStk/24tQKBQKxdzlslawWltbZUdHx2wvQ6FQKBQzyK5du/qllG2zvY4L5df1b5QuJaOTORqq4ggxkwPnAA20yAwOalDQJRIYSGUAmF+frLCnhHwWognP3t6xDNXxCLUJR8zKFXRAEIt4L8pYOkdVPEpUC7lYsgC5DMSrp3A2iktKNgWxKhAz/1wqHEYnc0zmCrTUJsK/K5eISv8+XdYKVkdHB6+//vpsL0OhUCgUM4gQomu211AECTwlhJDAfVLK+/0NhBD3APcALF26dMb+Rum65JHXTtE3lkETgv/w3tWe4z/Z08P8+iRbVrTMyHwWBV1ybjTNooYkQgiYHIJUH7StCW2/4/gAOzsHKeiS96ydxzVLGmduMc9+0fh561/O2JAjEzl+tu8sZ0fSnv2fuS14fmPpHCf6xrm23XVOp1+DY8/ANX8ALSvt3V/55RF7nMHxLA1VMb72zFF7X76g8z+3H2NpczWnBidY0VbDXetaGB3oYXh4iKVXmt6nux6C0bOw7EZINsKi62bs3ItSyAECIlMQETMpiNcwsxr1ZcDEILx6H9QtgI1/Gt6mexd0vgAb/xyS9cXHSo/CkZ/D2jshZir4ubSz/WtM72ian+w5QyqT58PvaGdhQ9WsraXSv0+XtYKlUCgUCsUl5GYp5RkhxDzgl0KIQ1LKF9wNTKXrfoCNGzfKC50wky8Qj2hk8jp9Y4Z1RZfeYUdNwf9E3/iMK1j7ekbYfqiXu65bxIq2Wtj3KKR64aZPQaIu0P6VEwMzOj/AMwfP01KbYCZUi+GJLE++dY5rljTw0rF+mmviAeXKw+AJw0LVvJyf7u6md7zA6twhqocOwYY/QaZ6EQCZMaePrtubqUyeh1/uZPPyZs+w/3P7MQBODU4A0Nt9HIa+w+HOQfK6tBWsQi6DhkR07TA6XgoFa+cDhkVu459V1v78fjjwU7jyDlh47cVd21xDmve6kCvepud1Q1HKjJZWsLpegoHj0HsAFt9gbO/9J7juj6Bp2cyu+zLj+6+emu0lTBmlYCkUCoVCUQFSyjPmz14hxGPAO4AXSveaPuOZPPe/cIJb1rQykMoWbfeve8/a27oumcwV2H1qiBuWNlGTuLA/8/2my9xYOm/sSPWaE+XL9hXMjDVjb/cIAFdrOpm8Ts1UB5AS0iOQbKA/leH8aJpnD2XI65KJ7KSn6ZZTplEy/V8gWc/xpx9kaCLLNWtWseJkL73zPkTk+NNMSshO5HjuzbOs11Lkhv6V5ne101ZXBS/9/ywe6aCnYQMvHTPC9Y73pew50rmCZ86OoZdYMLYfVrSQ173K8/ajw3TEU6yeZyqzE4P06zX0jWVYu7DeOb+TL0DrGqhfGDz/N/8RsmOw6aOVXa/J4cra2Sc0aq5t5pXryxZdh9FuqFtk3B9wfhbDuu55U+EfNg0lo2d+7RWsyxGlYCkUCsVljuWOVIwwdyfF1BBC1ACalHLM3L4d+PzFnHN40ngrfuR8inM+K8srJwbYsqKFroFxz7Ef7DxFbSLKib5xqmIRNnZ4LSdTxZIJA55fIcJivqB7Ph8+P0bP8AS3XbWAyAzETBw+N8ZoOs8WXUf07IL6RdCwuGQfXZcU+g4T3f8oYt3vImk31qpLND1PTJ8kEw1a4kj1wthZek2r4fjQOUiPUZPpY1IUOHhujDee28P144c5D0CGkZ/+d9re+0Hyuk77yC5GE4uof+V+kgv/gGzBCdn49vPHPVPVZvqKrn8sMZ/+sT5Wz4O+VIb6l77J9+T7kSLqKFiTQ9D1svHv2g9D83LvIIMnjJ/5jGFxiRV3rzrel2L09BDrFzdULiAKs+KP1Eu3myOMZ/KcHZmkuSZBc008cHxX1xC1iShXLAh5Liql7xAc+Ams2Orsk7rxvSnmRlkwnjVOPA/Lbgo5noPhU9DUcVHiEOcSUkqO9aaoSURZ1Dh77oAXwttOwcrlcnR3d5NOlzD5K6ZFMplkyZIlxGKx2V6KQqFQXGrmA48JQziKAo9IKX9+MSc8cs5wO/MrV2DEOl3X3siju3s8+3tHM/SSuZjL8iClZHQyz7nRNE++ddZz7LTp/rZlRQuN1YYg25/KUBWLVGxZky5FLpUxrGa5kXPEjz0NyQa48V6yeZ1D50a5YkEdiahX8Pyn108T6drNyolhru/oQ9a028dWDj5Py8RxXll6T3DiiQHod15cHDLvRW22j4NDxvbavp95uhR0yeDwCIc7hwBY1/s4AA3pHkj3IKL1jFS1B3RTgaGYdA2O2/uefOssDVUxpJk4IVvQOdabojoeob7hHCNVS1wXyaXYvPlDuOpOmL/OcG381d85x371ZeNniRi2XZ1DtOd0JrMFKlYvLIWhnIVmjvDisX4OnBmluSbOR27qCBx/4Yih8F6QgpUzLaOZUYzQTWDPI6BFYfPHw10F9UJwn5ueXXD8WbjqLph/1fTXdhkwMpnjCdMyX8kLwldODHCib5xb1rSypGluJIR52ylY3d3d1NXV0dHRgfh1C7a8iEgpGRgYoLu7m+XLl5fvoFAoFG8jpJQngEsWYDKWzrHndGlXrW89d7zk8WhEQ9clTx04z9WL69F12Nk5yKnBCW5Y1sS71hRPhDWZLZDOFSzRsKi736snB9lxvLRrmCV3j6VzfHdHF4ubqviDje0l+/j7AmhCoEtJZs8/EQc77unQuVGeOdiLNnSCJdERxMJrmTh3lETbSs6OpLlm8iSZvI6eSTEgHVfLlonjRSfLDncTFxrJmEY65ygwEVf/ZH40sN7MRHAfwPKhlwB4Zek9xPMppNCIFSZpGz9MTdZwIzwz7CjSh02Frh3DOmTF3U1kC0iXbJPOFTjYNcC1UqJZ+w/81FCwso5bYsWYQ+jT0ZXGzk2j06UnX3CupZtzI2kOngu/fwyfMhQgv3WwHKNnIJ8hnSuw78wI7U3VzM+mQhUsKSVj6RzV8YgpnJs3o5A1xsmY93M693WOI6XkaG+KVW21aJogV5jaA3j0/Bj9qSynByeVgnWxSKfTSrm6CAghaGlpoa+vuCuDQqFQKGaGmXCpe+FIHy8d6yeb1zl4dpTr2hvtpAq7u4ZCFay3ukfoHBjnWK8hxNnGCSTpXIGElJ6/rxPZPPGoxq1XzOMX+8/ROHmKsfg8ChEn85mlHFjudj1D3rinUrgTelTHI4ym8wxG26jLn4LaeQC2AlR39CccHBrnXG0nC1L7OV97FZGGjVTnDIvSqf07eKVhdXASG2euY/teZ+nKtfbYwjwaL4yHdwWSUQ30YKycpVxZ3HDmEQDO117F/NSBEusBabnfefY5Vrqn9p9DHnqBpbVZWmpcqeLTo9OKidLcstNID1S3lM9id+wZ46cvVf1cJ50rsOP4ADeuNBLD/GL/OQbHi8Q6vvF942clGSylJNXbyWQqQxuG0pnK5MkVJH2pDPOLuFIOjWc4fGaUttoEq9wHLPdPiwriHy83/vn1bnqGJ7l93XzWLWpAMkUN33xu5Ryyoga/uW8DlHJ1cVDXVaFQKC4NyWgwxuK6pVNLeV7QJdm8I8xJJNXxiOf4v+zq5uGXO/n5PkMQfOP0EKcGJ+zYFEteeeZgL9967jhv9YzgPiAlRDXBVYvqmZ/Mc2Xfz1k+bAiDifwom7of4shP/443ugbYftBIkFGTqDx+pOASmOK1TfTVrOHR9CZODowbFpMd30SYsStnhgzlZ0FqP2BYmzae+R5N1YZb+/BEtqQbm+WqB4aL0tle54Wi1UsrIdym8zpiCsKvkGVcwiB0vdaeY71jnO8+zrzxw+7EhQavP2ik/A5MWvrvuKXXpzJ52P2d8DEucyTSrkU2MG48O7u6hoorV1Mh1Qc7vsHRfa9yrDdlvyCwksVENVH0GcwWjOchk6/guXib0TNsvHSxLeVT1ZPMa1pQCpZCoVAoFIpiaCEWrBtXtLBqXu20x7Rkj7UL62ioijGRzXNqcILhiZyd5U5KWN5aw0cWdNE8GSz3krEVNkeQsWT2iDSUi7qMoawl86NE9CxMDvLCoXN2DFVEq1z0sNZcmzlPTE8jTQHMjktLjyCzhmJV0LzxwesX1bFuQS31SWN/OqejhSg1C0f3Up/uoX1kl2d/PGtYvhY0GBacqCaozg2WXnChcgVLo7wgXZMzrVAuudF6Mk4PTbJi0LCOBS5pLu24lLkpkeACnHtpWTpJj8Dw6dJpyC3mkHBbjvqqGK21cXvJVtzVBTN4HDJjtuXTGt+yDMajGsW0h4KpWGmagPES1scQq+bbhaO9hmvsdJ+kabm2XiTedi6Cfspl15oqlQTbfeELX+CRRx4hEomgaRr33XcfmzdvntF1uNm6dStf+tKX2Lhx47THOHToEH/6p3/K7t27+cIXvsBf/MVfzOAKFQqFQjFVPvGulXbGuRVtNSRjEX57/UIGxrN875Wp12J2EpgJQ4DpP8aKwZfobd1ClqTZxlRhul5m7cAgaZHkZNM7Gax2Yk92dQ2yc/I4t1wX98nUplWrzLtbtxWtHAVdImSBq8//BM3MJmYIqYFpGUsuYn72tK0EzquJUV2IMZ7NBxrXVznK2LLhV5BCIx31xcVIiAiImcru/Pok+eHSgrgso4i4LWDRgpOMJKqJQIr2RH6UJpeSOxFroTo3gJA6scIEb3blWY/lwigYGM8wninQ3lQV9DiZv85Qrs69Ze/KFXR+uPM0q9pqbTe5uoRxXSJW99Ez8Mb3jELHK7YCRha+bF6nyZ+Bb/CEkYRh5a0lr8FsI6WhpAozpq9s4yO/qHzwIokqpHujiIvggGnlighBaRXj7eVN5Hbr012W8WKEKVHWrmxeJ5vXg78jZoHZX8HbjB07dvDEE0+we/du9u7dy9NPP017e2XBvLNJc3MzX/va15RipVAoFHOEqnjETsX9DrNQraYJWmuDqaV/a/2CsuPpUnqSVWjHf8m81CHqc732PomtftFSEydWmKRj6GXP8WxBgpQ8e7jXbG+Mmc1aykVQABRIWuuMGJ3oFOLLDpwdRZgCqUQS0QQ3LG3iTP21nOz3WWik1wXSEmTds1nnttiX+llInfFYq3c4ACEQQnC8+V3ko94+YXFyer60m9naviftbbc1zK9cAUR98VyatJQzyYae77G6fzvW2UU0wZHzKXqGJ5nIFbOMCTNVu5PkoX8s4ykOXWVePyvro7NAZy3ff7WLh17uJFcIURROvVJk7rmHO96sqTrG1c2S9uHXvAqQnoczb4QPICXsf8y3z3tNrFgiS4mQVr8Q8rULzXUxN61UvQeNTJTpkRkd1v3sd/ZPoOvSo/haBdYt9JDvitV8X88I33zumJ3BdDaZg3fw8ubs2bO0traSSBh/SFpbW1m0aBEAn//859m0aRNXX30199xzj/2F27p1K5/5zGe45ZZbWLt2LTt37uT9738/q1ev5nOf+xwAnZ2dXHnllXzkIx/hmmuu4QMf+AATE8EH6KmnnuLGG2/khhtu4IMf/CCplPEH6LOf/SxXXXUV11xzTagSNW/ePDZt2qRSsCsUCsUc4rar5vMHm9pZ2OAI927rxN1blvHhd7Rz5YKQtM/A2oX1XNduxG5JDAuWEIbAJ02hWRMazePH4MhTrDjzBIlJQ+Gy3BRlEYVJ16Vh8TIPT2QMBUs6mTG8TMOFTNelrRTZcws41biZF2M3mdNIc01+QhQNS+kK0fGkb+dEtmBb9KTQ0HLev7k3LG2kxWfFEWZmw2JY7pMAea1MUgjzetWZKe1TCSMpiTD3N0922nFjnqW7LtfIZI79Z0YM98xC1jNuGLpbESjCeMa4roVi/lguK1nxiXQ4+kunSPGlRgiEgBN94zzwqxMMT+aY17+DJaN7qM26rJSlansVsjBuZICksd1wy+x80TiklZKlpBGrdfJXhoXQJBert47CeB+c3z+9c7tY9Ow2FPTJoRkdtmvA+706MzLpef6e2HvGc7zY41uTiLB5eTNSugqjzyJKwZphbr/9dk6fPs2aNWu49957ef755+1jn/rUp9i5cyf79u1jcnKSJ554wj4Wj8d54YUX+MQnPsFdd93FN77xDfbt28dDDz3EwIDxdunw4cPcc8897N27l/r6er75zW965u7v72fbtm08/fTT7N69m40bN/LlL3+ZwcFBHnvsMfbv38/evXttpU2hUCgUc5uIJgLWFjdC4FG+wo5bVh1/hq1RUwjRhGRl3zPQs4u6idM0DhsCciJSWkQQwi+Il3IRdPKCTUXNqo5HnR4SNPSKHaSErUw5PYTvZylGJnOGO5IwlEy/YBfVNFbPryUecY2WrzxDokCHiDdS43ztWgrCEs6NCb0ujm5LlnOOFuPxVs/17R1LM5rOM5LOG3XDXOOG3YgZCaM6+ET5NsNd0P06HH6yfNsZxk5YYt62qCZYt6iBZXXm8+K+pqUULPexRJ3HsnOi+ZbQOY0PEk6/aihjJ39l7/a4x+171C5DUPwMLhEDx404vIuE300zX5Ce31XDE8aLm2TM+D2WjIdk1pSSJU3VXLUo/EXTbKAUrBmmtraWXbt2cf/999PW1saHPvQhHnroIQCeffZZNm/ezPr169m+fTv79ztvJ+68804A1q9fz7p161i4cCGJRIIVK1Zw+rTxYLe3t3PzzTcDcPfdd/Piiy965n7llVc4cOAAN998M9dddx0PP/wwXV1d1NfXk0wm+ehHP8qjjz5KdfXcqBGgUCgUiunxx5uXsqKthia/K5cPzXRxAysGy3DoG0vnOW6mYve7HNaNGLHLCxuTXFm02KqTrt36+ZEbl5rHhN3GaS6nJbzndd0j9Y8kFzvn41KTmiY6aUqf8nYOzeg39UVYFqy06Xr3SvvHONh2B9QtMN0jnXWEuS8VI1rIcOPGd/Dakj/jzQUf4GTTzegiQkTmWD74K9s6FfVZEhMFxzXSqsUlbZ3JK9Z5rnkFBYElkNOqyCSafcpfeJ/O/nEmstOxFlgLnr2sBJZr65Kmam67aj6N1UmEgBVDv3KUp0oVLClxX6OB6pW+tq4fUoKVbMX9jFZ6LS7lNdN12PtPRhxeOQ4+Dq98G4amFh/qPx0Zsu+mlS28d61RlsFTk+/IL+D5/8GCgVfnXGSaUrAuApFIhK1bt/Jf/+t/5etf/zr/8i//Qjqd5t577+VHP/oRb731Fh/72MdIp52igpZLoaZp9rb1OZ83voD+oFX/Zyklt912G3v27GHPnj0cOHCABx98kGg0ymuvvcbv//7v8+Mf/5j3ve99F+vUFQqFQnEJmFef5K7rFpetl+U+qstwy01EE+i6NJQZXJYfBIkyweJuQSiZNlyrpBD8m6tbefeqWl/b4paTYgxNWG6M0L/wFgbrrgi490kJV/Q/FehrpUEPi8GKhVjncpFqBHCq8R2e/VXmm/NJK7ZJCEaqlsCq91ofPWuplIjMgtDQtSiT8WbO160jkTeUp/mpg3YMViZaZys+UDqJiC600BpC2bp2/Hc/rJ3hEimZqFoE1d6YtMPnxuge8rpzPfZGD292TyEmp5ArmgjiUmG5fVr3zb5/1Uaij6rcMPGCeZ49uxnP5BmZDEle4rnZrm3zuSDsqATGzroUuIKrTXn3zKnyi/3neOPUFFz6shNw5CnDhXGqq+k9aLgPVuIi6iL8OfR+vra90b5P//T6aTvtPSPdoOepSZ8FHOVrynW0LgJKwZphDh8+zNGjR+3Pe/bsYdmyZbYy1draSiqV4kc/+tGUxz516hQ7duwA4Ac/+AHvfOc7Pce3bNnCSy+9xLFjxwCYmJjgyJEjpFIpRkZGuOOOO/jqV7/Knj17pnt6CoVCoZijhCWPsGKuwExyIUDTczROOtYeYaodOzuHyORdLnjVzcFJpD/eybSrZFJw2KiZlNcSrDr3JM1dTva1cnnRipGIRhAYyuHh8+Nk8yEugkW0GjEZklJdSqKaIBoJUTWlZNm8Bpa2L/XstlyTAkVMQwK5wurw1CfDEzZrshAYwxtvZmzbifHNAsPuel3ZiNcjJapnAhd696I/4slet7LkJLnwU/QejZ3l52+e5p9f77Z3Tatu1Atfguf/P3jzH8u3HT4Nh56cUur7qWC9pLaTXfTsdo4hjXijzhfZ2zPCgbOjoPmyX/qtW9a9rzJiHk823UzhyjuhYYnr2ZGGa2DvIeOjO2FExdp55d+kA2dGee7wFFLQD5+Cnl3Q9ZJpaZvCt9a6Pufegoky5QxchE0x6UvU4k5Iks3rvHi033tcz5cr8XbJedunaa8krfpMkkql+PSnP83w8DDRaJRVq1Zx//3309jYyMc+9jHWr19PR0cHmzZtmvLYa9eu5eGHH+bjH/84q1ev5pOf/KTneFtbGw899BB/+Id/SCZjaPfbtm2jrq6Ou+66i3Q6jZSSr3zlK4Gxz507x8aNGxkdHUXTNL761a9y4MAB6uvnjj+rQqFQKIpz53WLeHR3j2efEF6HPQEsOP0kNX1HXa38ioO1WzddCosH69ip3wuOsJ2Kz4PhUwFFaDqeTUafYJILT5siAqco5CCiIQSMJeZTlzmPQBKNakUtfwJINMwn498ZWIXrgGe93lbRulZiuuHG19l0Ix1DOwJjCFftWXf8j3BdYzCsUwDJvCOUdzdsYMWgE8eTidYjcSwWEshGa6EgcbsI7j8zwlP7z3tWsv/MCHtODWMXfHFdaDl6hmXDr3Cy2Xmxa8XOaOXqmuXSsPMBWH1b8JheIq390acg1QtLNkFtW+k5poFjkTR3RGKeFweB+LB4jfdzwEXQy/m6dehtK5Ety8i+ZVh1UnUrAJfCk0kZLnVNy+z08QFF3s90XQTzWYjEyhSbNsfuPQgDR2HDn05v/ux4+AuasBn9LoKuxDkWxvc1bN3mM2jFJZb3gr1kvO0VrEvNhg0bePnll0OPbdu2jW3btgX2P/fcc/b21q1b2bp1a+BYZ2cnmqbx7W9/u2T/d7/73ezcuTPQ5rXXXiu57gULFtDd3V2yjUKhuDyppB7gpX4ZdSkRQvxMSvlbs72Oi82ylprAPne8giW4VadOMeZp4+9jdSgRf4KT5KKYuOZ1Y3cnuahc+pEEswhOpw6QPxPixmXNnG1McmbYcdUXSKQQ6IkGb2ehkY42BIW2EEHVKjAb0QQFXXKuZTMNfb8EYDLWFFyYMNLO7+oylKLGtJNMQKAT0QRZabo9mRasBWNO/LZE40zdNVxFZ3BtUhpWphZnRKtXWBprt8IVJqDGCt4+tuKnRSFebSTRGD0b7JgdNxI2HA26cTLSE9xnkTfvTUhx6AtFCFjUkKR/LOOxjqS1KmKFSUPRtaxMwGSsMUQTcH8/ij/Tb/WMkjZrs+WjNXgULID0MLAMaY43NJEjr+tEp1CQuyy6Di9+BRashyvvKN7OfY6FPLz2985n4Tw/4X11aFhs3NNUr5FZMdUHmVFoWRneB+f3wfuuXsDP950LbVPUE9qyqOs55lp9MOUiqFAoFIrLHiHEDUX+bQCum+31zRrCY7gIFqAt1gnsWBnpfa8f2KpkTIEs/2Y+BOmJeLeSavjHdpJtWGvJaVX2qocncnZdIUtZi0c1ljX7FdJwdTF38//JRLyl6PrdPYbNWJ2VbdbYjpiV1UISTAmNKxcGE4lsWNbER5YOsLA+6UqdHi6ynWraQmaJkbJeFxHjcjWE1N90XbhyuTjkVGRViVHI+Ioigrs1byYVfrwYVi2oMor+dLEUK1t4lxKdYBHsrsbNjMXnlx6s/yjOd8L9fZG2K6aVLCVAstGa3qZ0mvHpmIILxnU8+2a5hiUOmccGjhc/XmW+RLAuwc4HjCQZpWY0h3WSuQR1WWGm1S+GpueUi6BienR0dLBv377ZXoZCoVDMVXYCzxP+GrPxEq9l1qlJRBjPFMz4H+OSWDFYZV/0ul0ESzYLpi43OxrHi3Seip5lqDymgmFlLfS1aa6JMQCsmVfLebMo6US8mfymf0fs6E/h/Bi6rZyUmzwoyGlmbEmgpyX4l7hIUkTsNOuT8WYmY41U5Ya947vjSyLVJAoTxCMaDJ8ib16sfEFHF0Hh31+7Kx1tYHz1jTTMXwC7HiqyKD2QGtvXIHSvQFKXOcdktIF8pKps+wvmIilYhiuesN1EbSuv1G0FaIlwrExhrxcC6xr3xgR5mpljJGMRMiXc3EASEYY354xf0Zn0met+HZZuMVLTe+bQwar/NY3pyr2oCT1qnldUzyDmWByWUrAUCoVC8XbgIPBxKeVR/wEhxMUr4jJH+bObl5MrSKriEdv9rFgWQT92m5yvppNLSBNI00UwGC8RyjTTtHutRo6lyo31MRGLeNuayQaimkDqpgVL6kXXIZChyS+cJCG+A7m0a1UOQ1XL0HWjfuV4oo3zNVfSFzEsIN31N/Cu/MucGbHc37xKrPQpUcmoRrwwjqQmcAyCVi2JINe8BmIhCSiGzcQmfYeQsoxFJjgRDekemia7SMXnsW/B75ZsvqtriLe6h/nITR12LNmUsRSsi5R1MBKwYDlKbN1kNyStltJ2ufTgV/wsJStgYnUsr2FFu514RrP0QVhyiWjCSLoBRu2sjndyUSh1r9zn5b8n1pqtRBdTUIrt+EMtCRRzAAAgAElEQVTX8GFuxCKbQsg8UpiqSz4DWcfZeeXBb0H7Z8qexqXiorsICiEiQog3hBBPmJ+XCyFeFUIcFUL8oxAibu5PmJ+Pmcc7LvbaFAqFQvG24W8o/jft05dwHXOCaESjyiww7LgIGoJiIRbmGlcEAQUtTqwwwTu6/yHQR5ZQ2gJJLqbxWtubU88nELvqe4XOL4BownA5qkDc2bSsidbaJP6Vi2JnGDOsOGkztiobMa5rOlrH0Orf43jzu9CjSU603EJ/zWoA1i2bz5Iml6uglB6FUaJ5zlkIwXDVUqSEgojSXX9D6FLs+lvCtCqGuaItsdJXCI71lnbXC7umViIBK8mGOzGem3S+wAtH+hiayFGYQl2wANY5jJaI07oAVs+vY+3CelbNr3WUHFPBiriSb9iJR7Lj3hTkfWaMVtsVxs/MaGAOY1jHKlqsCLf1w2oX+I4u2QS3/mWFZxbGzGco9BAoijy1OEtwGc59XavjEchnadxzH6v7t5uNCvDy14zEHS7ihx+fwqIvLhUpWEKIqy9gjv+A8WbR4m+Br0gpVwNDwJ+b+/8cGJJSrgK+YrZTKBQKhaIsUsofSSkPFzn240u9nrmEP4ugrpUuTuy2GsUjGpOxJuL5cSdTl7steF49u1PFuxUHIwbL1acEmbzr7bh0XAQtlreWVxDtPStuZbB1AyPJJfY6irGkqdpe87GWW521m6cxklzM2br1ToeGxbDpzznS/kEOt95OX42RKCai58jUddBXewVVsYhHYNywrMmbwTDZYN+f6niErsbN3kVpMTPNhzFIn6mo+Rd3pNcR7s+PpglVe5NG8o78lAKsgpRSVlOZPG+cclwgDf1qmkK7uV4GT06vfxEsq2tbXYL3Xb2AeXVJ2+JinVvdxGl/D2Pz4BPO7s6XjJ9Wtrwimr57d0ZG2Ns9bBRnvvK3PQ0kuuMuGrAQXaCb5MU26WTHjZ/WPZvCfFZTt6usu3siqtnZJpsnO422et6Tvt9uX5hG6YCLRKUWrG8LIV4TQtwrhKjYl10IsQT4beAB87MA3g1YRaAeBiw7813mZ8zj7xGVReMqFAqFQvHrjZQwegYRogQ5TaQnbXsxki5XO00IFjbavlKudOLGxqmBcU/f65c28tvXLAQg5nO3y1dgzTg/muabzx7nu690GfOZ9ic3dckYGzuabBevMGxFqn4hE0t+g3wk4T2BUJzYsX6XImNNc3Deb9PVdCMANywzg/lr50EkylB1B701axhLzKe/ZpUd4yQEbFzmzh5oDDacXMKuxXfD8luor4qxZn4dt101n6HqDk423ew01yK0TJxASojp6YD7mSX45wqWkG5uh10b0yJ0si9oackX/AK8f57gIW9hXGOnv36RJMTdzc28K4sfS9R71n1R6TXsAJaLoPvylXVx1Kxom2KKvjPYXn0Fe2vfycs17+HxYxlPAWNPevJ8Gg/NK8qfQwkKeoUKWkkXQZeLarHvXtwqLj6VQEtJ6/hRMxNgxZ0CnwUg0kPmp9n3EawoBktK+U4hxGrgz4DXhRCvAf8gpfxlma5fBf4vwIqEawGGpbT/AnQDi83txcBpc768EGLEbO+JHBRC3APcA7B0qbcYYCjPfrF8m6lQgYn2C1/4Ao888giRSARN07jvvvvYvHlz2X7TZevWrXzpS19i48aN5RsX4fvf/z5/+7eG0bC2tpZvfetbXHvttTO1RIVCoVBcTMbOwa6HWTTaQU/DBs8h612lLsPd3cq9ygw7vHzoJfZVfRBdSkPRsYLNNY1oVLO33WTNVNWlZLhzZmxSv5msYnQy73LfclvEQs4DkFqUTDROb+2V9nndtLKFzoNWQgOv6CVwiWrSq5gca7mV6uoaNhSZy39emVgD++ffZQzlOr55RQsvHzdismhcBks2cSLdTC5SDUIQEdhKKUBEugTNSNweryo3xGBVh2cdlsUlF6kxziVWy4GzI1w9ryUks4ux6olsUAmfyIXFOYU/GME4Ihm6CdatK3HDqyqplTTzwnLgzCYNwby/ZjX1GTPVfDQO+Sxjifk0T3ahS+mxstjULzKXWcSC5VKzCpEkfbVXQDTBRP9pTgykuN5sVzNxBhlJQG4ymLEyUtrqXI687sqPKIso4OZqi6JXUPB5GolJYqluVg08S9WpPLAWCI/XzLleAjRVR8HvlQjIqmaYYrLKi0XFSS6klEeFEJ8DXge+BlxvWpj+s5TyUX97IcTvAL1Syl1CiK3W7rChKzjmXsf9wP0AGzdunH0V1ceOHTt44okn2L17N4lEgv7+frLZuWOyLMby5ct5/vnnaWpq4mc/+xn33HMPr7766mwvS6FQKCpGCKEBW6SU4cUI325kUoZg2NgOOaNGUV2mt2jzorFKvqxlgSQSRu9AP8tK09Eakn7cP0elQrLrLfbjb57hZP84VXYdpHDrjfu8JqoW8UbTu83WxvFYRKMmGbN7AUVSTUvcqlt/zWp+7/rFoTV4MnlH2GurSwTSahdNSa9psPq93L04x2g6+Mb+xpUtXHW6D8zhJxbfBD3/UtblarBuDb3zooxWLSGXKfDzw6N82N+oRB0j9/Dl7lUl8Wwzw8UR8UplvsxEa51dzSvgyt9hZPtJmie7yBV0ElFTTcm5LEyWdTR0Lum8GBDe/WCak61MkVqcGHp4IowLdOjS3dbjfNqOH5wSVpIUY0G+g5Zp21KwpnDvTLe+SC5EY7KH9ypdjQlvwhcz1M2Ol5sLSS4qUrCEENcAf4rh7vdL4N9IKXcLIRYBO4CAggXcDNwphLgDIxdLPYZFq1EIETWtWEuAM2b7bqAd6BZCRIEGYHDaZzZLnD17ltbWVhIJ4wvX2tpqH/v85z/P448/zuTkJDfddBP33XcfQgi2bt3K9ddfz65du+jr6+M73/kOX/ziF3nrrbf40Ic+xLZt2+js7OR973sfmzdv5o033mDNmjV85zvfobra+4ftqaee4q//+q/JZDKsXLmSf/iHf6C2tpbPfvaz/PSnPyUajXL77bfzpS99ydPvpptusre3bNmiig4rFHOESooEKwyklLoQ4u+AG2d7LZeEXf9gKFlbPxuUKHQdXrsfWlYhkoZ3gy6lEf8zVVktTN4zNYDqeIQbljZBdjjYqAhF3Xf6DjN/zyM0cTND1R12IobVA88AhKYpNwZ0awcibJN1ixoZ7nadyoGfAEbCjEIpryhhJAzx405zHhbN4Lw5Dr/YDdUxGqpjgf1bVrTAOQlmwrhc4wpzPmM0v/BtCe9SizJS3WHMKyVnR9JBCc+qBRYmfYZanoogirfx31s9LCPeVLkU0rJp1fFeXwERn2JucciMxYrGg4qr341TGpfMU/TbbOd9eSGZrFoI6a6QU74wBcvrIlhirIqvtTSyGeYzsPAaJx6tXDHi0JG8fYxHRmfp8Kucq10HBAt01/Y8H9gnwLac1fb8Co7tM343zlK0UaWvIb4O7AaulVL+eynlbgAp5Rngc2EdpJR/KaVcIqXsAD4MbJdS/jHwLPABs9lHgJ+Y2z81P2Me3y6nU5Vwlrn99ts5ffo0a9as4d577+X5552H4FOf+hQ7d+5k3759TE5O8sQTTrBkPB7nhRde4BOf+AR33XUX3/jGN9i3bx8PPfQQAwOGa8Hhw4e555572Lt3L/X19Xzzm9/0zN3f38+2bdt4+umn2b17Nxs3buTLX/4yg4ODPPbYY+zfv5+9e/fyuc+F3jKbBx98kN/6rd+awauiUCgUl4ynhBC//2sRw2sVbp0cIiDQFLLG/u6drgxm0xfT3FYNd2zV8tYaT8xWcSr4cz52DoDq3EBgbl1EGaoqFhbgUnZce2NuxUj4tAIz5bXmNk+ZQrYo44p486pWNi93XNvCLFwXJL64Yo4iUUNLGprIIoUIFKq1rEnFppuIBeO/LlRhCaaGp6gQW9ZFcApfUyklLx3r58j5EpaOisYJm9b4dnjOrVTsV79ZDULqONc16BZX7Mx13eU4aN0PXUcIzVT0fFzgrzOPglVyrAqfDSmh80Xo3glvfA8GjpljV+giKKXxEgiITBrfd/dZx0e7WDT6Jmv6nza/j951JQedfEa6lHYMojVGzfnXKzuPi0ilCtYdwCNSykkw3DCEENUAUsrvTnHO/xv4T0KIYxgxVg+a+x8EWsz9/wn47BTHnRPU1taya9cu7r//ftra2vjQhz7EQw89BMCzzz7L5s2bWb9+Pdu3b2f//v12vzvvvBOA9evXs27dOhYuXEgikWDFihWcPm1ks2lvb+fmm43g17vvvpsXX3zRM/crr7zCgQMHuPnmm7nuuut4+OGH6erqor6+nmQyyUc/+lEeffTRgNXLzbPPPsuDDz5ox2MpFArFZcZ/Av4ZyAohRoUQY0KIYFT/5Yyuw+AJ5/Or98FbPyre3qRUkgtdOOYO/3G/xUNKiBfGieiZssVBPZ0ATc8xf+BVSIfdEmkmzQiOOVS11Kl/gyEjWopYzVnHnd2y6FTH/S5Ezlvyoha0/sqsxe9Y3kxjtRMTE6aEVcWMtSZj03CnW3S9vbmkuc6cAzObYODuAKZ64JLVNSHgpk+zb76rXlUJ4TdwTUreVq/dpVgSiEghzcCJN+g8V7wI71QYmczx2slB/nXv2Sn16xoYp7PfTMaS6iOSHw82srQuT3aLCp9tv/Ie5soaOpaVvt3sJ3WEZinM/ms6gy6CpZgpu0Y+PDTmzLAZX/bcf4fnDTmz/syvADwFChqOGo5xmnRiA4utzOOeO4fsMpXGYD0NvBcndKwaeAq4qWgPF1LK54DnzO0TwDtC2qSBD1a4njlNJBJh69atbN26lfXr1/Pwww/z4Q9/mHvvvZfXX3+d9vZ2/uZv/oZ02vHhtVwKNU2zt63P+bzx8ASLK/rN0JLbbruNH/zgB4E1vfbaazzzzDP88Ic/5Otf/zrbt28PtNm7dy8f/ehH+dnPfkZLS8v0L4BCoVDMElLKuvKtLnNOPgenwmNkZYiLjmbGOOQLkmRUhAghpYUSwx1QelpG9Bwbu79DZt5Hgfm+MZzt+mSUUZcA1Jg+zbzRXXCqEdbc7luGNN31nL9tjZOnqMoNMxkNpmyIFoy/odGUu06SmczCJ486oq9O69hBcIXajMdbqcn2G4WVo3Gvk1gFcq3fgvXHW5bSVptgMldg3aL68gP4WbrFiJHRIrYFy1p/IZL0trVvt/S86dcEkKhF11xuiFbB2zIxWGF47m4gk2GQLaf+HpD09MBgVQcdC0MaVYzjOlYJg+NZTg8aMYlLmqp4dLfxfHzm1g7Y+QAdAxpHlv2R0VjX4cSz0P06CEE66rpfM5C90Bvb5qBLl9Jv1y+QaFqEPIK83291GhYst5I282qHa8TaeTDsq+U+4bVCAxzrHePxN89yR3uWK0KGshR191pj+gSrux+FVXeUWInRo6U2Yb88kK5rOtddBJNSSjsvh7ldPqr115DDhw9z9OhR+/OePXtYtmyZrUy1traSSqX40Y/Kv230c+rUKXbs2AHAD37wA975Tm8l7y1btvDSSy9x7Jhhqp2YmODIkSOkUilGRka44447+OpXv8qePXtCx37/+9/Pd7/7XdasWTPltSkUCsVcQBjcLYT4K/NzuxAi8FLvsubsm1Nq3nbwYcCwAEQjonKrk4ko4u4jkEQLkyX7aj6h3q6l5U9D7cItwF/Z93MA6jLnS8wSFB/9VqWlTUbtrGR+jOX9L3iODZs1sgBYdjNTpTrhfVfdVptACMGGZU0Vuk/6EAIWXQcL1vuKrxqfhqqW2U1tF0H7s3mdw/wWRTHriP8Klk5y7SQXKd5qsLrDLoocVj+tIvyW0wq7/epoH9sP9bL9UC8/2XPGOWAmUIm74wXTw3D6NUMw1wsUhGGZFK7/y89fOu5I+puBJz2700InEtEA4Ynxmy6eIdwfKihVUBZ3ko+GJd5jiTrQfM/9xCDDE8Y558463lsFXVIw1xMZPU3zxElPt1hhkur0eTj2dFGFcXLpVns78PJgyDvepaRSC9a4EOIGK/ZKCLEBKP1bda5wQZWvp04qleLTn/40w8PDRKNRVq1axf33309jYyMf+9jHWL9+PR0dHWzatGnKY69du5aHH36Yj3/846xevZpPfvKTnuNtbW089NBD/OEf/iGZjOFfvm3bNurq6rjrrrtIp9NIKfnKV74SGPvzn/88AwMD3HvvvQBEo1Fef332fVgVCoViinwTIwfbu4H/huF58Q1g6r90L0OuWdLADdcu9biBtcZz/M66heR1ycKGJP09JQYg+MJXC89rZiAldO2wsxgGB/N9lLJEzE64i5Wxp3hMhyjkPC3DqKuKceWCOk5kw9OR27WqtOiUnbFuWtlCY1WM7YeMDI4XK/zPH38FUDCLRrtdAwuuekoRTVDQvdc13II1FYG+/Lv5vurVDFV3sGR0NwJI5wpFlM0KrtUUlY1cQbKgIUk2r/uKVoeM43t54KnBXIkFy6O4WP1EcB/Gmcajmp3W305yYcZSSiltF8FAOvgpxqr5T7XiLJ7lmlU1GbGdhYx7Ql+bxuALlNwEjl3GOZevPXOULUOGOiEErOn/JVKGOMe5FLbazDln//V3ky00A4+ba/H9nij2e+kSUKmC9R+BfxZCWK8CFgIfujhLurzZsGEDL78cniF427ZtbNu2LbD/ueees7ct10L/sc7OTjRN49vf/nbJ/u9+97vZuXNnoM1rr71Wct0PPPAADzzwQMk2CoVCcRmwWUp5gxDiDQAp5ZAQ4sKKyMwVul+H8T6IJp03yGtuh8Ub7JqPSwpnoCEJWUewiAjB6vM/M/quuo2pRsQk0n0QXxt6TBMSTjwXPNCwBEa6bVFqXe/j6ERIFFIQjxAqWIe4CBVDuNrbBUoFjhtcIFTJ3B8WfyRc0R9Cm7I/VSyicW17o61gzSRCCHKRKqBAf/Uqz7HTDRsYj3nd+d+1po3th3ppbzKE2apYhFTGtCBVmEJbWOJ4EUUhfJdl1QqOBpKxTD5cwep8EZb/Rsn12PNVqGjpuiQW0Zhfn+DI+WBRJGml9QtZsGURHM8WeO5IP+9cpZtnIcOfC71QNnOeLJJLUhdRYx2mUhUpZBBCQ4QluaiEQh4iUR7fe5aJTJ4Pbmx31uDJIngB1jE73qzIeEIYv5/SI8bnmPm7ymN9MsbIBYpbl0Bz1JVEPuWZUkoYqF6JoC/4APYfgdEzsOY3K59rhqjIRVBKuRO4EvgkcC+wVkq562IuTKFQKBSKaZATQkTAkhFFG5Qwf1wuDHXC0V/CmT0wabo4bfkkLLqhSAefoDFw3EgsMTr1EhxSRH0CEhyY9zvh8/gQQjCSXMxQcikjycXuA+XXHMKKthpX6xDXQBlmoQJLom4bPxw44k7wYViwXOm0ZzB4pb4qmJa9HALoq1mDBLIR49wtAXUi1mJfRyuBybXtjSRiGrXJkPfnocKxQd6VBKEuGWUqSRXKqQPTVBdclOn/2t8bKcNNjILApjXPk9yhvAXLfd5DkzkGx8vUMY247mlIkgsjpYr7eXLWUBDms2buiuYniBR1pyxzP3KT8ML/gBPPc7w3xdmRtE8hrfQelGkXpqQHiiLH7NpWYRkWLQtvwZd4w32Gge+dFnW9BBGM+4plH219D9kFNyDykzROdjkH+o5Az+6Sp3SxqLjQMIZ7RYfZ53ohBFLK71yUVSkCdHR0sG/fvtlehkKhUMx1vgY8BswTQnwBo+zHX83ukmYA642wmypX4ofG9mCgeRgyxN2vnBYRZmwq4W7mHk8AJ5tuJh0z1jrPVnBCBy16zJrn6sUNgX1uNNOaFXDTq2lDAFW5Yc/wAjhfuxYwMwi2robzZYTqafDJrSuNGmTT4FTDJhLNW8gPSdYvbiDTZ+x3n7/EiTtzC+0eAtnuHJ4+6IpxK7vM8sK6XZ8LDOF6WjpWhTFY4/0w/iK7I1fz/OE+2uoSVGmCiCa82fMqcBF0K/4SQe9YhpJEYpSLwfJM52ni7ycpRGvCXz6UcxHMmVE7PbuA3wkc9kzbfwQWXlvJAouvo5gFC0wrsHS2zTaer7c0a6SF/hrwKV7CGCdqfn9yWpL+VJbV87z9cm3rYPBNqnLDSL+xdBaSXVRaaPi7wEpgD2C9HpLAnFSwpJ1NRzGTXIZlyRSKty1bTt1f8vgrS++5RCuZW0gpvy+E2AW8B+PP9+9KKQ/O8rKmx6EnjRiCNe+DiUHvseYV3s+VZjwr+nu8yH6hIdC9yoxHWJnm34USFixLOLeUpanMUz3RA8kQuS1eTa5xOeL8gcBIBeGyQsSqEMJRsCxhr60uQV85YbsE00p2gSNcFqLVwDjL22poW9PK/jc7Pe0q/vMsNMIMur2jzrmJkBieMPxtpJRM5iwR0bkDMyWNlVvTy8cM59e+sQz1VTEiQngsc26iedOFNjRlveEkKdE4MzxZ2eRF2riTk+R16VmPxJSrpOT04ATZgiQRrTKP+ccqcxVD5u4eclIlCHcs0kh3cQWrLCFKul9pFJpzXa3veW4SqDebG/syeR1cztvl5Pa2OiPDdnZhM7i8cW31tLrZvcJZp1IL1kbgqsuh8G8ymWRgYICWlhalZM0gUkoGBgZIJpPlGysUCsUsIYT4rpTy3wKHQvZdPuTSTrbAgWPQ6svu6s/S5Vaw+g5DpEjY2eQg8VyINcw9lMfEo4UmmLCEgVS6mEuTGR8lHIEKjLTteV2GK4Q+F6urz/84ZG3Oxtn6a4DtwWMUMwKIwLlUx6MgRGixYDfvvnIe/7izAgvhRcI2CAA1IcqaxDln97lnfXEuBQlnhiagaorzF0nDbyME3ekkZ0fSZgv3YgxHuYKUDE9kaakxBOV0rkA6VyCYgN8/+dRFT12XrJ5fx6sn3S8mnHEihXRgn/tcrJcI+8849dqKrsL/sqGI7Gknt7D7aUQjhjLyVvcwTUBzbZIz1rWrXwijZ0uOCRixmdGgbPaL/a5kEBlXLNqFZBEMs2AFUrIL1zhm+/0/huUfN7a1KOheF8FS7oGaWZ9MIJhXl6QrESUPPufLMsxVCxawD1gATK262yywZMkSuru76evrm+2lvO1IJpMsWbKkfEOFQqGYPda5P5jxWBtmaS3Tp+ByU5PSiMGqWwD1i4yYghW3etu7FZZ9jxYfd+A4C+qTRISga9CdYUuEbhoB+L5Ma65G3YMTUKLymD+8PxbRyOsF3yThVOeG/JN6mIg2lZg3iMSwzrgPrp5fS+31S4i+GW4BlKVlZg/vXN0642/PrRfFbgXHyjTnxv/+u1ii9f7xHKl0bsoKlmdNLpc2c3IA0rpGXksQ1TN4LFimMN7ZP07vWIYrNm6meXAPb3YPo0u4scJ5PeeUz8Ke78PyW0LbLmuppq0uwYq2Gk70jXvWCa7aZUUtWExBfC/ueinxKr/+eawtXepUxyN0tNZyxurofWUQPrWuG7GZdjOn3URoxkx78CKHyihYdn0p13VzFz0XRSxYOMWOu4bzrEkW6BwYB1dYZtgKaxIRljZ7q0J5XobEa8DK4YLjjlh8xEtHpQpWK3BACPEaYNuRpZR3XpRVXQCxWIzly5fP9jKmxVd+Wb6K/GduUzWqFAqFwo8Q4i+B/wxUCSFGcSSSLFDan3IuEq/xfs5njLfUa34zPCPWFIqixiIabXUJl4JVPNgcETELgDptclqydAyWu7tfLhSCfEGnL5WhzXconS9fL6lSz5SwdkJo4MsGF9U02pvLl/UMzwPnZVNHc0VrmyqWQcXY9rzr97YL6etXvAqy/D2bSYTUqc32ATWGSxiQjRlxdEW894KMnjGyZG78jLMvMwZj5+C4Y8GM51PkhPG9sa5TIN25TYiiEFx9+O6isY7F3GwFPY2byEW9z5m00rRL3blPQjjTutde7jzKrdnv4luUkGPVLY6VqroZUr2lr5vngXV+L1m1vyYyWU6kxsm5iim7T9vNlQvqiUe8v9usdvqK9xCpbkaOp1zHLGXXf1qXXsGq9Dfy3wC/C/y/wN+5/ikUCoVCMetIKb8opawD/oeUsl5KWWf+a5FSXtqCiDOBFjFSsLsZmXoGwEowZDefANKy0hCsaucFjg1Wr6B0YL93Xz5imEvm1ScYXn4H2YLk+a5goeG3Tg8H9tlrnAGlwPLQKhQbqsF4nT73owuCC3R7QAnC5UkjPXm4y6c/RkxWcA0CMVjutZXoLxO15QcvPgEAP97Tw8n+cY+gf23PI/a2ZeXw3ssQJSNEUdDMfUUtWG98zztOIHmIt5+UcK5pA/11a821CW87KV3rEDhPewUWrAoVB1kqKUU5PIpeKSuR3ch13OkbMxUlAWRyxnri+bA0+pCPN/h6e0cHkFW+FxrmOmszYeUS5qiCJaV8HugEYub2TmB28h4qFAqFQlGc/0cIcbcQ4q8AhBDtQoh3zPaipsXiDXDz/+F81stbeGaMllWw+R47+15AwbHrSpW3YBW0OJuXN/PBDe1sun4DCxuS5PUQt7YKhEVHNC2tAYQpScUSHgDwzv8I1/5RYLctJs6i0iUQXmuPmeAkHa23dxVzCXRf0uN941Akw2B13K1ghSsKpdh+yArLMBOV+Pqm0nnbgiHFVBJYB1dljJeld8yrpAsp7TT91vPhsWC56qxpvn1uBqs7zDGmWt0hLMlFMM5Il/5rJJFSNz4ZWU2cAaJmLGWlFqxK2pX6noUdC1OwilqwfC6CLmXafkZdyVDqzKLB/lXnahd5yyeELEf6ztX6GJUznwV0OlSkYAkhPgb8CLjP3LUYCEafKhQKhUIxu3wDI6zDkpZT5r7Lk3gNXPnbxnb7pksypSHjOSYAv3KlU8H7YKsIsCk6VSeixKNGEVUr3bJf33GUhMpjKCThGe/CxcwSCkOsCiJRz5rBEZBn06hleFy51rHwWnYu/ndMxFu97Sy3TZeHlvvSpHOF0PsJkMkXi9cJWU9IQejB8WyRFOQG590ZGP0JWqbIndctYo6UtlgAACAASURBVM38cCuYZtaRclvzwvHGj7H8Flj/AQDGY61m3ym+ACgSsFc8v4KTMEJI66PwfPcCbctQdInuL1tNa5FGEPo987gfO2suituEGjOD/Zo6XIlaXLFwpkLsntX4TktyEXfiDuf8rbLgwWdc2HMHzmIOuwj+e+BmYBRASnkUmFeyh0KhUCgUl57NUsp/D6QBpJRDeJIBTx8hxPuEEIeFEMeEEJ+diTErou0KWLoFOn7j4oxfUvgwBXKvBIQl8JR13TPlIt2eQ5jZ/Nz7KlnHFAmRaEPd3qovTtzUxUQIKES8WeOKXTr3/oIuzQQOQeF4PFO5ghVYjzUXtpZQOkGENk0Llu5SMmWRc7YUUVtHKaZqm53HTctb8wqjBhpBy8iFUPKJFsKYSxoKhXArV+Yqy0/gUwIricE6F1JTtZCDN38Ip3aELdS1WcaCZSe5CARBuXa5FSxDIZ5npmCfCsWurUAGMjY+d+Q8zx4Ocx28eFT6lGeklFnrQRVCRJkNh0aFQqG4HHj2i+Xb3Hr5hQVdJuTMzIGGGiBEG2GFf6aIOeY3gNuAbmCnEOKnUsoDFzp2WaIJWHnrxRvfJ5NF3VnqhAh1A7QEueqsP0UzHunAFr7drlLmzoIu8Yb+FBcrrDfdlcq+oQkfQt8phyXDcLZrk9HiA14i3BEtxZCEXxv3u/yCNBWgcm6dZU/W6F91ZgdXnX/Lt7ryoqGeaCjbJnxWS3lyXZEi56LZ8qp7AMfkYStYEbMGWnJ6a/JOElxLKp031U5RxI3TOhfLvKM5I82goucZKSwhTuo8DJ4M7zzmSvdu++eVmy3sd4Z11DnWUhNjkZ5kWUsNadOKGpkcsFtOpeayEEYeQSF1Vz02g72nhyloCW694tLZhiq1YD0vhLCyM90G/DPw+MVblkKhUCgU0+JrwGPAPCHEF4AXMRI0XSjvAI5JKU9IKbPAD4G7ZmDcWcEtpFSlTtkKTCKq0VAV87aVBaLSW2S3oBlGwSWjpcOxrXlsDyUrcxoyEBNVNXnenG9672+FcFSDki5ZYQsMobU2zrw6w1LUXB1n3aJ6fnPdgmmt7ULI65Ies2isURIoxDrnUWpdidRd+3tHM2bmugqub4ksF1b/qu6Xqc841Xs8t63EdZWiUhfBoBXEHr5ISnT//fdmEQxRBEOy3Un7CXX6lr5mfrc5p99jb/QEWjfXOAZ1IXXo2sGinp/bNmHsOLmQazjvSiP5TOg5Fdd77Bcc9QtLn0M5rOtUKBbn5IvBshjqInHylyRyIzSknWvy3thelrX4MqYWcmWutuUiaN4n97MvBLFIiDvnLLgIVmrB+izw58BbwMeBJ4EHLtaiFAqFQqGYDlLK7wshdgHvwZAafldKeXAGhl4MuPMzdwOb/Y2EEPcA9wAsXbp0BqadQSJRKAQTZdQOH8WsFOTKJmcKXBHDdSdWmPD0yUZrOV97FfNTpQ14VeZ49UlHabNEnUyuQG3CEUNyEX+69OCbcHeckWewQM8QJWSKZqjWWsdtKRrRuH0WlCs/xdKOp3MFYpHSIt3geNZ0f6vEHubbUy78CGG2sZSTEkyhpIBnDpeLYJibo3HYG/s3kXU975lRe22BWl6u6zpQvZLq3BC9NVd45w9flWuzjGXQVvqCx2rGuylY+S2mYrmqsP6Z10J2AcqGde9OPFeijWkltf6ZxM7tYV3kCHHX75KKz9SVQdW6t1ldx+soa+yvi2uuglKzR6VZBHUp5d9LKT8opfyAua1cBBUKhUIxFzkP/Ap4GcPz4oYZGDPc68y/Q8r7pZQbpZQb29r8lZ4uIhUlDigen5GLFKk8W9VkyHwyqJ5MxIoX+rUuTVttgj/evNSVlECQjGoIKYkc+VfY9TDkJj19LNLROgrCa00LzLLqvZ7P3ct/35gl7FQr9Deay2natTDp3GQy67hRShmMQzGyZGvTthA6FFM1PCasor1FiXOoZF6Rm6Cl62clW1r30G0tYv9jIUM6jmsA77qijetWL2XN1g+TiVXoNmgpHe6Cu54ppC+0yh3TZLaxN11vDoSAle8xxo/EvR2KUOwlgtRd51kuUyCUcGGv4N6VUKDjvhc1RSPOSjyiEbPhQMqyotnZM4wfIth5Nr7SFVmwhBAnCf9DsmLGV6RQKC5fysUeqbgjxUVGCPHfgD8BjoPnNfW7L3DobqDd9XkJcOYCx5w5KkkcUMptq5gIYlUAlZLG6hhDE7kpJQEQQjCvPhnYBxDp3QeJGOx8AKpbqR7vIWuuxmKoahmtE8eKn8KC9cC/AlBYcC1pFsHIWJHFVBaD1VabYF59grUL60Pazx5Lm6tpqSmer6Wx2quMvtkdUlesAhdB+4qUuM9VuaHAPilhMtZAXSZd0g1Q89+H4mn2fM2MdcfGTlHIjVp7PW2sc/OmnTdxWW/dDoFGR2P+G5YaLw06+8cpSsNiGHG5/iXqjJ+RmJEsosy5lNQvPWnaBSy6zvjnoUTMW9FbG3SFBOOaPnOwl5XJFMtLLdqzvnLH/S6TIS57dvvgroHxLKVsxW11CYJPn7M24XNPlO4Yt0tIpS6CG13bSeCDwOWXekehUCgUb3f+AFhpxknNJDuB1UKI5UAP8GGcVPCXB0XfLAffnzuClLO/Oh4lEYtwRi9nLSshzAhhurlJTg9OEtXSxKPjLGsZC/QSRjaCMgjflu88XKTmv4OT5yIsH3rJ2blgfaBdS22CP968rNzEl5zf37Ck5PF4NKA22CxqTBoeW4QXGp4Kifw41579Z+Q8b6p0KeFY81YaMmcZjxUXEeOxCmOwitRJE7gSQfhrw5ltQl0p3bFBdsILrwXLbhroLpnMFqiJR2HpjcY4+x51lMOqRsgHi2cDjKa9a3SvbbD5OuhYiDzzpGcdEsgWJD969RTZfIFkLMLv3bCYcrn2Bidy4b5p1nn7XEQLuuStnhFOZHr5k6ROPFLGsa0S9868aZHOZyA7bp+PnxWtNR5XXqsQcb6gc+DsCHVFJwi/Z/YSQ5S5mShUPlUqUrCklP40QV8VQrwI/JeZX5JCoVAoLGvgllMhWdoUpdgHNAIzmpNXSpkXQnwK+AUQAf6XlHL/TM5x8SklkIjwJq63wlJIFtQnuaKqgVPhsmRFVMUjNGtxsr06k7pOtiBZ1Fhlp22vxD7mDsGSgb3hL9oXzJ/PU3XrqMueB4Zg/jpYcmlqi10KisVngaF8pXM6RV3EfJTIcUGouCwEupRkYg30lnWt8w1eoQXLmtdjQc2kQltqQkA+QyTnckkLTXgRjMEyVhhcz8n+cVprE5wfy1AdFYYCkM/YPcilnW0XZ4Yn0YSjALuP9s67GeYlgScNy67Q7Abj2Tznx9I0VMU4O5JmLJ0nYa4znSuQiAbdPbsGxqGUZ7IvhbqTZ0aQK/gUrNo2SPV5upe/TwKqTNdhqYN5/fvGgkFRdUmvCqKZNfJGsqVfAPjDL536WsK00Pr6Syp65meaSl0E3f7rGoZFq7hyqVAoFGGo9OWKi88XgTeEEPtwhTpLKe+80IGllE9iJHm6PKnARTAkIsmTtqAqFuHqxY3kom0cfB1ikUoEY+948YjGe2vOQqKR3rE0x/vGkVIahXB9qyqbmKJonaPg/qZqn3tdNDm3A65MWmrjLG4sEiPnIqL5lYQgpRWnKVKpd5qfwDWvrKed5MJdRqBtDfQdcVK4Y1mwgNf/F0t6zvBq/b812tYvhqFOJNJJ2lKxBcu5vk++dY7auOCDbnOSnqcgJROZPLVVjYDjphqLaCxpquLcSNpcm29woZHJ60aCGSGYTLQhOUeheh6MQXtzNSM9I85Uus63njvOhmVN3NLhzcBXvg6W97inFp3/Niy8Ho4+Bdf/MbzxfXut5XGpQGbsWPfQZKBVIsSSKQTonlcmJUJfi3x3NT0fbg3Hioe7NN/5Sl0E/861nQc6MdwwFAqFQqGYSzwM/C1G1tsLrn912bBiK4yegYnB4m1KCUdlZQ7pCGDxWlY013IQUdxqUu6NcXq09PEilJSNhCjpPWRncbPcytIhMUpzkLs3Lyt63i21cTvY31IAhBCByy+sLH9Cs1PyF8fsPHy6dDN/rwqtBMEatJWqZsGbK4t4kWqagEnf/W1ZCUOdRj/7u1BaWPcvU5pK/3imgNdfT3Kyb5ydsRu4I+cVrYXAky3TP9XgeJZMXjctXILj838T2VrL2kX1cP60HbMlJTA5BJNDaHqOXV1D3NLhzbxZVMHKmgqlL4tgQXfO39pbkJKTvSlWLb7BcKGNul9MVJLkwr1gl8Lr4n+z9+Zxcl31ge/3V1tX77tarbUlW7It70I2XjDYgIMhhB1CEgIDAScz2YbMvAxJ3icvM/PeCzNZGJKXkJAQBhJIAgYCCcHGARsb75It27IWa5daUrda6n2v5bw/zr1Vt27dW1WtXqq79fv2pz9169xzz/mde29Vnd/9LeeKznqiQQlmkJxVLWwsOfUt6LYxhmhmquCLv1oZ+Sp1EbxnsQVRFEVRFo7bTn2+bJ2nN92/BJIsOReMMX9SbSGWnJpGuOED8PRflKhUUjsJfi9iF/A0GVvUtQO6b4BLjXALmcgWZnQ2npcKXJI8bUtxaREX668A9kK2nKKxPCiVOfCt13Xzd0+ftPUqURIkilCcqt+Lv5XZTDaXobCgLd/UNXupM1n/mkmh9RwrlTdL3IVDBF1tr0IDzoLYRx7NvRdXyQxR7vzWwCJR/OfaGCZm05h4JLdgrk/sfN++YyfTtkJXUxJaNyMMYIBsNiCebPQcBmic6WOkdmNxnFq4xM7AYmAMvUOTXBifZXNbXU5IV0E+eXGCf37xLB+8dSPdzT7LaUVJLrzd2jbbG2o4M2ytWIloJLe+XNDhWW/G0sDuChXt3LsSou08+1We3viJyr1RF4BKXQR/o9R+Y8wfL4w4q5fPPPzqnOqHTo4e8Swwp65UirKiKfW9oLFXl8weEfl94DsUugiWXhF3NVBuAdcKXATHpv2Tb1temxrGJLAB/tE4IjabYNhT5IpFdidJJdLMH2+9k/GarsLjnLGEWU2C3IByx1QlafPik7NgAVCYGtwa9wxINK9cOCRikaKU7sbYie6xCxOB8TPBVGjBKqoXdlxheSaXwCJg3p2LwzE0JmOe9dwsrVOnoC5fN59pzplx++6Xtf7Mlx6lX5ykMFljPMqPGx8WKbr9jS9Zi193y0br7JIHm3ZBTSMihXFPOYNQgevc3IzzOYtdxGaa/MaeM2SN4eduy6/V5yrIM6lswWshc42QdEp892JJWY0hINN6xUhh157ypXVomEsWwVuwP1gAPwU8RuGii4qiKMsfjQNb7dzsvN7mKTPMP0378qfs0+VS8RP22LTfDOFYhbLiTBeclNRuT/HY/JSVfLLCYtnEccfqb7zWU7+y/krVumFjC4yUqLCCkIKJe+GoE1GrZKxrySsLhuIkADvWNXH80D6ELMO17oRbmEplKlauDKUtWGM1XTTO9Acfa7IVTdszGSt3gWuZJz9LELmpvu/+KrRgFTdQymqYlSgRk+HowDjb1jjpCNLuAgORIgXSdWN0xd7cXsfJi/nkG5lIjJe638+Ono2eY0xOUYvkNazC1+I3mLAgu1wmCOsimIu98lmNz41MMTqdCm4Dyn/H4FFWPZpmpc9cRCCbzSdCDOotf02D28hkDaMmf8/3jeYz8iylu2ClClYHsNMYMwYgIr8HfN0Y8/GwA0RkI/BlYC3WD/7zxpjPikgb8I9AD04slzFmSOy35meBtwGTwL+7LJ44KpcdlVgzP3nv9iWQRFFWH5e3S/sc3OnKNuVPmFDollOfiLFtTSNbxxoIJmQqEzJBm0nnrVFzWgh3jv4+n7zXJkWwCla1ojMWh1guBsu+H3MmyvfuWMvjhwesG6ZEaZzpp3P8EAMNVwFWYblmwOZuKXAbdk5PfSLKRICLoJ9Sl+1I+xu5+ezfz/1ADzOO611QXhXPVD5QCc9ZaGdSTMxmGOk/mT9yDveQ6djGaLqbluleJmcz0OYsB+vE9aUjNSHr+Ob78LvducqOV3G00UsBLoJOedhnJItdL219ay1PHQ3wgrCrUBf0A/bzPZ3KcMKj+AX2UFGSC6+w+eQSlSDY61ypcuLpIvftNjaTJhXN95dXZpf2817pGDZR6HE9i1WQSpEG/pMx5nkRacS6bTyMXQDyB8aYT4vIp4BPAf8FeCuwzfl/LfA551VRFEVRKkZEfhK4FrtuIwDGmP9WPYmWiDnER/izc4UuHuwsNJyzejj1IhHh1i1tcGguU6Hg5qfiLbzQN0PSmf9sHHmO+tkB4tnizGOlo8g8MVglK658F8Ed65o4N1x4frxxQ8ZAzEm53ZSM5Sb4081XAPvpGj/AQMNV9HTUBcRuGS5OzHI6bSemlVoNsyGT6Na6OKlIXqmYSWV9E+7KJr7T/ceAzmCracsmYDBUWXPv78kZq6RlIk7ihhALVhAtdXGyHVdBv0fJcM/N9e/j3NTLDMU2FY1mNh1uoTtxYZJUxo0ts7UyWcPgxGxecfAZsAoHVhyD1Vofp9afoc+TLXE2ky0urlT5iMbL1wlYRCEbsDeIiAijU2nqS9TJZwQs4fLsnLSJ2bzLsxhX0Vuaz3+l34x/CzwrIt/Cnq13Y61ToRhjzgHnnO0xETkArAfeCdztVPsS8ChWwXon8GVjR/+0iLSISLfTjqIoiqKURUT+AhttcQ/w18D7gGerKtSSUWbiELIQajkSUbt2To2T5Szf3fwnKrNtV/FizWu44dwDBeVtUydKHpfvWgKfjpcWbeUrWG+5di0AF8fzLnx+t7acRTAXewYTHdcznHyBWHaWD9++mYZkjOnZLPu9BzrNDE1aC1iZfA85ZtLBMS5DkymyHfnp5gN7etk+uwOpPUXr1ClMtrKouPqpXqCT2miEIXeMgMRrya69AdhbfFBOOckvTpyVWKFrXJnO6xJRMDj3v+c4Lx3bGGhLwNhMWWuN/97sG5lmbXOSplp7jrIG6mti+XXhij3uCFs412CT0uRDw1wLXd5Sd/T8ODhLlXnXnqtIxUqUWaEpEi0coMeCFY8KXY1JOhrDl0vu6ajnaa+xtK7NZk50aVgTemzhgwDrYHy24CHEMrRgGWP+HxH5HnCXU/RRY8wLlXYiIj1Yv/hngC5XaTLGnBMR92ytpzCmq9cpK1CwROR+4H6ATZs2oSiKsuRUEselVIs7jDE3iMhLxpj/KiJ/BHyz2kItCeXcd2YnS+8PbpSOhhru3dBJYnisQqXqUiYy4RY0r1dTUZKykHfB6+fk27TVV5eLoNfFLJ01HvcvN/DfW2Job7AT3UyZ9H9hFqyjAxPeWjx/ciiwXhCvJnbQlTQ2+UTY/eK3zviyCI7VdAEpn2W2tLJmjMF4F6OtwKLxc7dt5pFvOdXDxStZXupj09FQw8/cmp/PNiZjVk7nfXB2yOKALIMhlTFEsff/2rF9dI+9xAvdP+PIZOOjMtlsUStW7kLBx4sS3mAVqFIkW2C8320QN97LGDuOjW7WwtbNMHSy6PCmZJzodD4Cy1z/AXj2Lwvq+FNoFCdNybuEem/tRGZiWcZggX0iOGqM+aKIdIrIFmPM8XIHiUgD8A3gPxpjRkuYmkvdQfkCYz4PfB5g165dq+vbsQKeOpb3qX06XRzLM6fYHQ32V5Tq8cjva6bAxcE100yKyDrgIrClivIsHXOxKIVU7fQ/XXbaTOR0t4W1/oQ9iS+sI4GTKLszWJ5V4AU4Z9z1d42BI+fH6XAUqKBz4T3v3gn8Nd1N9hPjuc5eC9ZkvJWjbXdz5eAj1Kbmu46YY1mrdP0s8tYWO5fMOYRS7r50k1zYKX/EM/7yMVh18Sh9DTuYiWcxTRuBAScGqnJ3M6/C71f+i9YdFkhlTC6Ln3t9Aj8DnnNnLYiRnFWqZ+hJp78sFKjbebK5RaeKW3/q2AWu39DsE67MQ5xovKCPoYkZDp0YxOCzAEYTRYcGIbWthQXTIxVZ4o1EijSIm859DWavhtqmivqeL5Wmaf+/sJkErwK+CMSBvwPuLHNcHKtcfcUY4z5B7Hdd/0SkGzjvlPcCGz2HbwDOVjoQRVFWCeUUf1X6ldL8s4i0AH8API/9mf2r6oq0VJSZ7EWigWs/2amiPTY3CTL+CVmQCalEf3MIaocSMWBul7lA9hL1EnXIbAUT3lWkfXmVo5ijYbXWxxmZStn1hIScy1hOpfCN3xu7dd91a9m/r7AP74NxI1EmajqZirUEKljvvGkd396bn7qdaL2D2WhdUb1COQwz6Qwv947wms2toRYz8aRFH56cxSBcnJilMykl7x/naFKZLJMzaWLZWdaMH3S7Juw+rq+JMjGTQQTGa9YycMW1bEw2AwOB9V0e3NdX3LuEWwL9pTOpLOdHZzg9aC3O7vUxeV0o+MGEU9TVlCz4+G27+ENYc4Xnvi925RRM0Uc28CNcTsHypbwfmkzlJC1nKfXLE0h6hsSr37XyFSXiKSSoBTM7vbwULGzM1c3YHyuMMWedxBWhOFkBvwAc8K2T9R3gI8Cnnddve8p/RUT+AZvcYkTjr5RKKZeZT7PyoRZLZdUjIhFsEqVh4Bsi8i9A0hizSpJyl8E/gYslcumjgYqUnqakG8Tuj7B3J2ULoJw0rYNROwmPRkpP2EyISiUBW9mNt8NR66ZWWWKGle8E01IX556r1zCTyrBjnZ04djTUcOLCJP2j08XJTByFwpuFLhYR6hJRWuusVcG/BlFrXZyIwIXxua8u3dd4XYm9juKQzfL4qxfY1ztIZ+oMm1tqAmNtjDGsG90L+4/YJA4pYXI2XTDpF0yo/vxq/xijjtvbxlY36Ua4Beunb9lUoBQYk7cipaJO/pzGtUXHjc8Uu9YJcEtPK88cG6QxWXrq7S5UfE13Ez0ddSRjHre8zu3Qd9DzWfbfw1Jk8W2bPA5sxXUR9F57b5ILf5KSdNYuSLyh1aMgx30LD7t0bIMd72J4cpYHnzvFG9JTdBtToCgVLP7c2G2XfDhTOll4JbGUQV9rhpDvlXIujgtIpQrWrDHGiOP4KiKlEny43An8PPCyiLiRh7+NVay+JiK/AJwC3u/s+1dsivYj2DTtH61QtmXBXBcSXu64rohBbogu5ZQWTUeuKMpSYozJOjFXtzvvZ/AsNrz68c1G6tph1POc0mvGCDh2U1sdzbWOglX0OLswi2DR9lxoXJtTsBqSMRgrXT0SkVwwRVEMloGZhvUMT0zNYfK0eixYIsJNG1sKynra69l9YoihyVTufAn5RaGNL6WBiHDjhsI2vCTjUdY0JqmJTXJ4MneQX5I5y+6NlppJZ2mdOknDoaehvsZOvpvXkzGGgbEZuppqMMCm4WegtZ2ejnpePRdxLFoeF0FjihZNdnsb9cQUrWuptQsulYjByn0Wci3krTzjiS4OrX8PN23aVfF4b9jQwg0B57nIRdCRp6ejjqvXNnHy4oTTP7DlbqtgBWCwVh0pvLz+3gp25ZNcGM6NFLrezaazfH13Lx+6bTOdbmFdO3TtgP791h0wk8oPIhrje/tOkUobzo/N0O3JIuh0Ujjo7W+BC4dhpswXQAilo+2C3YrLWzoXjkoVrK+JyF8CLSLyCeBjlHG5MMb8mPBP3JsC6hvglyuUR1EURVGC+L6IvBf4pqk0uGO14J88RHwplXe8C/Z9w1YNODxakC7O5yIYpGCFMT0C4+fD93sUobyTWFi7ZfoTYXD7BzhoBrin0qNWkYtgEG42wdGpEgvGXiq5eKDgcziXD5w72bUJHQzRbAqikCGCTI8SmRnj9OAk50amiUcFU5vvNeIsH2DDoAplmfSs2ZWL0vJ9FdhDHAXgUu4HESZquiBa4TR6Hrecq3AZJyOgVQk9/oLFohUPyV3tGAoukvfoMBe+6ZTHrVgidu2v/v2QbIaeu+CVb+V2941M014ge/A24n4HBMhvCpX/4grukeGxbMa33leuzshpaGgrbnMRqGjFMGPMHwIPYOOprgJ+1xjzp4spmKIoiqJcAr8BfB2YEZFRERkTkdFqC7Uk+OMjEr7Yl7pSE4sA0xAUughWarW4eDS/3X5l8f6eu8AJXvemWw+jqylJW32CrqZkkVXBK6q3ldWepr0U0YDB2/mmyU3S56IK5a1gBaWBdef2SKN4xp/KGJ49NsBzJwbJGkPaWSMqkzXUDx0suLDpaB15+wu+rSLJfD3nLV6V3A9Bp2xkKsUzxy4ym84yNZspY08pETsYsq9kJkyH3DMk56HFTLQh+Dh3nDnF0pLNmzUrQ8SuObbmGvs5Dqljc4CY8OvRda1HLofWzQVVXJfXEsIUNcHmO2wZkeCkIAOHyrS5cJRVvUUkCjxkjHkz8PDii3R5cNupzy9Ku+qWF4yeF0UppuB76JH24gorMCbPGFNmoZZVjAjc8SvW7ebVhwCBq38SDn7XrVDy8InuW2HiJfsm7ipnzjGjlxAS3bIJrn9fcXmsBrbeDa98KzAFtXcuaxDWt9Ry+xWF92c5o0NFadrLBeyvUILC2vzntFz2Rq91oC4R85SXI7jG9q5GkuciTKe8KcLdGCyTS9yQchbBzZrySRGykXh+Ei3FypqX5ukzAaJWbsEShNNDk0VrjR3sG2P/uVGGJ1PFGTi9x5fWvkr3XaALFo5zNpOhBuDqnyTz6o9yAXTFsXfuA5JCy86cFxoGa7m69l12+3yxu6LJueeZcGtUTUNxuxtuhaGTuTT8kZD4zNLPTuwxU/Fmsus2w8BjpWovKmUVLGNMRkQmRaT5sgkUXuW4yoamiF5haHY9RakIEWkFtgFJt8wYU71f2qWkpjGfAlkEum/IK1glZnlGhIl1d8K6+6x7X0NX2WMqcq0qUyc3XfTUm6lpIzEzWL5tyE3k/F2V7LauHVo2wqbbK+pjpVETnV8gv1f5ikreIjbZsp2+mLWChrkINiaLLYwAP3lDN2ej7+LfDhdnmYq5LQAAIABJREFUHpyadV0ZvW6pAfEz+MN4IlZBSE8V1fXjXbi6t2kncNK2WKEFC+Ds8DRnh/NxSpva6hiZSjFSgSvmXGymOf2/1EfPXcA36z1n+eNEYLC2JzduMcGLQOfWFlvghC8pNw7OkzElcDgRjxriUx7LnTPjS/Uu5H0jxRiyG14LLy5jBcthGpus4mEgt7KcMebXFkUqZdVQ3lL3h0sih3LpqPVPWUmIyMeBX8cu9bEXuA14CnhjNeVaUnLxUr4nwGEzNu/cKhKFpm7vQfnNgMxuJanEMpCr48QN1ayl8bq3wp4v2pKgeJJKui61M1EPN39o7o2uEJrr4tx+RTtPHc0/RJ1JZxmeTDE4MQu+LIJhvLDuZ7hpYzNMPwaTF7m46a0MHLOKb/NMgEUIe97b6hNOP4XMdt3IxbOe45wL+9D+PpLNXXmlwcl0VyRhmLGp4yqMkVz/5chGvIlcKrRgBeh8sahUnHq8NhGu9IaFioY5DnrrZz2uvAYBk0Wc8nQ06Tkua1ucGUOyKZKpYabjLTx/yl0cOnwcc//8CZmci2AZbvwgHP6+tbSXitsMIIs9pwV3ipN0I2pSwe6qSxiWW6mC9V3nX1EWltWSOlytSyXxLpAdxu1bA1zUFGXu/DpwC/C0MeYeEbka+K9VlmmJKX6qDUAsWVRzTtzyC/M7PoCIwF3bOpgdieXyPUbIFkz3yj7JdueYCF1NSQ71j9HVPM+xrnB62usLFKyTF236v4N9Y1wZYiHyMxNr5JZrtgI9YDJwMp/tLZ7JW43a6hOczi9URiTkghVlgHSubCaT5cSFCTo85UFN9I1OE/M0LiL2WYInq0Pd7EXqZy9A9opcnWhmusAtsmDklcZgBZRFIxKYkj2I69c3h+6bzZS+FkEugutH9zLQcFWgciaCdcUscAV0FMmh4wBsHfox+9e8vcAiF8b3Xu7jE03rIFvaUucmw8ipVWNniWTySVwDFbW6NqtkQU7Byi3iXO6yBDWYbGJLRz1DE2A8631NxtupS11cPgqWiGwyxpwyxnxpqQRSlGqhlprVQdk10Sp5rFSJ4r/KCFKC/cs0rJD7f9oYM20XV5UaY8xBEbmq2kItKY3rbBIJN5DcJV4LPXfCiScqb2s+wSMVsqunDdNfx9NOEIKYbM7xr4Jn4AVcv6GZ6zeET2YvF4qVmZB02SVIxCLEoxFsPrQYwnhRncl4G9c2p3lxwtt+pdfMqZfNOpYgu5CwXcMoU6A8uJaihLsQttOHjdnK93fF4I/sxo9eyZVdM/Ag5xuupmv8QKF4s+MwPXxpJlLmuHBuqT7CLFiBh9jCZHqEzvFDmBn71fb44QvMHh+EWDMgRWta5VwEEw1Af9E6UaUsmuMzabjrwyWVkwtjs/zto0cLCw89WOB6WPYsl1k42I/b8vMnh/IHSMSN7MNks7k2slWItyw31fgnYCeAiHzDGPPexRdJqZRy7ndPb7p/iSRZ2VSScGSxz2WRDEEJB5SKKHs91VK22ukVkRbs79fDIjIEnK2yTEtLQyfc9kvB+9qusFn+fEkrLjlNeikqelrs1GlcC7wKCDO1a4h7eg6enNqyHxw4bxed5ZLnyasS/6nwXopKklxUejKnY03AIBGTcfqVIgvWz9++ufhAPEku/LI4BjbjbpOfTK/xJJJIZWE240neEELD7HkmE94Mms5k+5m/tK9ORstSBJ2ODa11HBvIRc0UKTWV4tfTxLfl3v8GA7Fk7lxcMfgjYvtehFiUYxcm2eA58uq1jQVfevGBV6Au4ShY4ZxvuJqxRFfxDo+VcDqV4XOPHuXdN69nXTpFNpVhZGYIyoT+1TifU65/f+mKZfB/H7iKblMyhvfsBXoIEhyLthiUU7C8o9i6mIIoK4/VtriyoigrH2PMu53N3xORR4Bm4MEqirS8aF4Puz6K/PD/rax+XbtNlNHYXbxvATUa8TxhlmiM6VgztekRwibO3c02dfuhvjHaGxKBdS5rSqdaI9RFsCDrW/luoiaFALPR/MTdnxky7mSDC83s6FhXBOOsieXcC14Rc6FG+TaaaxPILDbWsJywpdZWmsN97F1eyb9kwMXx4rizSii3XF8u9YMBYgmybdvh1LNOIYx13szITDcbPDI2zvTTMtsX1Jl7mK8PW9LXsIPJRAelOD9q3f52nxyiaWqcxtPDdGzMK2XehDXeM7uhpdZudAQs3eCp7cpSdFXWXgd9+/L9IGSzhqHJFE21cXtdnYWWxRhMsoXBNbfxwnQ32y4+Yg+ag9VxvpRTsAJub+VyQq1klxkBrnHebJN6vZXliogkgV8CrgReBr5gjPlRdaVaGeQTOwdMNKMxG4A+j5YrwjfJNVLaxrKupZZ371zPFx4/PidXrcuFoPT3LgahJj0Oj/+RU+KpmwmPsymlh6Sitbk6RdVCjnvrDesYe66GY55U4d6p9f5zo7nkECcHJ31NCclEhNHpNNPpbNlbrfBu8gm09Z7SB1MY52cwdDcnfQtzXzpht2/4+c4fMNtzD1842VlgPRKA5/+WZHqkyF4zPDnD6HSaFnppmTrJcK3fulhhwg+sYtg7NMU1kEutXlxXArcrwZStL4w5MXC5RbVzD2rsvTTSdSszZ0dzbU2lnLT2S0A5BetGZ4FGAWo9izUKYIwx5VYBu2xZrHWuVhsVJT8o/9236OSup7ruVZ9lEh9V7t7VpB1LzpeAFPA48FZgBzbhhbJoLKRPntOWCGsak/Qi1CWiJWOwXCUim5v8Ki6lzkV/47XU1dXBWsfqcPaF/M6c0nXpPfmVu7C04zWxCBNALDMJ0bZc5kB3MjzjpPo+0Xo7PUNPFbZhsjTUxJkAhifTtLQGjzjrJLEQj6pRsLzS5jugs3xsaW0iyth0ms7GGkanU9xxRccluwT6mXKSQ4SRU2iwSs3BSTv1zkQSXGi9EU66zoBW/XMVmaIzkmxi76sXcgpG58Rhj4LlWrYq/xR5YyTPj05DTiPIt+Gm+N/c7qyr548L9VKUpt0vS4BsRZfA4yJo8orxbLTeESh4GYHFoKSCZYyZ32IKirIQzDND32pVdv0T/BWakEBRFoodxpjrAUTkC8CzVZZnRTBQv4322ACj0s3ahW58LhNQz+x7e1cD67a0M3R+GjLhLlSuASGrFqwiSlkLJhIdvPFNt+dP4PlXYLZ8NryupiSNyZhdUPeULSt2NaNoHhwqSTQBAvHUOOvH9wARjBiMxxwzGWumr/H6nILlZWNbHQexCchNJH9MfU1+u390ukjQAiWiQqvKlo56XuodQQR+6Q02Q+EpJzNjOdY0lbaZzKYL7Uw5hdR978aqGcPYTJpXz4/jqkVPHi1+0DfhZjb0+jMCZttbGDn1KGvGDzrt5vd5s0KWI2hN57GpVE7B8p5f1ybZVpewC4+XtIYXxpwVkZry1IJsUD2J5G3xJi/kidY7aJ88RqphfYn+F5ZK07QrSiCrVXlRggm93mrZU6pPzrfJGJOeqzvKZcem13JkdJoL9dvo2NrGqWODXBub4zlbkHMsvlc7wWpMxhkKPiBH3oJlcscplljUnouOkPi0Qvc2v8Up2D1zS0c9H79rK6cHJ+ndE3p4qHti0VpQ0QSCsGbgKaImxWBtDyZR6BrmT2FeYNXwWnaa8hPn1rr8mI1xFygOicGqMLtcV1MSGGHGY22q9HZ7784N5SsFEHQ/v3h6GCMRWuvijKQiDIzNFNXxWsSmY03MxhowjDE0neZEy+05BQtjiGTTdEweYcvQE26nZeWq9LlJUebKK99k19krQ9NULxJkS2tcCxePeAqCFCzXR9XYP0eEjCyd5cpFFaxVjCo/ywiPFc4b07SY+JOQLGa/lbh6Xm7oOVlybvS5sdd6XNzVpd3PFW/kwvHDALxmcysdDTVs7ahf4E5KzMQa19r/9a+x752Jbm5aFeZX5sHdlVnCtW1WCk3JOO+6eT1t9cUKVqWKQVhSio1tdfR6akH+uokEOHY5HUalWJFDbKIMgIjJcG5kGmKN4TJ5moh47hkjUUaS62meLlwAORoRUlmDkCWSqOXF1vtoyw56GqxMwfK7owJEKozBSsbn5wzmjvnU4KSjUNkFjm9Y38STHuOXEaF16iTpjDeSLa+qCJJbZDki0NOWZHbkGdaO5VPaV+IieHbYsXYJuYQkxnMe3eQfEzMZUgUKcmXna93ICwwke4p3+OM0TVAGSpumXTzKVeExyyeLoKIoc0An1ZfOclqMWK/jykNd2i+dmliU7V3hk9pQEvNQyGpbYNdH8++dyVNTrTMtya1nE66m5Sa92ZCsY5c5WypVmGcnytcJISgRQcSns+RslH7XQYkWXLMI7kK14UpPQ41zf2x9AzJhJ/qu0nOu8foiBSsi5FzlkvXNTNR00jYzdwXLtfh5464WKMdFKH7b7gunhlnbnLRp9n3ZRBqTMTJiz01LrXdq7yykbCg4q1kD13Y3cnzIcy6A+65fyz8dLF58+PTgJOtaaolGJKdYdjcnOTO4lrNNN9LXkI+tcnWql8+M+MZS5kGIR/mJZaaAWl+FohsoQInyuid6e7Tl/aPTrCktxYKhCpay7Ck32fXHHq0GdIIfzEKcFz23ymVHXTtkw7PDXTINAevl1HfAxAW7PSfLknDTxhZiHe259+WIiBARIZUxRCOi62BVBSl657dhudelKFROpCC+riZlDdBh2ePqa6J5a9DmO4jsf9jWd/obT9ipszerZCwagXQWwdDaUBMicXmiAXpYaNr5eeK2G3Qa+kamWSMRIlLY/13bOnnh/GaaZvq4ek0SDlnLWV9sDRfqriBTs4+TU0nA41JoskzGW2kHrl3XRNYYWtobgGIF64E9vdy8qYW7r1qTe6CRzhoQ4VTLawvq+l1EJxIdQLpkhkpXHpemmT6QLYX7C9wDoX90luY6X2p8idjzZpyU/86tYByRDpwZ4frSUiwYqmApKx51hbToeVAUJZCdP1+k7CxIvFIkYAqx7V7Y+/dzb0uwCwa7M9kK5ItGhPfsXM/odIqmZFxjsCokVDG44QPw0tcAiM5BIfe3NxGSMCMZ92kpkQgNNXHcSX9NZhwodFOrTQ2Hyx2zCtORkQiRiVmyjgUnnfHZLYy1ZUTFUc4K/AwrmwZLzkVw6SxY+c6LC6w8eVmiETDO+GTwOMRr2XrjDRxO3cjwxUn2bbyRvSeGC5sZO0cqahN2NCXzMUrxqPhc+yxnhgsthntPDRfVgeLvlqxEgfJJVPzfUdEp38PQKRuVGYkI0Yhw4Nwog5O++9TTt73qhpa6OD2tjXAa1sYrS0yyEFRmG1UURVEUZWUSr4VEXeCu2HxmiSLQtrVEhblZsIreixNfU6KZjW11XLuumY1tweNT5oBnctrXeF3lsVpSuD01W5h23FWM6hJ5ZWbn5lYakwlqfEqXQYgExMnsX/P2YhfDTbfxYvf7eSnTwwN7eslKlMHanmL5MLROncoJGs068kmkdNpwD/74MSj9kKKlrnRShZ997SZ+6sZ1JevkLFm+z4YJVJGFkaST6CM9BRjqa+K87Xq7QPiF8eJkGKRniGd8Cke8lo/c0VOQidHl/OgMZ4anLik9fUUPP/y+pUX77f0TFWHnphbisUguS6T3e8x1R8waw+H+cWIRYU1zEiMRumeOzln2S0UVLEVRFEW5DPmlN1zBJ15fSkGqgO4bCt/H/HETFeJOwNLORFAi1DlZ58Iy4SkLjCceaTbWUPlhvvftvuvln1t3NNbwhu2dSCRSsG+sZi39DTtIpkfwk4oki/qpTybYvHFTrgOJCCd97moua5uTxKYGAJis7bKurDf9DMSTZcfnjmldS5LbPHHApZ5NvPHq0pE+XU3J3NpQ/vOVyloFM0yRmUy0k0k0ke26zlNqSEWcsWSz1hokEZLxKFs76zkfkG0QoCuRYrP7cOK690K8lsZknDWNwefla8+dtq6BJWhvyKelH6jfBlT4ICcSopSuvd7JPuhx/YxECqxsH7hlo93IzIKjpB8bsLGF9TUxkAj71ryTs5veUV6OBUJdBBVlDmj8jqIoq4WitNmXQtxjObr1E3bi6jKXJ91uO6POoqkitNfX8K6rNxC7lAQcSiihFogKEz6AVS7cebY35kYQ7ru2m4sTM3x9d2/Rcb98z5V5xUSiuKlMjrfeSX+jtSatmThExBS6lKWidYFWkDdes4aaeIRM1iZ6eP7QaIHG5460vT7BtJO+fLJmjb1X50BjMs5P37KpoCwsHX25fS7xaIS3Xd9t1xXz0NlQQ+/QFKmMVbT8TU0kOjjV8+/YcEU7nD0OOBn13OtnMoDJnYdMCYXoDY1nyCWT8KRQL7X48ehUsPvo1s567riig8GREQadxIRH2+/h2v5vV2YNrStMYpU75Jq32//n/xZmxvOyX9XJjw5ZpTkZc2RvWkemvpPj3MiEs0bY667sYGB8homaTqYali6ZrCpYiqIoSiBFcX3+9c7KLPKtXAa0eCadtW2X3s6GW+HoI/n3UftUPxZX69VCEBHJKVZuGu1iKncXfc3mVp47YWNi/JPn2kSUDSEuqYmYR4mLxHJdTsbbuO+6tfzgQD+713+Y7RcepmX6dK5qOprk1W2fYMf4Pxa0VxOL8sarbbKVfWdGisdgoK/xWnbELzLReS0MLVD8IZWnuy/FVWuLHx5s7Wygd2iKGkdpKDhnDm31iYJxOFFm9k024zzcsPs7G2s46VkUOSsxuup9D1dqGsGzllgpN8Aj58cDy2/e2EpnYw1Dk4VW7OHkBoQTto9SJOqgsQuwmQ2nt72NgiOuey+MnIZoHKaGuX5tc07BynkXJpsZu+7DTOy1D2pu2tjCmqYkA0EukouMKliKoiiKolwa/gAcL3VzWFbBnSE5iQvYdi90XQetPfMST7H8uzt6+JsnrLXjfbtCFr7N2IxslegNsdfeT3PzK4we3U8sEiHuKgEBB4cqIpFYrnpWotQnYly5ppED50Y5uOat3BI/zuFRqwi0NyToWdsCR0LacofgXVA2Uc+rm+/j5HQ9k7dsZHJiFob6Fyz3XylFLe4ka2ktE4sVxE0bW+huTtLdbN30GhLFU/XXbGotsjJlJUJ7fQJOPG6VLMei1dNez+4T+WW7X1r7Hn5xZz0c+E7+4Fvvh1j+YYY/js6PV2F3aXbGKsDBzvtonrYWzDNNO+GOt5dXsADqO8lk9wOQ9rupJuqg86rc2zjWFTOVyebT9wMtdQkaamLEosKdV1qLenezVfq2d1Xu+jpfVMGqAP+CrYqiKIqi+PBPOK9629yOv/GDNiEHQLLZ/isLQnNdnLdev5YnjlykLmzh29RUwdvpEm5iNHSyY9fdXLNtG3L4+0zQBb7cFOtbajkzPEUsLHlBJErEUUTS0Vq6W5Ic6h/L7R5pu4G17TDcN8aHXrvZrr9URsFKR5NM13UDY7D5DqbPtMP0NOL8wcJl/ysVV9TRkOCnbuymo6EmtE4Y0YiwriVvBQpa0DjiW5bAGqwinO++m+3rI4DAWhsfubGtjlu3tPHscccyFG9BurbB2mvh6A9hfMBahTz0tNcXrGPlpzYRYWImf3/ceWVHzjI6ncoyXLuJ4VrHui1SmXIFcOWb4ckfAVDq9nO5cWNLUVlbfaIotrStPsEn791emQwLhCpYiqIoSkX4YxCD1qBb6h+xpUBEfg/4BDDgFP22MeZfqyfRMqf9Shg9A9E5TjHatpSvo1wyV69t4uq1JWJQ1lwDB/4555JWSQidNK+HXR8l+6OjMJspmPS/e+d6ZtLZ3CK9xQcLNW/4Dfb84BDJ+ibi0UiB8iNiY6xu2dIWqGSEMV23HjgI2QzXrmuif3SahmQsZ/FpvwSlJ4j6mhj37uji4f39ubL2hgQf2LWRWDTClWsWN3bQm0vQONFmo23Xw5XdRXX9bqE569sVbwxs+56r1xQpWIlYhNm01aJfu6WdHx48n9vnzZq4tbOea4ab2N7VwLcdV72KideSkThRkyIe9iBghaAK1iWiaw4piqJcVnzGGPOH1RZiRXDdeyBbwbo3yvKga4d9jUShaR2dLQ1wYW5N1MajRW5l8Wgk5yoXhsRr+ZnXXZNzMbxhQwsv9dqJvWBjrGoaKptou9aihp6dkKqFzqu4sbaFq7sbqYlFaaiJ8bHXbSlwJ5sv161vZv/ZUc4MT7GxrY737ly/KOux3bWtg/aGGuJRyS227O3GTWQRllzjyjUNBYpgOYKU4o/ftYU/f+Ro4P4rO/Oud/U1Me67bi1gszeOhCTFCCMdqSGaSbG2+RIzki4TVMFSFEVRFOXS2XgrDB3Pv49ECzKSKcucHe/Mb7/mI5iZNDx2bE5NvPHqNbxwepj6gHihcngtSp2NNdx33Voe3Nc3J6sV2Mn8J16/1VGgNufK3WQRUCrBx6XzjpvW8f39/dx5RfuiLXa9q6d0ApnGGjuurqZg61wyHuVX33glf/rDMj6WHt5wVSdREfadHaGjoYaaWJRtXQ0c7h8vUuTCrtXP3LopsLwUx9vupHPiCFJfOtX9cmdZKVgich/wWSAK/LUx5tNVFklRFEVRAH5FRD4M7Ab+kzFmKKiSiNwP3A+wadPcJxcrkivfNLeU7Mqy5lIWn97YVrdgiz1vbq9jfUstOze1Fu983SdLHruQ1qlKScajvKPMosGLzab2On72tZtY0xju/hiLRrimu4lXPXFupXDP/w0b8rGQCcciWZuwCtvX9/QW7F8Ieq66kVf7thYk3ViJLBsFS0SiwJ8B9wK9wHMi8h1jzP7F7FcTWCiKoigi8m/A2oBdvwN8Dvjv2GzI/x34I+BjQe0YYz4PfB5g165dl4/WsUhP7pWlJxGN0JiMsa1K64/VJWL5hWP9VLgw8OWA/yPX1VT+3Ny7o4s3bO+cYz/5jt5wVSeb2uvY0lEPXJqFqhx3b+/k9dvmJuNyZNkoWMCtwBFjzDEAEfkH4J3AoipYiqIoimKMeXMl9UTkr4B/WWRxFKVqRCLCx+/aWr6iUlXkEhLORyMyrwXGa2LR0olSFgARIboKntcsJwVrPXDa874XeK2/ktf9AhgXkUNLINtyoYM5h56uOvQc6Dlw0fNQ9XPwR0Ulv7EwDW8uX2XpEJFuY8w55+27gX2VHLdnz54LInJynt2v9vt8tY8PdIyrhWU7xgX63l2241tAFmKMFf0+LScFK0hfLXKv8LpfXG6IyG5jzK5qy1FN9BzoOXDR86DnYAn5nyJyE/Y36QTwi5UcZIyZt5/Lar/Gq318oGNcLaz2Ma728cHSjnE5KVi9gNfpdgMwxwT6iqIoirKwGGN+vtoyKIqiKCuH0gsULC3PAdtEZIuIJIAPAt+pskyKoiiKoiiKoigVs2wsWMaYtIj8CvAQNk373xhjXqmyWMuNy9I10oeeAz0HLnoe9BxcDqz2a7zaxwc6xtXCah/jah8fLOEYxejaFYqiKIqiKIqiKAvCcnIRVBRFURRFURRFWdGogqUoiqIoiqIoirJAqIK1QhGR/ywiRkQ6qi3LUiMifyAiB0XkJRH5loi0VFumpUJE7hORQyJyREQ+VW15lhoR2Sgij4jIARF5RUR+vdoyVQsRiYrICyKii96uQlbyZ11E/kZEzovIPk9Zm4g8LCKHnddWp1xE5E+ccb4kIjs9x3zEqX9YRD5SjbEEEfY9tMrGmBSRZ0XkRWeM/9Up3yIizzjy/qOTlAwRqXHeH3H293ja+i2n/JCIvKU6IwrH/1262sYoIidE5GUR2Ssiu52y1XSvtojIA8688ICI3L4sxmeM0f8V9o9NZ/8QcBLoqLY8VRj/TwAxZ/t/AP+j2jIt0bijwFFgK5AAXgR2VFuuJT4H3cBOZ7sRePVyOweec/EbwFeBf6m2LPq/4Nd2RX/WgdcDO4F9nrL/CXzK2f6U+70NvA34HnYtzNuAZ5zyNuCY89rqbLdWe2yObIHfQ6tsjAI0ONtx4BlH9q8BH3TK/wL49872fwD+wtn+IPCPzvYO5/6tAbY493W02uPzjbXgu3S1jRG7dl+Hr2w13atfAj7ubCeAluUwPrVgrUw+A/wmAQsxXw4YY75vjEk7b5/Grpl2OXArcMQYc8wYMwv8A/DOKsu0pBhjzhljnne2x4ADwPrqSrX0iMgG4CeBv662LMqisKI/68aYx4BBX/E7sRMhnNd3ecq/bCxPAy0i0g28BXjYGDNojBkCHgbuW3zpy1Pie2g1jdEYY8adt3Hn3wBvBB5wyv1jdMf+APAmERGn/B+MMTPGmOPAEez9vSzwf5c6Mq+qMYawKu5VEWnCPtD5AoAxZtYYM8wyGJ8qWCsMEXkHcMYY82K1ZVkmfAz7NOJyYD1w2vO+l8tQuXBx3DNuxj5Zvdz4X9iHLNlqC6IsCqvxs95ljDkHVkEB1jjlYWNdEefA9z20qsbouM7tBc5jJ5xHgWHPA06vvLmxOPtHgHaW+Rgp/i5tZ/WN0QDfF5E9InK/U7Za7tWtwADwRcfN869FpJ5lML5lsw6WkkdE/g1YG7Drd4DfxrrIrWpKnQNjzLedOr8DpIGvLKVsVUQCyi5LK6aINADfAP6jMWa02vIsJSLyduC8MWaPiNxdbXmUReFy+qyHjXXZnwP/95A1ZgRXDShb9mM0xmSAm8TGOX8LuCaomvO64sYY8l1aSt4VN0aHO40xZ0VkDfCwiBwsUXeljTGGdUf+VWPMMyLyWaxLYBhLNj5VsJYhxpg3B5WLyPVY/94XnS/yDcDzInKrMaZvCUVcdMLOgYsTgPh24E3GcaC9DOjFxt+5bADOVkmWqiEiceyk5ivGmG9WW54qcCfwDhF5G5AEmkTk74wxH6qyXMrCsRo/6/0i0m2MOee45Jx3ysPG2gvc7St/dAnkrIiQ76FVNUYXY8ywiDyKjVlpEZGYY8Hx3pfuGHtFJAY0Y91El/O9XPRdirVoraYxYow567yeF5FvYd0XV8u92gv0GmNcT5YHsAooBt9BAAAgAElEQVRW1cenLoIrCGPMy8aYNcaYHmNMD/aG2LnalKtyiMh9wH8B3mGMmay2PEvIc8A2J8NRAhtk+50qy7SkOP7uXwAOGGP+uNryVANjzG8ZYzY43wEfBH6oytWqYzV+1r8DuJm5PgJ821P+YSe7123AiOPS8xDwEyLS6mQA+wmnrOqU+B5aTWPsdCxXiEgt8GZsrNkjwPucav4xumN/H/Z7yTjlHxSbgW8LsA14dmlGUZqQ79KfYxWNUUTqRaTR3cbeY/tYJfeqM/89LSJXOUVvAvazHMY316wY+r98/gnIDHM5/GMDSE8De53/v6i2TEs49rdhM1YdxbpLVl2mJR7/67Bm+5c81/9t1ZariufjbjSL4Kr8X8mfdeDvgXNACvsg8BewsSo/AA47r21OXQH+zBnny8AuTzsfc77vjwAfrfa4PHIFfg+tsjHeALzgjHEf8LtO+Vas8nAE+DpQ45QnnfdHnP1bPW39jjP2Q8Bbqz22kPHmvktX0xidsbzo/L/ifpessnv1JmC3c6/+EzYLYNXHJ06jiqIoiqIoiqIoyjxRF0FFURRFURRFUZQFQhUsRVEURVEURVGUBUIVLEVRFEVRFEVRlAVCFSxFURRFURRFUZQFQhUsRVEURVEURVGUBUIVLEWZAyKSEZG9IrJPRL4uInXVlglARH57Adp4v4i8IiJZEdm1EHIpiqIoyw8RGXdee0TkZxe47d/2vX9yIdtXlJWAKliKMjemjDE3GWOuA2aBX6r0QBGJLp5YzFnBCpBnH/Ae4LEFkUhRFEVZ7vQAc1KwKvgtK/g9MsbcMUeZFGXFowqWolw6jwNXAojIP4nIHscCdL9bQUTGReS/icgzwO0i8rsi8pxjAfu8iIhT71ER+YyIPCYiB0TkFhH5pogcFpH/29Peh0TkWceK9pciEhWRTwO1TtlXwuoFyeMdjDHmgDHm0GKfNEVRFGXZ8GngLue34pPOb8ofOL9TL4nILwKIyN0i8oiIfBW7QGvg717I75FrLROn7X0i8rKI/LSn7UdF5AEROSgiX3F/GxVlpRKrtgCKshIRkRjwVuBBp+hjxphBEakFnhORbxhjLgL1wD5jzO86x+03xvw3Z/tvgbcD/+y0MWuMeb2I/DrwbeA1wCBwVEQ+A6wBfhq40xiTEpE/B37OGPMpEfkVY8xNTrvXBNUDvuyXR1EURbms+RTwn40xbwdwFKURY8wtIlIDPCEi33fq3gpcZ4w57rwP+t0r+D3y8R7gJuBGoMM5xvWYuBm4FjgLPAHcCfx44YerKEuDKliKMjdqRWSvs/048AVn+9dE5N3O9kZgG3ARyADf8Bx/j4j8JlAHtAGvkFewvuO8vgy8Yow5ByAix5w2X4dVup5zHu7VAucDZHxTiXp+eRRFURTF5SeAG0Tkfc77Zuzv2SzwrEe5gvDfvTBeB/y9MSYD9IvIj4BbgFGn7V4A5ze2B1WwlBWMKliKMjem/E/mRORu4M3A7caYSRF5FEg6u6edHxNEJAn8ObDLGHNaRH7PUw9gxnnNerbd9zFAgC8ZY36rjIyl6uXkURRFURQfAvyqMeahgkL7Ozfhex/2u1eq7TC8v3kZdH6qrHA0BktR5k8zMOT8yFwN3BZSz/3xuSAiDcD7QuqF8QPgfSKyBkBE2kRks7MvJSLxCuopiqIoissY0Oh5/xDw793fExHZLiL1AceV+t3z/h55eQz4aSfOqxN4PfDsgoxCUZYZqmApyvx5EIiJyEvAfweeDqpkjBkG/grrAvhPwHNz6cQYsx/4P4HvO309DHQ7uz8PvCQiXylTLxQRebeI9GKTX3xXRB4qd4yiKIqyonkJSIvIiyLySeCvgf3A8yKyD/hLgq1JpX73cr9HvmO+5fT3IvBD4DeNMX0LOhpFWSaIMabaMiiKoiiKoiiKoqwK1IKlKIqiKIqiKIqyQKiCpSiKoiiKoiiKskCogqUoiqIoiqIoirJAqIKlKIqiKIqiKIqyQKiCpSiKoiiKoiiKskCogqUoiqIoiqIoirJAqIKlKIqiKIqiKIqyQKiCpSiKoiiKoiiKskCogqUoiqIoiqIoirJAqIKlKIqiKIqiKIqyQKiCpSiKoiiKoiiKskCogqUoiqIoiqIoirJAqIKlKIqiKIqiKIqyQKiCpSiKoiiKoiiKskDEqi2AoiiKoqwEROQEMAZkgLQxZld1JVIURVGWIytawero6DA9PT3VFkNRFEVZQPbs2XPBGNNZbTlCuMcYc6GSivobpSgrn8nZNGPTaeoTMRqSMUjPwNQQxJJQ21Jt8VYd6Yzh4sQMAF1NySpLU0ylv08rWsHq6elh9+7d1RZDURRFWUBE5GS1ZVgIluQ3amoY4rUQq/GVD0FqGl75JtS2wk0/u7hyKJcHQydhehi6b6y2JEvG7hODPH74Aq/Z3Mrrt3fChcPw8gPQfiXc8P5qi7fqOD86zVeeOQXAJ+/dPu/2slnDF358HBH4+F1b591epb9PGoOlKIqiKJVhgO+LyB4RuT+ogojcLyK7RWT3wMDA/HqbGobdX4RjP7LKUhBPfw6e/zJkUnD0EcikbfmeL8Ge/w3To3ZSvBAYAyeegJnxhWlvOXF2L4yeq7YUy5+9X4WD/zq/NoyBA/8M516qrH7vHnjyT+fXJ8DkIDz+x/bzkp699HaMsa8iFVV/YE8v33qh99L7W2VMpzJ87+VzTM1mAvebebRtjOGBPb3sPzuaK0tnDeMz1gq5lKiCpSiKoiiVcacxZifwVuCXReT1/grGmM8bY3YZY3Z1ds7Ty/H8ARjrg5NPwo8/ky8/+SS89HWrVAFMXIBD34NTT8Njf2AngKmp+fUdxEgvHH/M9rXSeelrcPzx/PtD37MK6Wpnanhx7o0w9n0TnvqzwrLMLPTtg4PfhZEz5ds4/P1ipX5yMP/Q4eJReOT37X+mxCR63zese9/IGZgeKd1nqXM06ihLFw7bz1wZTg9OcuLCZNl6q52p2QwP7jvH5x49ysG+Mb7x/MIrnems4fTgJA+90rfgbc+VFe0iqCiKclnzyO+Xr3PPby2+HJcJxpizzut5EfkWcCvw2JIJkElBNmMtWgC9HvfD/lfy2098tvjY2UlI1AW3e/GobWvTa6G1J7z/tI2LwGTnJPYl07sbjj0CEoWr3w6d83cXynHxqP3fctfCtblYzE7C4FFYe/3823r6c9C0Dl7zkfm1k82ARMpbcQYO2deZcahpsNvGY6N4/stw96fC2xl4Nbj8mb+E+g649ROFn4NsCqKVTG1L2EkO/LNVAK/5KVh7Xa44OXYCjh+AU8/k6x59BDbdVkF/xZwenGRNUw01seglHb/SeOb4RQ6cG8u9HxibIZs1RCKF197Mx4QVgPFca2MMUqHlcb6oBUtRFEVRyiAi9SLS6G4DPwHsW9ROB48Wvp8aAuNxqxkJeQIc9PT9pX8I7+f8AczFo5w4tJdstsTsZsZxuxk8Fl5nITn7grVIpGfg2KML1+5MfpK3pNacShk9By98JW+NeeVbcOBf7PVfkPbPzr+Nx/8YHv20tUJVMiN+8k/zLph+Bd21xHrp22evzb5v5Mvcfsb67euEk2umprG4Dtj7xmv5cibWk7NpJmZm8/Vnfdal/v32dXo4VxTJpuk6/m3rIlshI5Mp9p4eDtw3MZPmgT29PLjPWlpm01nMQmsWy4jTg5O8cKr4XBzsG+Ph/f286DlPZh5OgkGn0Fu2lKdYFSxFURRFKU8X8GMReRF4FviuMebBRestk4bh04Vlz30BnviT/Pvp4MlbIGP99sn79GjATkP/2AwvnBxib2+JNiOeJ+0Dh+Dww/YJ/lxmLaeesRa2yUF73LkXrRtkEN4nzQtlNZsZhyf/v/z7o4/kLXPLhVcfhOFTMHHevp91lITsElkOKyHrKH/nXoK0Jz5w/Ly9xkGyHnvUKlMpn0Ljv7YTF60V6cC/+Oo595n3vp8ctPdQUFu7/yYfu9W7B8ZtTOSLvSM8vnuvLT/1tL0fe3fD7IQtc+87py0R2DC6J9fs8OQsk7Pl43mePHqBRw6eD9yXyti2jw1M8C8vneXPHjmyLNzaFosH9gQ/DHrolT72nRnhx0cqSsxalnLK2VKqsOoiqCiKoihlMMYcA5YudVpqonyd2QrqeDn6Q+jfB7s+5lNeDOlMFsEwsv+HZEejRK57V+GxM2N28uyy75v57Y2vDXc/zKTh3N68lcK1RB38Lmx/i02YkKiHO3/Nlk8NW8tVNJ6bEAOFyt188J+zcy9CxqNgzYwVWkSWBe61qqKF49m/stcpCFfZymbtQwCA5g3FitPQCXjsD4uP99fLOvfKjO9hwNN/Drf6cssc/K6/sfzmlEcRO/z9glrNvY8Cb4eLR5z9D8PwSdjxbuv+6JMrmRqBhN0+0DdGPCrs2txWPBYPqRLWYO8zicP9VoHuGwlJZLOCyGYNGWOIRwvtNzXxCDOp8AcEruX86MA4zx0fzJXP1aWv3LOerDFEURdBRVEURbk8Ec/PczQeXOdS3NvGz8OB7/gKDRERwJA88xQjJ18snKlMj1irT29IyvlS1qXhk3byeuzRQje/kV5rfYBCpad/n7UqeBNQQMUZ20LJZuDIv1nrkJ/zB/PbL3xlfv0sCM65P/aoVRImL9r3EwvzlL9ihk9bBXisz/Ydlo3SdbGb9Mg3PVIYF1iKSq2TM2MwcrrQAuZ3k3XbOvxvheXx2uA2Ix47w+hZOOlxAXQULWPASJSZdBaDYbRmLamMKWvFipa4Z716QFt9gq2d9RhY8W6CD73Sx5efKr5PGmuK7TnvvGldbtvVRZ84coFzHkXzwnhhtsep2QwTM5VnAxyZTOXcMEFdBBVFURTlMsczObv9V8KrRWOw7ma7XdsCN38I1lwTXLf9Cvvqxpi4mCwiIM60L5M1NgEE2IyFT/15SN/x3PGhuDOamz8Er/8/4I5f9ewLSNMcFI8DhQrnpTB8Ek4/Vz7+aC5ul4vBhcP5GKOhk3D8R/l9Awfm17Z3dhnmlunl3IvOf5l06t6YNpf937aWSB+ZrGF4apZMQWDMHF0fS8nuttv7XGF5mILlfXgxMw59nrE6ciViEQxCNCJO8/azefxCaQtytMJbVgQS0QjDkyme8VhvViIH+8YYnUpxdKAw62M0UnwytnY28MFbN3LDhuaca18qY3zH5b8Hx2fS/MWPjvL5x45xbqSyh0vPHL9YcJ3mE981VxZVwRKRFhF5QEQOisgBEbldRNpE5GEROey8tjp1RUT+RESOiMhLIrJzMWVTFEVRlGWLu3Dwlrsgngyvl0nn3fM23gotG6HzquC6WzxZ5Q99z6Z+P/N8flLqvBqw8T8nn8xnLPRzwwdg273OcaUmyE7bkZhVBqOJEnUJT58t83QRdBNG7Pww7Pz54Drrbgp3gyvFzJhdH2ohklD0+/KmBMbMXSJepebIv4XXy9V3rmvaN5ltWleY0TETsKbU9rfYfx/nRqY4cG6M/lGPO1yQog3hVstIgEXXfcgQNoGuDXHnq2myr/UdTp+eafHMGPTvRxyFypVmJGktL2nX7OJPkgEMTswykw7/XKQz+X0C3La1HbDxXauB7+wtfJDhSxTIpjb7ndXdXEtdImathI6rshevgjWdyt8nk2FraPku/6yvvdVkwfos8KAx5mqs7/oB4FPAD4wx24AfOO/Briuyzfm/H/jcIsumKIqiKMuTaNym2O95Xfm6m26HrW+A7pucAs9sxqtMeJWUs3vtOkKjZ3Anpa4Fy7gLCocpV2AVQHcyms0UJzWYGrYubv4EEt4JrH+2M3TCrv0VRG1LuCxzIRKDxnWw4x0BO6VQphNPBFphiujfb61NZ/fmy174u8qWUShHegHjcryKcJilsPAA+5L1T2YNBfdYkFK8fqf9b1hTUOxarjLe+KS5zHqNseOIJ6HbCYnsvtHGfJVqK0xZkwjEEjYuEQpdBgcOwf5vkxg+nBuuMXCmyff8/+Lhoma/9OQJjg3kLSeJ9Dip6bxV56ljFwtka61P0FIXv2QF4PzoNAf7RktnAa0iGWPY2lnPJ+/dzi/fcyXvfc2G3D5Xh5pJZ4sVpzneJn4LlfjirVaFgiUiTcDrgS8AGGNmjTHDwDuBLznVvgS4kbTvBL5sLE8DLSLSvVjyKYqiKMqKwXWt69hmXe3q2vP7onHYfEdxIojO7fmJJwQnisimIReUbgrLSyJ5Zen5/w37v1W4++STcPIpqzRBfoJb4Ornm+24FiDv2lTrX2Nfa1vLyFMOT1+RCHRdW1zFiUPLcfwxODSHRJGpKZuV8MLh4gyQmXSAohIkpu+cVHKMn2zWuhn62/IqWEFWx6GT8OI/5Neeyh3vayeWLFRY+kq4EF71NmjdnO82aIIbZrUMqnzicXIKXu6e8myXUbDSzoOAmai7JlfWuScLMwd6iaSnMM5+gwERxhNexbFwEj844bNCGcPOs1/l8HedDKCpKc4N5i2TC5Fy4YHne/ney330jVYvUcZUgFVpZDLF13efZngylbNGJWKFqoebxCIotirMpS/sMvvL/Xp1JdkfF4rFtGBtBQaAL4rICyLy187aIV3GmHMAzqt7l64HvN9IvU6ZoiiKolze1DTA6z4J177Hutq5T9x3vLPyNoLimJwJfEQg4kwuiyYvbVvhuvcENWhf0rPFC8K6bmX+CWslySoauvLbAbEbl4Q7qJL9y9wecc9O2vg0N7nDuRdtgo6XHyjsd6wPHvsDu8jvXHFd1+ZC73M2RfnomcJyryITpGBdPAKDx2HATfrhnItJX1zQxlspUAvCkrAANHXDFW/KdxtUJ8zFdPJicdlYn3VrLWjJo+yHuqtaeftGpslE4owk1+frexdMdo/3uuUan8UO6G+4Jn+r+D5X33y+MPGG4CgeM2PWyvnj/8VtfX9PxHmIkdMTCTk/FeBm6MtU0YLld8cDeOXsCL1DU8yms6FJP1wLVjnZLyV+yt9jegnPz2IqWDFgJ/A5Y8zNwAR5d8Aggs580ZkQkftFZLeI7B4YGAg4RFEURVFWIfFkXuGIxqwLYdeO4nruRMYf75Rstoqal2yG6dkUh/rHaZ+0iS2Kf3gjxZNokWCFzaVIoRHfex8nfgyvfr+w7oKSmw2HV/FbsMoxeNQqLaWSQAweg91ftNtBySCK8PV/weN+Vkr5Mybf/ojzrLooJb3HhTFQEQlpPyh7ofc6jvWXdjksWBIgqNuQfktZ71LT5O8pjwUqbAzOvZo1kCVGd7MT4+hVsETy56VlU76r3heImlSB/j0bq2cqleHsyBSTacPF8bwr7Nh0oZUk4j3XTur5jqQhlrXWplyMl8iSurAtJMYYfniwv7jcs52MB8dRSs66WDz4uZ4Pf3X/182qcBHEWqB6jTHPOO8fwCpc/a7rn/N63lN/o+f4DUBRuh9jzOeNMbuMMbs6OzsXTXhFURRFWZG0bIbuG2DTHYXlInDrLxYmKDCZguBxCHOj8SsmEr72VVn5nMmrd7Zz/PH85Ha+KdldZieLEniUbdtfvxSVZDZcqkWML7xqU+kPHPIU+sbqVYIyszByJv+fSXtmp+XOQcA5PP5YCeHy9QOtEJe6iHSBi2AZC5bnuhsRxK1nsvnYRInkj/fEYtVOD9A2eZz+0RledBbiHqlZz8mW2+gfneYbe84EpibPdZ2zDPvig5zkHlLm2cNKIJM1nLhQnOzDS1dTcLIed9zpTICCFfomGO85NgGWx6Vk0RQsY0wfcFpE3HRGbwL2A98BPuKUfQT4trP9HeDDTjbB24AR15VQURRFUZQKiSfh6p+E+vbifbEErPFYvYZOEhs+XlAl4p/pzYwGKxP1JR5y5v2nnBdPm+vdJAEVPk6+lJnnxAV44rMBSSrKuAi6Mu39agVyVTKFmusj+Et8xO668Q0c8iiqPvm8CRxmxuH5L+f/Tz4RIGuILLFksfve8MlwC51XuQkM65qvWaFMDFZ6NncuDIZEZpKm0VftPdL3cqGVNXfugq0tB5udTJwidPbsYCaVxZRRECMmTVMyViRfPGfByjPfNOLVsoCFed55xxbm7et+3xzoK86YWaAwFe4JbMtbakx1ldbilb8Wll8FviIiCeAY8FGsUvc1EfkF4BTwfqfuvwJvA44Ak05dRVEURVEWEl8qcv+krmjqMn6+eKYiwtI8HXb6yKatUuB3cQzDVQBefchaV9Ze7zRXykWQ/Ax1+FQFolWgYM11xpsqbQUIxY0ZEo8fm3+sTd1wBptZ0mtZ2/9PwZY2v+ztV9qMfU3d+bW6XMb64aWvhQjnyFHbykhQKvtL1go8wUulXARf/hokW4p3n3nevjY5C95m0+BabwOWE0hHahhosDaDe3d0cb7/rJNuo7T8seyM4/5ncFPSGyDit2BRPQVpvoQphhOexBflYrAWIgFFwfJqFD8sWsp1sBZVwTLG7AV2Bex6U0BdA/zyYsqzXPjMw6+WrfPJe7eXraMoiqJYnMy1v4V1L/+eMearnn1/boz5D1UTrtqsuabQPaxlk13D6uSTMDtBtq4DsE+PX+14M2tnfxzQSICLoF/BSM+SS6FdHA1RubxBs8xTz9j/e36rwkY8/aWmKlyjao4xWIthwSoVp5WoQLkUXzbIAlEcS0tNY2F2SYn+/+y9d5wc13Xn+70dJ+cEYJAIgARzAJhEJUoryQpWsCnZq9Wu7LWltRyew+5bW/t2/bzvffy8+9mVZfvZa61krU3L8lOwbAVbiaREihIDKIIgiUBkYGaAybF7ejrWfX9UuhW7egIGJOvHD9jdVTece6u655w65/xOcB8VW25xhpeCzkxZl+nQNPgSpBKCElBu7kN/lq7IZTVv1LOpeLDmL9gGk4mFUdjSrUoCwMRCnuKSZOC+d+IJdt1yC1x61j2hNW1XS5pkdwsL2CGAjpaySqa6TCndafXUwK7H5hh1/WIEr6QB4Zg3YNqaUr4hkCnfWL+mQUdzmqUV+7fK7ZFqTCZJOvkKDBGMESNGjBgxriD+El2P+Qrws0KIrwghjEx27tk8sa4C3PAeuPkB57Hhg0oif4JCWldAayKDpdY0ddrt/YwJ97HHP6EXL3ZQhPtpRXUotTcCUfJ8hGiQFj2C8ta4Vqi/mjWeVIQxCqphgUEhgtYe+Hgj9Uqv/rKATqbiV8A6jEHQPY6iYScc9b3WeB8IYZctWPKk7gfizMQCF+eLvDDmQxOfbvbIJxH0tWX42Bv3MNzdQiYZXPx61/xT3D7+RYSs8fabhmzbXfMhA6nDAVIP07krlOcXgjNTed/ju/vshwIdzf73inlbaD7flah07PYJ59vNdAjGBlaMGDFixHglYI+U8neklF+VUr4bOAx8Twjhk4j0KoNaJ0iBJhIsl6tIkcBUB6RQAp7MnB2/+lkBYwJQzuNRbRp6Ol+HLW81iEKgYRqGUy8Ft1ERZU2RCvoqCJUzyr4IOzzSQ6EWYHi5xh+ZXebkRM41X8BaKxHqLvmsaX7bG5Tz3nWdm87z/NgCpWoN2ocCBlZYBJu79HYRNPJSqg0pJSkhkSJBtSYpVmqUblQfQvisV0A2lSSbUkgxAIHXeB/M6wWze1tS7OhpsX2j5v0grf9ZM+khgo3f38cu2wbiZoUYTiz63wfmJf/QPTsZaPcnuTDD+OrJXs87N7dcZmTODrH1G++VwiIYI0aMGDFiXClkhbA1Rynl7wOfBn4AxEaWD87OlnhhbJGlmXGkoeQIpK1XJw0DK92iExs4EJGmPVSjifB4erU8yxddYY5u0g0/5I28otGn6o8//kJIzpGCqWP12zgQQU4/mCGQIhHMXGh5ktzXzVD/jfMvjC3yzRfHw6+DiY4t9WUzvVxdu6zVSZVww8e7OJkrUSjXKNYEHAxIyReuN6r3LgASmGzTSV4y5QUkCTQp+fNHz/K5ZxU6+mQaena7+gpySjFcs/iwqHuPK+cN6ny1h8niudoIwashbSvQoWScSISsTfVguZs1EvL41ecu8fAJOzdQqr9lm4BIBpYQ4qaNFiRGjBgxYsRYA74BvEk9IKV8EPi3QHlTJLrKcb7jTlbSXUz1HqSS0EOipJqy32Z6DqTOSHjXR+zOpgfLTyt0KJyrMRjCPDURKb1NI+LWn9Ff5y8AUKxKRud8iCRSWYuAgKUIBMYv/VM0ORYv1W+jIoxOPkxZNEkZkqngPQryYFnEGGEsgkEJNBHUyJYeuO2DsPv1AQ2CvZ1elVuBGc5phhuGGlhSedHHbCrN0FRdskLTcske/R6/55f0EMGbHoCbfloVjGXFwLLXrsi/dJnrp75pHXOWAJO+8s3k1+/nabPsCb/wPrANJBFiPZoeLF8mQjXkT/oetlCpaewdaOOmbZ1Ku82zsKJ6sD4lhDgkhPhlIUTXhkoUI0aMGDFiNAgp5b+XUj7sc/zbUsp9myHT1Q4t2cTzWz7AQt9BLnbfw1TbfvKZQVupzbY7O/jlAPkqVnWyH8IotcOOQ3QDC6DnGmjudhx6/Mwsf/fsmKf2Fx1bIREhn2jDEeRlitivUrQNj6CcqqCxw3KwAhkKIsrZvVMvEeA3VQjJxfmZZaaWAsIQzXWaDIGO/LMgz6dT5Z5v3qE4N4V+j5v3TDIF3YrXDeHyxCheXxOjh+gsjlkf+xdeACl1A0P6rNUx2ioLDV8FLixV7lRCNOSNC83BalCOlkySntaMJZPnlm5wvLUg0jdDSvla4F+gFwL+sRDib4UQb9lQyWLEiBEjRowYGwbLzgFW0t2c63k9WiLFxX3/Sg/LMqnNfbU+o7PKRmdC1WyiFvh1DK2qJgF5RPVgFcFx9h+d00O0aurj8lt/Bm58n86suNlQiSgGb2y8f3Wl/thBIYIb5cHy72i/LczqFPw+WC5rPH1+zn8Id1FgkbC9kAFQs54W2vdxsu9tgd4XfWw7/zBby5NQLSwzrFa9J6VmKfgAQ3PPWLNKRWbp9BVbw8iX6PgAACAASURBVG2mx2Ut6G1z0tp7vv4hfRPW8xYZ+jNRb2dUO/lqQORvhpTyNPAfgd8G3gD8iRDiJSHET22UcDFixIgRI0aMjYFVOcilYFbSHTphgKVc+qg2phZjGmEOSFgcDe6rtvND57bgLsvTIeP5wKNt+Whf3bv1EEGLVXEDEcJSKKVE0xSN1MMkGIHkwjc808CKYaj41jSzkZAVPcxt/mJgG/t4YwbWXMd+zvTeTy2lEKOPPgNHPh8wvssYNnHTT2F7+5QcrMVLOi2/x2iSjhcATaRACM5O+xt3gP4dUNboqOVkGVt1VP+FUfuuM42xDbKjVkOSsR7Ipuw9EorBFOX5iggJEXSEBUZYmxDq75rdf6jTn2BjIxE1B+sWIcQngRPoMe4/KaW83nj/yQ2UL0aMGDFixIgEIURCCPGazZbj5QJTsQkMzImiPAflYKWy3uN2p/rjBlGST7xYv2/IXNoVKY4cghBWwcdOTfPItJE/MnDD+j+KN6+J33VVtNFsNecIczM6+Y/Zub0hEUYH7memdZ9eB0stHVAI8FIRsA391zlCHl8cW+TEvJ6Hw8xpb3tpe5FMQhfztac17F6FfKcdYeyUxWQR1Mf+0ZkZfFHTSUcK5RrS8mB5IfCxC68SnJnK6YyOCh47Nc0hw7s4X7Dva+t3RY0wDfnemWf8QwQDcrsCjDH3PBJoy6a4b0+f0ebKbXDURw9/ik55e6uU8leklIcBpJSX0b1aMWLEiBEjxqZC6trLJzZbjpcbglNvotSr8jOwtACPirtdyJgOTXY1hob0GQfrs/Q5trp5oqGqaRSrtdAQx+dGFpinQ//QOuBtEIWR0RGu5tM+lQnw6tkhgu7QNf1gwN5sv9t7bEfEsnN+4aXeiUMIEiSlao2/PzLOwycmebh4PXPLZaj4kJi4xjQx3N3MAweG2dbVzHB3M0+dm/UYEuVMjz2jI2rSySKoGxt+mr9mGQ/FirfQsDpc0CUulKssFPzJMFQjZCPMh9l8iW88P87Dx6ccxw9fnLeMStWDZeL0VJ6Hjk96jrsRSnKhIHr9afM7vrnWalQD6x3A30opV8B6StgCIKX83EYJFyNGjBgxYjSI7wohflqE0Va9wnFqMsejJ6fqPq1VudpUFMo1pnJFRUEJUbij1muqdzk6tvpLF1TLKTJcT7Qb1bnW6TY6MZ7juZEFiuV6jHFqTJVLUYwiy2oMWnPc5Wk9N8h3jwPmTqa8x3a/IZp4ETykMsz3ISXFisZyWWNrVxM1k6TEpKxXYVDXS2NMQwBHk7H5FZ48O+vxROW6brBFdtj9pvx17kmp0Wt4yaSmGsDOZmFenr8/fIm//NGF8Hk2COWaLnOuGOx99bvtvn10wvZKhdy6dh0sH5r2Br6vEqk/U1H6mnldm/HXIKqB9TCglrVuMY7FiBEjRowYVxN+C/gyUBZCLAkhckKIpc0W6krin14Y57mRBf/cFR+4lZiRuQKff2qEExNGborKJpgxc2dCvD5heUDOhsGnQrwWkWCSXASM42t8+rUVPkWWV4G8Qe9d1SQsjvmGxKVqKyip+iAE52eXOXrJuH3zId4Ay2PoUvbPPALLs3rdrrFnCNR0pYRMO7qO6tqbps6I3iZT9PrarC5uNK03nQyS2Qy3E9y+oxtpXqtkxtt27hwAtaSdiyMDvGOVmnP9Zs2utmyKu3erJfX0vl3FMYRBrpEvVR33lgAzds0hs4PuXZ3L9yhM5wJqm7n7b4DTRotg3/t5i9SQv/AcLGMMP+dfA/P5zeXJxLuCTi2fRw++aJJSWlmAUsq86cGKESNGjBgxrhZIKdvrt3p1oJ4uYSoi03lbefuJm4ZIJQT/+MI4KzINN7zbSf5ww3th/ryudKuDgN5uYcQ5c1RDxtvI/3DjLihn94bDANdHIysnW8nUlnXl+7AR+HP/x+0G+SkOXvoctUQGetutPZpYVCjK0+pz7gjyrizA6CGYOaW/h4C9d7EIqnvcsxtu/dkI86rDRdzjyPdBQLv+/WjjZynKLtt+SaQIvGatfVzo/QnEmWeUsb1v3ZAIMskEN2/rhO1KpSLDy9hemqR75SJzLddwYjyH9wdI8ZkVFyEdYLSLzSOpCINJvBLmYVPFbk4nKVedhn7YlXbStK/e1aTasaA8qtikYIaoHqxlIcQd5gchxAEghAs0RowYMWLEuPIQOj4khPhPxuftQoi7NluuzUA9Xc3UO3JF+2l6Z3Oa3X2tANQ0dKpw1YPVvROueaN/3pLJOhhG6x4ooDteKsBDFjlE0P+xe0jQY8Aw66PwXuq4zRjOO16+VKWY1w2gpGaEEPpQzDecg2UeM40rfeBQOXUV1xHH598wiISkDhzrjxgiGHi1Bm9g6Y5fZjnT5yg5EHZxNaEaYP4mgycnMURBPzb4kwAkZHBuFQr9eJgBtVozwDnk+htoM3kzvDJ4bFOG1+3r48atHQ2Nb4YI1vxILpRjkXOwzNBahcVwMxDVwPoN4MtCiMeFEI8DXwR+dePEihEjRowYMVaF/wHcC3zQ+JwH/mzzxLl6YSoilZrTaEka9NNVLYIxoyqfhsI8PzvOQsGbr7FUrPClH48ym68T7uRnXFgI0ZiqJZg87qJCdxlYPgxnattKzSCjiIDRuUI4xbdrbPCX/jM/OMcXnxn1OeNCFG1RNbAchpUphl8YpDATVgxJI1z32z+k10oDuPG99dv7IppJERbp6t0SxSAbvhN2KCQcQjcdTVKKqCQIMkRVLif1YK7AMQXWNRlvv9l11segiCTRlYXpAepvD2ZblEhSCcHBXT2kfQgvwrxIKeP3plTRWCo6DVUHTTv1jS0h3EWOG/dZrxeiFhp+BtgPfAz4ZeB6KeWzGylYjBgxYsSIsQrcLaX8FaAIIKWcB3ySMl75iKxAepxHukry9Lk5RueiM7KR1Z9cP3Z6jqOXF5yDC8HFmQKX5lc4ORnBKAlSyMI8WGPPwPGv6TTdZg5WMu3sLpVxt97uKCQLcHhknudGVMPEkH/0EBz9inO6hRWmciVqUtbda2nHQfmer/kd9uyBT6O583odKfPU4iVFwGe87QO9i6aB4JqmpcenPXq4YvuQ/r5/v38bHzg8iFFCt0KY9TwNrUmMDpkW3cjCfcrr3fT3c5onDVU57a6l5JU/6VfoWZp+uPD1Cr3S8JqwER4baRne4SGCZhFmv1aBeXRAt1KYOWreqL8M/ubrZtEdRc3BArgT2GX0uV0IgZTyrzdEqhh88qFTddv85luuvQKSxIgRI8bLChUhRBJLhxP91KX5emWinrKVClF67rmml6fOzTKVK7K9JyTl2lF4VVcpKtVwkgsZcs5CxVBUq0Xn8bBFrSwwOlegPDHLHkumgHwXCex7qx7uaEKIYG/JmUcCpz10fo7h7ma2dwfvk+0FaUSBjBAi+PwX9Nf+66INWamT3SEVD9YtH4Cea+qPuVoNNoiAxHGHCC7MLgcO4VGihSuk0BGGKHSWRLOvdHs7guW83Hs3B272oaR3XaP5XIHWlHrWkMckXAm5/HrLq9GHVR9OQgsfwzNko6PePVGMR0cOlu2UvXpZBIUQnwP+O/BadEPrTuDgBsoVI0aMGDFirAZ/AvwDMCCE+H3gh8AfbK5IVxceOzXNqckcmaSuArz1xkFPmwM7u4H6Ss10rsSZ6TxnpvIcG895c3isARrUcMyCvO1bGugkGVtY4cmzJkOfd06pKtyJhI9Xwt0hmsI7Nh8tLV19yj63XLbCM3cuHIrSO+TUGp4hWAWYpGGAGGMl0+uumUbZzursRcfnlkx9JkfLaAJlL1yhpkI4PFiNmDKTXbdHZlL0GOlSc8rnwp27dC9hrljh8kKRwyM+NPMhcIbRrT+sMZWt1JRFzi+XeW5kwSK2WM87Jsrvz+RS0dFWKJvtps24GlkEDwI3yKuR3iRGjBgxYsQwIKX8vBDiWeDN6H9b3yulPLHJYm0K/P5i1zTJ4Yu6AveaPTrltElqEYbHTk0zMldgS0cT/+wG2yA7N7OMzJVIJgQjk3n29UCQmudJ9Jd+hpj52VCS3R6otRgS2++idN7MhfLK+PzYov0h3awr1Ga4oSqnEMwuR6PNBmD365FH5o3u+lg1KXnwiQvsHWijp3Celsqst5+nBlhDyUjRsTyj/zPYIpOaYdwm0iGdXOjeBfMXIjdX1cnFlQqTS0W2l2s0Z5Jw/lGlpWBxpcJ0qofO6oz1UMA9ju01EU5N20WkIYFcdoiK1sJyy3Z7lhBDMkz1Nf1hvsWZTYy/YLVV7zuzj0kKYZLNPD+6wB07uoPHWyWOXlrk0sIKb7i2n6YgJsOIqCj5mUfGnLl+CZ+9DNvf0L0P8HdLqRt5f/OUbox/7I17jLGcoYz61/XqZhE8CgytZgIhRFII8ZwQ4h+Nz7uFEE8LIU4LIb4ohMgYx7PG5zPG+V2rmS9GjBgxYrx6IYT4nJTyJSnln0kp/1RKecKIwnjVwW1EnJnK8dkfnlPO6/DLrXCwsgGnJ3PM5Eqcmsq55tBDDXf2tiCkhoatOEokmmkQOSu01pFc2IaUSLJcrvobZS5ohtInTY+MW7Fqsw1Dv2EePTltf2jpdbRXsbw0z6kIeWQz+RLHLi86lPz5QpnLCysW/frIXIFrZx6qO5Yh9SrPRcTKvF6ny0R7A2rftjvqtwnAyFyB2eWyXetJUd4lutfpa7n9nJ/xhgr6+0fVEEHnfSelJJcd4szenyfXut3XQbcRrgQrO8ln7PXU/8Nkf/jEJMcvL1ken0bHFOjG5onxJf6/p0es800pp7Hmy6MSMr773J6BtkhyqWGJlZrmrXmlGrObYGRFNbD6gONCiO8IIb5u/ovY99cB9enhfwU+KaXcB8wDv2Ac/wVgXkq5F/ik0S5GjBgxYsRoBDeqH4x8rAObJMumwq1sTS6VKJR1hry+EEawRqAZXg4hBDOt++w5JZydXuahYxMhbIT1DYa5FY3nxxYZt5TC4D72PC5lygztSnnXLKVUWBQdwUQgBDUpyZcqageSh/48RG4bp6fyLBWrnJwuWGN/5+g4F+cKjBjkIe56QU641pGboFSp8rUjl7i04ApJXA+rQKs6SQYaUkqjtfWTUosou+aTIHdqIuc6orJiuDxYMho75OpgeNKkREpJPtPPfPNO62wiIZCIugWDewtn6Vs8toqZwzG3XF6XW2Q6V+LbRyeYV1hCp3KNGWz18PabhnjnLXposNN57E9ioUIgFE+5bmQ5Cw9fuUC8qAbW7wHvBf4f4BPKv1AIIYaBdwJ/YXwWwJuAvzOaPGiMC/Ae4zPG+TeLzfLrxYgRI0aMlxWEEB8XQuSAW4QQS0KInPF5CvjaJot3xVAKoRiXUg/f2dLZRFvWfuoc9sS5nlJWbN3GyaF3s3DgV1nO9DnyT6ZzJSRQrbkzISJg+z3Q1k8uqRc0XloxFLqQEMFKzfScmUQHxpy3fwju+ij07rXammIeHlngT793huWSq46RsfDjl5f4zA/OKfsqEQ2GKT47srQ6smh3rancBIuTFzk3vcyPzsy45F1D6GTnNmOMmuN6zy+XVz9mHVjT7HsrhXKNSrLZUn4dt5yDvMKJ5VKVlwwDy/a4SucIiZRdFDs/7WXMtH1LDSOM8a6SbOF8933WuO3ZFCgU4kE99808wvaZH6xCGnNc/5GfPGuHoDZuaBkPO5bL1gMaFeemnZ7FoEoAQXCfSycTtDellJn9JHLWuJLYTmszRPGvnrhAuapZnjeAH53xCcXdIESlaX8MuACkjffPAIcjdP0j4N9jMzj1AgtSWhXZxgDjm802YNSYrwosGu0dEEJ8VAjxYyHEj6enp92nY8SIESPGqxBSyj+QUrYD/01K2SGlbDf+9UopP77Z8l0pqB4Rv5AZgc1p4Kdo1Xus6UmVIkG+eStJgyzi0kLR0cgvN0Wqj5iDsPNeuPMX0Zq6vAKUl+GHn/Qw+8kgT5kQ0Nrru7hTk7qCPpsvIx2ndQMtX6oikHbonJQNhRvlskPMtOwJbhC2Bz4MiMnlScA0Wt3yrhI77jWGcO7fXz1xIfoYEffE7YWY776ZqdbrUGtNOeuy6eOmayueFdYc95lhKEkNJo7aMgkBd/8be341pydgy6Lu7Ey+ZOdgebwrzv0QQpBJua+ndMjeKErVGn/79IhVCLhe29XCXNrF2YJvMWA3VrsevzEchYYj9t3V12J56C/O6p7ivPEApdHwyLUgKovgR9C9Sv/TOLQN+GqdPu8Cplz1svx23T+E1nnOPiDlp6WUB6WUB/v7++vKHiNGjBgxXlX4P4QQHxJC/CcAIcR2IcRdmy3UlcKPL9oMZEHJ+YIQOnKzjfAqOGHYYVC562aJkxRC6gPWGSGi+lRdgamXoFL01HlqhIfLru2j4yuHx1wNNAcdmR362Jin6Njgu6klbabCUDKECMieD6CLX1P8l+1WudI04YWK7Rk0lzAy6629ltLCFWPzUomaj9ctkYQb3g3732HNsXGUbapBIByabTHTHXF3/b8r2eoSnPwWlPT8v0vzK0wuFa18vjD4EU9EhVl4HPwMey/8PVirI7lQ4X244zSWzQdI2VSSu3Yp9dss9kjYP9Qeaa71QNQQwV8B7gOWAKSUp4GBOn3uA94thLgAfAE9NPCPgC4hhMleOAxcNt6PAdsBjPOdwBwxYsSIESNGdPwZcC/wQeNz3ji2ZgghfkIIcdIgY/qd9RhzvXFEKZLreRJv8j4I3cAwFZS1BuMLAalkgu6WNF7lcBXEDGEC5afh9Hf19xkn+6GDUMOP5KLuzGqyhrOFlSdkUG7XXAx7bdlGyorWlyS8i0+ftdK0m7Ks2vBo8CZSiBMch6V0hN4FeYgalmnwRthyqyuszM7PWc13QEqce+dCJdlsf0g3UUso9c5XsZzB/Am4fASmTwL+hknQNjnzkBqDOk+UQsBRjLD6c+qvgSGCAR54EyrZ5JU0qlRENbBKUkrrsYBhAIXuoJTy41LKYSnlLuBnge9JKf8F8H3gAaPZh7Fj479ufMY4/72YFj5GjBgxYjSIu6WUvwIUAaSU80AmvEt9GGQZfwa8HbgB+OdCiBvWOu5GwvvEV1eWzAylMLjVxsBwKtfx6XwJDEJq/xHXgK7tcNsH9X/JNLTYOUqXF1aYXCoZMkefK1ixtnO4hNRDjCSSx09PcXY67whpA0i4xhlfdJFQRAmLjAAzx8grt2vclh53gwiDX/kyt8KIWTXvl2OXl8i58+ECsJqtXO36ooeFKjOIBOV0p/nBUwM5eK46DQwa/YYoSNbwFEVVxaMYWJVAUpvo8M8BDZnbNLiMjqrHTv1uXklmh6gG1mNCiP8ANAsh3gJ8GfjGKuf8beC3hBBn0HOsPmsc/yzQaxz/LeCqfDoYI0aMGDGualQMY8iITBP92HnAa8FdwBkp5TnjgeMX0MmZrhp4WNYC9JGEsOmi11PhEIZ7LKlVSBip1g6SbOPDdN54Xtuohpxqgu6d+r/2IdQF/sNzlxgdG1UaK9qWD2zqabuN9PFgmUcuzhaoaZLnL84yX6h4DCw3LviEua0XfMMM3XvZsXUVI6/BvFrljaSbVsJynp2dtunvt3Y2sbXL9ALJ0BDQqNNHeW6/uFJxfA4tPxal5IDve8UrFzSElLB02fqokWRuucTMor5HfmF/gR4sR5vGrrPaOpgRFB44MBwqQ0NY4++S06O8OXx5UX3av4NOo/4i8G+Ab2IwA0aBlPJR4FHj/Tn0P1TuNkXg/VHHjAGffOhU6PnffMu1V0iSGDFixLhq8CfAPwADQojfR4+I+I/rMK5FxGRgDLh7HcZdMzRN8sePnObmbZ2O4+WaUxmyi7IanpAQRSiqw0U3Y5xGysDySUcLaYTrHbu8ZMkb+fGuMs/o/Ar/8Mhpfu1Ne/UZFeGqNcm2njaqCzm6WxtwWAbpXnvfDPkpoyCrrkZr0jZupEu5XSpWWVyp0NnsX5w3qCDtWnOy7Alciq9oYIOVi71a5VjTJNWa5ikE7Ib/+P4Xob89y1jZNV7fPrj2bcZgygi+FpZ3MvWIdPS33zelG7w5FThLCZsDS8NLZ1/tSNs88SK89E9w00/pIwvByck8l1YmeeDmxmxak5UvKvKlKhdmlrlpW6djn1RK/XRSWMydAIMdeq7h+gafOfOsHGdc4Z5g/xYNdDSRSSV0FkGxkTl3wYi041JKDfiM8S9GjBgxYsS4KiGl/LwQ4lngzeia23ullCfqdIuCSBqcEOKjwEcBduzYsQ7T1sc5owDri5cWHccnl4r0t2c5M5Xj0kIRM2VECBwkF1FYvywK7bqaSvBYl+ZXXC1UDam+BvTC2CK1fslT5+a41xXoKJGkEwKRStjjhWigD5+Y5K03DLp9Cta7I8s93Ma0NYcQuhEhjFpKfh6sqVwx0MDyBl2uElL/n4/von7f1/wa80VJJVdkoL2pfvsGcHh0kcrFee7c1R1JsXTn/4kAD5Vnndl2/V+9dhCQq6a/mOxyjRoeXvgbzuuCgkHFX5jDh1Tbv0hyBDmiSPq1I5eYWiqxu6/V0UPNr+pry1phuZq0w1bXx4FlkuwEt6m31qZ00qJp3wxEZRE8L4Q45/630cLFiBEjRowYq8Ak8DjwBHpo+x3rMKZFxGRAJWmysBlMtwsF/3pFpsLzjefHOXxxXn+Qbvw3t1z2eJ9WizCiAJucQMmJSNRTPbwDLSiFTU9N5vB9LO2fuOGLicUipybzNGe8VOgAj5/Sy8Doe6R7h87PLpOSlSARmcmvpm5U4+Fawq9LbtJ1wEfAVBMPPjPO558aCWy72iysI0utXOq4neK+d4W2c4+vm8m2sezxRHluKv/71Wx2Ybag0Lz7ebBc80d0A4W12tHTEjyOdVwEGvx1RQjst3Gmw4pR70pzeTWfUOpp2Q9rnHu6Ht4iP2MtbFgr2tJnS9bCoLgWRDXdDyrvm9BD+VaRQRkjRowYMSLh+3+w2RK8LCGE+L+BnwPOonA0oDPZrgXPAPuEELuBS+jkTR8M77LxuDi7zOOnZ+o3VLBcrhqhb8GwaNrrKNxur4PXt+IdoSmdhBoNa2ItGV1l6W/PQs3lwfIkw/vnYG3raubSwoolWWtGUYMURcwkX9CH0pXMhUKFrrQeJdooq50dIhilrXQUR/VrsVr4DilUAyt6eNziSoXxxRX2D3VQFWlGu+5EG9jduFCBtomgVjNDv+obSybmC2XdQ+ezWCl1g6g1m+TEeE4RIezKBO+3eaarOcm4etBjF66/kp9sIAdLxdePXI6cQmJ+k4Lgl2F23WA7F2aXed2+Pr5waNSv27pAXetkLpiqfpPsq8ghgu7Sx38khPgh8LvrL1KMGDFixIixanwA2KMy364HpJRVIcSvAt8BksD/klIeW885grBSrpErVXzDuv7+8KXI45hhPL2tGS4vFOtF0TkQ2Z5wOyDWgU1DGupvf6e+/sGOLCwoRoGLkCLM+EmolGLhPBi+TZLGbZXLDtJbCA/kOdfzuvDBCfBGAVNLRU5O5nyVtEjhaP7FiCL0i25gfffYBGPzK2zvbmnYa+F2bHpylwxkcH2NA+TzNZD6rkVKSamqWQ8UJJBIhHs1LswUeGliif1DHeGLWAUa2qY6m+pmrgzCuek8zynlGzxYnoH8FAx6SVHD6NCFyYxofjY+dLak+cDB7RQrqy9u3PLkHzK8sBMpf9Ihi0Mupf0jJ6YAJ7mF/buwORZW1BDBO5R/B4UQvwRsDrF8jBgxYsSIEYyjQNdGDCyl/KaU8lop5R4p5e9vxBx++NRjZ/n8UyPkihWklDxxZsYK4QmDX1K4n6rhUJKUFn600mE6nx3uFQ6bjqExrdxUWPT8Mf/MdUvkAOtR9QoFzV5MdRhDm14nL3NaTQTlWtmYbt3nPRjREvniM6P8+MI8p3ttx2tV04zukvHFYsNkAsEU275ZcXVhFritKTXV6pKiuM9LZ4igGyuDBwCYat3PXOeNsOu1vmM56jxJ9MLCrb0cGV3gzx89S65YYTZfYmKxaBgGTo+i+1b51osT4QtxT2w+R3BR3WdLc15hA5DQKnXb1BPDD1874olkduLQZ+D41xyHzP0xf3NU3GSS6XgepqwfhKwxvHTYYXa7TXBVrnJVY1t3sy2bOtbV7MECPqG8rwIX0J8SxriKUY9lEGKmwRgxYrzi8AfAc0KIo0DJPCilfPfmibR6/On3Tlvvz88sM5Mv8fzoIsfHl/jF113T0FgmyYXqA1mr7uFWG8O8Kx3NaZZWgpRI/35mfkdC2Abf+GIRbWGEhFaFF76EvOF9jrlL1RrnZ5ZJiYIjac4zo8+UJwbeQSFtZEAYmln/8qnwTp6V+ISmBRak9SdiMI8WU7oXRZOSZy7M6wx3g/q5yaUSQ5ghhfVzlS7OBVDHKxqoZhRQbs+mIoSRGuKGeDmiIZjQQBryaIkUlwffAGl/co6g+9gMA1wu1Zhb1r1hw93NHir2uhKu8oti5UlJTX9vrFG/Zk7Pa0IqD00qdsibbUg4hVC3S5g+QClBM8ZJhF8/NA0uPO57qj2bYmmlwlSu5PMdV94rT2E2y5Ax4b5fzYdQV7WBJaW8f6MFiREjRowYMdYBDwL/Fb2syHrUv9o0SCkdNMgvTeQsJr5yTWPRIH7YM9DGm/YP8JkfhIesefOlwrXiIFrpI6MLdLek2dnb6umTrvnkQhjeoMgeFzUnyNFF92GdncozW1ymvy0Ls2ehlHN075g7xkRpmqmVXrbfGzzNMxfmuHbQGYyz2KTX8jFVNSklOxYOKQap5pHRA0tmb5uWynxwPx8U012AsIgbihXN2pRyVWNxpcLJyRw3be2wctSCUI1QJLbaOghMRYsmNJXrqEwEymkpnZ+Rej7h2ak8DmqYuoQojWPvQBuHR/TrEGWd4bet23CW5EtVaDb7Kh6YOpM5Lo+mFFteniaptYX2FUIfoOfoX8Jp4zt43U/A1ttpSie9/lGpHgAAIABJREFU4XpTJ+DMw1DKe8YCGOjIcmlhxdd4Ni+JQL8HbRmc61u1YbNif0fcYYHWe59fL/d05v3elk2xXKoFtNo4RDKwhBC/FXZeSvmH6yNOjBgxYsSIsSbMSCn/ZLOFWCtyxQp/8fh5xzHTuAIoVTS+ekTPvzo7lefdt9YvLKvXcWpMwSjXNI5eWrTCyyTw/Zf0fAczAsJSrISgkO6mpTJn9W8tzwDesB19sCgGl3/oWbUWHGjYWtHTxifabgwYzcapyZynjTWHJikrBu6WziYmrH0IVvz9rPp8ZgCAXQtPWMf6lk+ze/6HgeMA1BIZntrxEW7nS9Yx9QrO5EvUNEmuWK1rYEkZdO1XR3Jh95GOItffPjrB2ek8H7pnZwhtvdpfN+VfGHOWGXDTgnhCXr2Nvb0dKXd2Ts5GMvCpcIQxGlIEoaeqM0FqmgTVmzVxlBsnX2S2ZU/o2IIaydICDO2HhRHLUNnS2UShXGNySXn4ceyroXInE6ZX0WvKCGtvXeHE64WXvhmJEDTq85qdva0cN2rwXUk0wiJ4J/B14/NPAj/AWXQxRowYMWLE2Gw8K4T4A/S/V2qI4OHNE6lxJCNksJshT0GoaU7FF6RFrSylpKrJUJ4HIeBIWHI80ZQcLZmGhJJ83oCR5xhfSdXxm1Yo3oRqoolCxls7qJF5K2WnNy6VEIiaaWD5r6Fc03j24rynTTWpuzSSSp5Ne2nS8dmam3r76pN7FoG1zk2nHda2EQNESqd37MS4rszmisGFl9W+odp5RNKN9mydeTxGwvogqIC0P1wEK+ZRY/3XFZ6lhOHJcl2rlso8brY5z+hmn57dsDRmjaFJ6SHE8A8rVSUVRl8olOrne/qN1cjDnG3dzfYDpBWnl3dischUrkiqjjcz3Km8phjWVSGqgdUH3CGlzAEIIX4P+LKU8hc3SrAYMWLEiBFjFbjdeL1HOSZZO037FYXqjbjnml6eOhesXv3Mnf6ZRt97aYrvGd4m8Crt9Yyn1cGr5RSv/2nafZWj+kqPFmBQOcKFNLvukRW1ZtLMS+k0FhrQs2RTNwDZVIJS1VVbKUCZyxer/ieAUqqNbNUOyRLSX3GV+BhDDm/F6pRF1bPm2RdrGsFcy27ojM5jpsrqICXwy6kKFF0NpUsgpBmK6dfCHEs/8o6bt3gfSIRRmAubRXC9GebCWDOVFCxTIscncwnSRY5uvhvqbIJF/UihXHXstRBq+GoC9WmEL99L2JMVRRZNSk8Bc5v50bk2B849SiI/C9wcPImCDxzczicfOqXnVSohvxLJV49cYqVc4769fd41XMWIamDtAAdXZhnYte7SvJKh1LS5Z8T/D+VTOz56paS54ogJN2LEiHEl8ErMGb5rdw8JYRf5/PBrdvHgExes81u7miON45cqv72nJbC9n/7lpyAL5dUvz8QMTbP6uhNxggbG++Q5mRDUNOnIbTGNn6phaAmkJdR3jk0wsVikuzUTKYxSnVdzkQRIbAXa7cGqiTRJWcGp9YUTTySlvzF26PycrnUFCmeTCvjuWscWn7nDjBu7baFc41TfW9jZ24JcCq4tlC9VrfyboGEDPWbY18wO27PbTrVex2D+hEe2qAi7AtZxjz0WPo/vd8Fhpaxd2+9tyzC2CJmUv6emLZuyXfJu+YRASM1Id3Tet5qPMe1rXymWmNl+Ouecsb8968u86Bnr4pOGRy2agWVi18ITMKAPWEk0I6VNVlHVlLBg6eeVdEpx/ZYO5o0i7KaHs6c105A8a0FUA+tzwCEhxD+gX5f3AX+9YVLFiBEjRowYq4QQ4p3AjYBFOSal/L82T6LV4WNv3EOuWCWZEBzc1cPhkQVu3d5JT2uGa/pbOTe93NB4uv7kNHaGu6MZZyGj1m1xYmKJSvuKcqSe0uyfdyOlIJHQaxRXlBwsM4/q8kKRLSmnTCaL3HyhgiahVIvOe6IZKpLDOaK4Qe7e3cPF2QITS0XDuAqHXxHmtcBjv6SyUC3Bzvtg7nz99iYUTTmV1De4HoOgSqgSZCf70cKbSvGpyRxvrgwYx4Sjo2psqYZBAxGOuO+xywsrZFNJq/2Wzmbasjm2Rbj/G7tKztY1T4xr8JjDXU1MTgiaUslIsbfuJrbXz4wDtucSQHMmyUq5xlDuKNKvkIXDwNIPueuFCQFnjd+diaWiNaZv2bW6K/CirTRt9a0ms45zWoOURW+7cdDaox29Lbz/4DBbO9f6excdUVkEf18I8S3ArJr381LK5zZOrFcn7hn5dN02r2QvV4wYLwso3uhA3P/xjZcjhi+EEJ8CWoD7gb8AHgAObapQq0RTOmkpusmE4GNvtJPc33PbNv744dMMdWaDunsgFRXf9hwEo9HEdV2n83Y6NZnnxdxY4JP5MATpmU8lD7A7cRa0KuWq/oS7VtMghUFY7ZXjxxfmmMkF+QC882pZXQu1qbadHqyEEOzua2V2uWSxPTrE9SZGOT/J6BqjVHKRbBmkc8LePTB5HJo6/UPkXOF7vtfXoPiOWsTWPa5jqDo2QqmqhdsRglDSDYfpUkfeH5ya4S03DFqf9w60sXcgnJkvCizekICF9LSYHhPdi1TPA+zMM3LeU+oaxxeLHiO4vTxpNHSGCCJBJAQPHBjmc09eZNf8E9DZ4/3ySw2TqdOUs1xzhrEmhLBKLZQqGjt7W7g4W1hH0hCnb0010meXnd9dj4Hp45VUjw13B3vrNwJRPVig/8FaklL+pRCiXwixW0rpfUQSwzccLigsMEaMGDE2FPUMwleeMfgaKeUtQogXpJT/WQjxCeDvN1uojcC/uncn2XR0o8VUSNyKXiNsYH7KtLOP/wCVmsRMK7PGmDtbR2J3fo8u6+6+Fs5zE+y/Do5/3dvJ6PO2G4f4zrEJq/7W6Sl/Suog1LIdTLVex67qeaBmqH7+NO1zzbvoWbkQOl49mu4wFA/+EuPz32BL7kXf3C2BgG0HYPfrobnbd4xgg8eWq9ixC+acx+rBQ+MtBJqUPD+6QHtTisGOJkfbbDpBqaJZ+n9aKyKQ7Jr7ERd67sN1c9p9G/ElheRg+a1s3TKxXCKGfT/9cumEgEK5yksTi+x3jal6k45fXuKOnc7rnK6t6PUFOocd6y9Va7RmU441+tPbeOW5MOOsnZZyWd7rT8aoy5UwkikfPTltnVE99s4stYjQNN2ITDZi+qwekX6ZhRD/J/DbgPmXOA38zUYJFSNGjBgxYqwSZuJIQQixFagAuzdRng1Dd2umLjW3Cj0Xw3yvv4Y9eY7yVFrVhaeWSgFGhPC0BSA/7W3qL4kpEKDX6DELJqvj6on+puIqGO5p5tfetJdbhwNo4utgySCsSKj0EJZTwLnO6VY7h/hk31uZb97pGc/dRzRSpi3TZhUdTskKCa1qkHuoxkgi0LgCHMV1gzxt5Rbdy9OQB0sNEcTOIRqZK/B3z45Z52qapFzVdONKaZ+u6Ur8UP6YZ+ypXDBTZpjBZGK9DIDg74IRUhdF3Y8oy0pF49GXppTaTV5o0pmHCEqh4qxBUCIllZrGTL4cqQYalZXQ03sH2vhn1w86joUzEepoK03CM38BtfphtOY+ppMJmtJJp9dbSu4Z+TRbl44YH905WCGQEp7+FByqHym2Xoj6y/w+dGamwwBSystCiOgUMzHWDVHCCOshDjNcO+qRdsSEHTHqIkqoYYzV4BtCiC7gv6H/zZLAZzZXpKsHAjN4yCZKWC1G5wr1GymwuC3W4B3xO24+jVeVXJOEOpVMWGusNpB/Bfr6krJKNpUgX9IVOnuO4DXMt+xivmWXzxlnn+6VkciySKCctAs73zX2v2juvgeruo9icAbJl04GyJy281JkBMPbK5vzIrU1pazCtmoh2oVC2dNPSmnTi7uRamIlaauaUese1ZOz0XC2RuatJpvI1vIUk9FVZEsc10SFcpVWbLlVo9c/1FDTjQ4lRNDMVRzqaKqfz5afgibdiHdf04O7unndPkcJaJIJQdkYX73OikDcM/Jp8pl+aNX08Tu3+UxsC9VcWQD08gq9rWnH75NpQA4vPgu8NXgc37E1KC5CS09j/daAqLEFZambihJACOEt3x4jRowYMWJsIoQQCeARKeWClPIrwE5gv5TydzdZtKsCfmQEYaqm+wmxG3/37Jgj0GjPQJvviI0YVLpQ/mFhpjzmU3M/BrqAAQGd6KJRMdJUaMumKCdbHCGC7jXZtPD15QjD2Z43cKL/7eGNjEky0y6PTx3DIVC2JtvDZ64rIaIbFs77Sno6agHeE7uZ2xMhKSXbKN/765Sb+zz93DA9lw4ZLM9StHtvtQ8a3PfBUnYLAKNdd3rnqHun+nxBsfOQZNFJXx5McpG0FmRufVeLs06Yr0GkwE1Q4l/nyln83E92gIzhoSQZXquse+WiZ051qLayXnJCiqRRANklT/iPmf461Bir4VoQ1cD6khDifwJdQoiPAA9T54mgEGK7EOL7QogTQohjQohfN473CCEeEkKcNl67jeNCCPEnQogzQogXhBB3rGVhMWLEiBHj1QUppQZ8QvlcklIuhnR5VUHiX/soSC8xiRscY4RoiO++dWuoArkaD4QmbaPGVCAtzgnpfNXXZoYT2p6KVSvP0jbe5pt3uSez2um+gvrqVJQcrNmWa1hs9tY1k1Ja/W0jz4ZQ/u9+a8KRz2a8PzmRYyavkweMzhd4+vyc3r0hkotwVEz6/IC8KN+pDKMp4TC23fOu0aW13pCSodxR/a0IZ2E02wdBKAaU2aolawed+THqda9c1IuPm0QZShih20B6acIw1tJNylFbnssLTsOpkZBR8pOOOTM1I3eqzp5YhpgJoV/jmwqHuOPS561Q0kJa90IFbt/MGUctLR31Pc/rjagsgv9dCPEWYAm4DvhdKeVDdbpVgX8rpTxshBM+K4R4CPg59CeM/0UI8TvA76Dnd70d2Gf8uxv4c+M1Rowriig1u2LEiHHV4rtCiJ8G/l7Wc8G8ymAyxwmheINC9I3rt3RwYnwpuIEv6lMINBYiKBFSQwCVdDuKCWWNY17kSrIZMJU0W6VcrUplGSRCN450v4h0zGlDBBy3UW/dpWQbWogSahpxlh/E5Sw6PLrApUpNL7zr09/tlciXqnzzxXHam1L8IjA2vwJDplEafdfcHiqPIRTgLZU+7zpXxnxGWAUaJLlYxXDmGf3/UtJSmQv3UTVk6Ss0DsZL2+yLTAPNlQUGL3yZbOomdCe9/j1JSM3KGwRBrljh4ROT1tTq7OWaBl07mOu6ifaz/0g6mdDD6Aw0u3M7lc4PHBh25NY5cOlwyDrDr+typtc1pd5+S+4ouVrV4T1OFufRufdcQtYq8OKXoW8f3PyAMrX3wchGo+4jFyFEUgjxsJTyISnl/y6l/HcRjCuklONSSjNnKwecALYB7wEeNJo9CLzXeP8e4K+ljqfQvWVbVrGmGDFixIjx6sVvAV8GSkKIJSFETgjRqJXwioSmeAtsxTxY4Yjy1FqtraUPF9wp1OPgYwvnS1UHi1gt1WJMYYbjScerfrK+zACtWX9D5q7dPXQ2py2RrLlIGPphwJNw2+oLRMkgqQjCc9s+aOTPeGH6IQCFRVBaBXuFgEPn5zkzlSdfrHrlG7rJQ0ZhGly5YlU57vGFNYQwFdp9a9jeFbvX9dPfNAowm6GKIYlHEe7hqLhusJ0dAUW3o3rKzHWMdnrDA1HCFk3sm/0eO+efCAxjlK5XizSiPEVzcZLMxI89feZMT6sQPH1uxmIBdNezSicFpJv5+guTvDC2YIQcqoV8nWtW+5uFzXf0uvZLSjj1HTj5bd/1rMaFrRcUNpZk9O8ojdN//K/8r0vR+KlfHHWPZI7SsAyrRV0PlpSyJoQoCCE6VxtqIYTYhU6S8TQwKKUcN8YeF0IMGM22AeqOjBnHxl1jfRT4KMCOHWGlzmPE8CL2TsW4IogJLDYNUsqYgCkAqtfKUjdC9A23UhZpDj8FZpVPjU9PqjkncHoyT6lDs0MEgXMzeV4sLEKmx0VDbdfAcXtj0knBv75vN//v98545uxsTnPzcCc/PD3jDKkTCX1USwl1jlkThlEWooyf7n0TKa1EZzHg6X89mOsxDUvsrU2YrkncxW2hqmmUyzVemneFTfmJaoVV+l+zxZUKhy/OO46tVJxsdx47yPIceces1LTADu46RmHwymvmINljTywVjbbe/vsG29k32M6fff9M3fwk18S279KYq5D2YXKslhyeY1Osloqyl4qsreVZ0rOnHFq6UK5/TZMcu7wEw+okzn1UQ3yV2wOAtmwKhKCUaqdckxy9tMRzSxd4+5uuob/dW1vv+qEOqFWhUiDZ1MGHX7OL9qYUf6p+h+rVdatz3uv9E5SrGvlS1fhk99ckPHFqxtlaACXDwAryBF9BD1ZUFsEi8KIR4mcR0Usp/7d6HYUQbcBXgN+QUi6FuJ39Tni+/lLKTwOfBjh48GAc/hEjxjogZkWM8UqCkdu7D7ASDKSUP9g8ia4OSLAUjIBSQw4kIyZeRNVZ3DlTISMC3rpNdg6SjpoGk0slO1IoYGA/8VLJsPpE6nCmMSMc+ULVhFFAdvggJystVKoZgtDXlmEmXwYhqCXCE/2DoD/Jd+Zgjc2vUCjbxo1UjYqazdj3/OgCl6YnKfbe4BzTx8IyCygH4bFT05x11RNT83V0jgt3yKD/dZHo3rNqwqvQ22u1ZZnJl1kqVuhocu5h2P03vli03h+/vL6ObHWZ2XQCjC33zbXr2o5c8h4PKja9Z+4xEpl2SGU8eVQCjXJN88n7c2blScUgcV9Tc8RCppfnt7yfW8e/DG2S7x6f4B03bXHUnALobEnDiX+EiRfhtb9BT2szHtSCKfX1SesYWOb5rbdDaQmRH3Gdt9c3MldgpHXZxy1qjNHkKs1g9b36DKx/Mv41BCFEGt24+ryU0iz0OCmE2GJ4r7YAU8bxMUDN7BwGLjc6Z4zGEMWjEyvXMWLEeLlACPGLwK+j/w05AtwDPAm8aTPluiqgGAiapbQFI4rh5MPl5Tdt6Ofo8zsPPHF2BlPN68+fpK00gUhlrLaWQtqgTmXXCtNVWIEeIiiBlKYr7LMt18CBe6C1n+XxEVjWPRG1tJNkeWtXE+1Nad3AApbTvfRwHtC9YqZSuZLuqiuXlYNl9FGNKxWalNCxDS7r9YLKNelRxsOM3LD9Umtpmaj6kKFEmUtK3Ygf7brTKtLc2Zxm3sh28xPj8sIKHUOmtzAEYfXdQu76oG5ht5AUgluHO3npnF9mntEz20E508VC980w3A+jDwN6uJse8pnE7f/1fLNMDxaa9fBhS2eTZUQK9CTLSk0jLYTDIGmePkJyegn9uZMxuEXJbs9aXhjn2Jc+RX/Xa5huu84pwIyhLxZm9WLGbhz+nM/6DW+Z74qcOLCzm75KMwzeAJefc+yF/qzH2X//UBs3buvmK4fHrLmCc62ufA5WqIElhNghpRyRUj4Y1i6grwA+C5yQUv6hcurrwIeB/2K8fk05/qtCiC+gk1ssmqGEVz1c4UD3jMxukiDR0HAtre/3eo/d/3HvsRgxYsTYfPw6cCfwlJTyfiHEfuA/b7JMVwVsWnNbyXBHlaifsqkITGgu5DP9dBbHSCYEqYQwcoTWR6mRLoNpdH6Fa9EVyz1zj3mSxmyFtNH59fYjcwWGDU22msxSKmq0lvWwJCmS0GGniVtKqnTO5fXCOQ2dXHaQ9tKkxYwWLpY+9jVzj/uetjxYGhYl9rxRe+pyx62OtrPLJZp8rq9cxW5pHo+Ve0zz1atga1Kyku5munUf/cundWW85G031NnExGIxUhrPeoc2RZmzsymNX420/PDr6F88BMk0MpFicugNsLUJsKkMxPhzsCuY080dzpvUKrS3pJktQsK4581wQIng8MV57q6s0Ju/SKr9LqrJZtouPkIqk+KaOd1vkWvbCdfcD+dOOzyjyeI8Sa3CnrnH2L74DEcH30s51aZP3NwNuYlgT1TZ8GxmWqGse8AO7Oy2vWfL09CxNXCdtw23w2wLfr8Xnc1pml0Wy5bOJm8uZUAI79XowfoqcAeAEOIrUsqfbmDs+4B/iR5aeMQ49h/QDasvCSF+ARgB3m+c+ybwDuAMOg3QzzcwV4wNxJPnfAzGc//OenvvNT4GGDRshMVhajE2HFFyo+KHBy93FKWURT1/Q2SllC8JIa6r3+2VD5NFUEWYunFgZzfZdILHFKIJP6hjjHbdyUD+Je7e2Uy+VNXzRNxy+KrAfk//o8xYHw1Rjit7lCtWQUImlaBUa6ek5BrVhL/6VKxpoESwuZXzpsqi4+RKqovx9ltYbAopwIq+Z+ZQac2n9hBYgmtSQlL35M3kS5zvvo+iy0P2hUOjfPg1u3zHCNqv5VKVmVzJRzannJ7zrryjnb0tXJwt8PzogmWcFVN2SJdQKOlN7Olv8xhYKiug2rqk5FDtH2q3KcntJQaicfPSCF2rlsDwp6oeIS1jGic9iAWjrlNQWFugq8+W7brBdk5O5mhJJ5ktaop3yAyhE3oOXq0CSHYuPE0x1Q7NAiklA8sn7THtJEWrv3r9MrUCzdUF28CyXLv+nlMLCVumtBqKW5gL72ddUNNv7ESm6gxNFUhHqK8Qwt7LQA9WuAjriXoGlirKNY0MLKX8IcFLebNPewn8SiNzxIhxtWK9yDRiozJGjIYxJoToQn9A+JAQYp443BzADryKqGRkUolAZjXASNr3P+esX2TmfSlhOhG8Am7yBFNwe2jnQq4dbGM2b+aBrN6P4c5XacmkkMWEZQyc6X0jQWx/M7mSkvmnGxzqaPnsoKXkmiFdcy27I0oWfOHUgE9NSsh2UJN6LaXJ9hsjjq+PIYS/mWGGYtWD+54wvXjmYdMz+uIl29i81KmXPh0WxyxPkH6b6O9N52QURr+JxSLmjqq1ozYUl55F9ys4Ueq+Doa3QPtWGA/4GVLvJWXjpesVAS1pfe/MPb1uqJ2TEyoZjJJDJyX9y7ouIprd3D/OfK1ASJ92gblUss75OrCMIyMUVjiv9eDSC6gBqgk0OpvTCFmzwyGD5r4KPVgy4H2MGK86RAmtfGrHR6+AJFceca5ejJcLpJTvM97+nhDi+0AnEMAb/MrHDVs7GJ0rkCtW9Zwid0ig8IYJOs6vYk7hUPdt1Au1evLcLMNdzTC/wneOTzrow8FLcgGwt7+NMxldIfMLeYNV5GAp72uJtJGDJSgbYVgzrd7fOnPN6aRTBneIYEtbB9R5kO+HSk2G1sgC1ZCFlarkiFE0mIAgE5WMQg3zEwKKlZqDTU9KqRiv7nEcQvgJ5kDQ9TD32tebadsMHpnD7t90cp28nT4n9m9p59mL83S36t7CjoS5P0pbkYCuHdYQpoHoMFvMwsDudbv3TRm6VK2R1Co0TzzDYG6B6dbrMJMsze94mAklpaYzOGLfN3vmHuN892sd7a6f/hb5TD/w28pFsO+LdK3AgUt/w9meN0C2jpEz8hQM3Qytff7n3QaW63TQ57vnvgbLM9DxXujpCmh9leVgAbca9UME0KzUEhHoTqfwog4xXhXwDSEEnqrGlOgxYsS4MhBCNAG/BOwFXgQ+K6V8bHOlurLY3dfK+Rkn+1cqIbhzVw/fe2nKrxRP3ZCocOPLGWJkI1yjDjO0xhZWeOrZsQBFyPRg6a/97Vn6RZaklnC1cE7bSNiXRDqmHu04QG3rPPlLA8GdXP2dB5yfd/e3sTKito8mW60mqSaaPMeriSadeEOZ5u+eHePgkGjoCbqqbCcQVmjnYqFCZ0u6jnEsHe/cRBiWUSGd3igvDO+Z1IxcMMfV9LT+4jPuWkeQyw7RXprQ84A2GAPtTfqDxe/rhm9H1dCF6l3Spi6mum5j69ILDHU2kUnWMZwVQhpzaNNwbxt7nN3zS5STrZaR77e/QgiaM/Y8K+WqRbGusji2VLzWf1vZFSJcssN+mysLAPQvn4Qe08AKCSE89BlvGP70KWjrd4UI1odAwslv01yeZwUYHP0WpIxgO2/RNavXlULo909K2XiGa4wYMWI0inq5UXFeVIz6eBCoAI8DbwduQCe8eNXg7TcP8T++f9ZzXK0b5c5XWSvCmdwaaBtpLqcHK6VVIAnNZfshn7C8XPZsbqOzHlTFfiXTg7b3ALXx88HthZ2TtZJ1Pp13r/nG3dvIjbVxcjKPG34hl+1NKcv7qPnkfZ3vuY99M48Yc9lyvzCW0xPoI8KcVhNJUsp1M2tquYksguCmcAd7TYqPLEAGpaaUC34eLL/zxwfeQVKrcG/7UCR5PeP4ylUHXTtgYQS1TlPQ2FICiQSXe++luyVDf/I0ZA1fRcc2hKP0q8vbpQhnGrHp1i5giYSskk0lWELQ2ZxG3vEv0c79kWt+ewA1n1BLpFlJd9FcWfCnmDdhlRhQ26iGi7H+SpGGcPQrkEjC/ncZQwmPgbSls5mz03mcV0PC0iX7owDyU7as1TI8/gn984EPNybTOuAKBafGiOGPemF3r9SQu6sCilETxHwZ7//LA0FeZBWBZDSvHNwgpbwZQAjxWeDQJstzxeHH+ufQU6T0eKQSdR4Wr4cxpoauqZ9NlKo1qFTd3QLRZOSh9Eqd0W9o/lnr3NauJqOgrK2ue3O5QmSV3j3x8+Lt6nPmplWTzRwfeBetvcOwrIbWOfulO7fQ09kOhoH1zlu2Mj+8g88/NUJCCEeR4J+/bxcjcwUeOTFFTfqHCNr0604Gkyiesc89eVEdyFpH1qdrmJHhIJ7wOW+STpjtStWQ62GlCDrvGVMkvxyspLpukaKaVFRbH4HCbIhVPQTYcz88+6CSJ1Z/76WE5Y69sHzaFqjJSUTilkUgSCcTNKUTFCvGPZbMcMeOLq7fO0TyYjvfn9BJSpbSg8y07KWvoHup3GtO1WwjKJNKMNJ5F9fNfNdB7e6BwUzJqe/A+cdg6+2ktJIhmxY992ryGPRda48HOnHsYiZ5AAAgAElEQVSGK0QQoLU0jUBnEbx+SwdTS0UuG7T0rVOHIT9lGf+OcgHpJigp5CbPPqi/5saB26LJuUbEBlaMGFcxVs2sGIUtL4Y/4r17ucKKS5JSVsNC215tcPsF1L2JWkzYd1wBY/MF2t2FX33o4MHfCyKRHB5ZoJTW8JabdbU15L52sI3etp10j56GCUjIiuU7MI3MlFa2FF53TWF1/du6m7k0b7PyDXRkmVt25hr5bVFfmy2taUAsNW1ladmpZPp6fva8CU59HoB05xCphJ1z8pHXX8PJiRw3besgm0oyZsgmpURLpJlou5Gh/DF7T4w9rkmnYl9J+hSCDYEzX8ce59tHJ3jggE/NIwWXlELDfkWKTQPXNI7cdbNeu6+PH56eMebGqPPlZDO08opc25lMCLZ2eUMnV4sVn9piUtYzmfSzCQIows2jiodSAsKyyMLNOvV0QgiuH+rguVE9NI9kimwqSbYpSd64B6SE8aUVhzfKfGeyKiaUML5qTWVtDJDl3KPOz5UiTL3E/qFb0Gbg4J5BKF6C9kHITYauh+Nfh2vfBttcPlYXA6AAti09R1+bnuPWnE4y3N1iG1jjh6A9y0B7ltH5FSvM1V60z3XoaYivb02IDawYG4aG623VQZCxoc6zXpTxMV6GiA2j1eGVQ11/qytPuFnJIX7V5gyrynK5qnmIIHpbnWaN2+AKs1NrmqSmSdrXoN9aDHMODT9oUjsHq68tq+dtAOlqATd5eC4zYFE4u5X+lLFG8wGV+bflY2/cQ1M6yfyyM4fIz2hQySv627MOI02FlD7FebfcBugGFkO3IFZqxrr0oqwHdnYHzne541angSUSTLdeS7owS61bMXQj5rH4QV3u5FKRmXyJntZMYHuVjCTlQyqxUCgDdk6UW4W/Y0e3YWAFK/l+xA3ppODW7V2kkgkHYYcKv6NRcvJU+nMp/e8Be0DjvowYRqmPqRptNl+gRWnvun4vDr6P7ffeTueRP3bYb4n8FCQFSM16sCENmdXi0qW+G2jPn6a7JUNXS5qj6b3WOU1JzhQ+Xqjt3c1w8UnwhF1K7rqmF7ncQ6JohOqpXtbbPghH/tZ/AyoF77HzRsqsQdMugLbyFFrQ74uxDyZTpJNsRfp/B9qi5VKuB2IDK8YrCq82wo1go/PqLnYdI8Z6I84ZDoCAprSuaOSKVfrbbYMqlRDW5/cfHKZY0UIV6SBa9gM7nAaBmjRfD0GKsW9bt2I8fCeceYQtnU1cmC1YNXcm2m50UJ+nXDF/7hnv3z+gG59G6GE95+euvhb2DrRZn7OpYGNGk9LDhuiYQCQwHYA3bPU+AzAVey1A8ZYkONv7RmZb0shCxdPfPdZr9/Xyg1MznnPu65AQwp4zdFT3HN5jj56c5tbhLss75PbqWY4coYfAdbekSCUEGUeNI6+cmmL4uD3WmiatIryrgck++McPn0aTki2dYU8RnHl/Qf4uoWQG6jZNQvmgY2tXM6en8o5jEokUCSW/0EbCzKzUNEQ5D6JdN66kLc9Y5wH2Kb0EMNbhn6HXXvZ6nzqbjRu07JM3aBCT2MIqBlpTp6e93c5Y30vftI+VlPFLS6QqOTK1AsWq8tMuvG+bjO9fZ4vqSZesPetzbYgNrBgxYqwaDi/l96+M97CeUflKyzWKkl8VI0YY9g608aF7dqJJSVdLmqfP6Uxhql403O1f70o4FDPhyYG5ZbjTYxgcH3gXb7xW0PTSt4DwnBQzvC4RxjxmYKlpq0s4fdwtnc1s6bRD4i70OOsRuY3Gmos7/bbtztwXt4Hl9l6873ZnyJxfOKoaetiUSZIvOY2sXHaQpsoSGOxuv/SGPZYh7JjbOKSZtWgRJIUeEgh22GRNk2RSCQe1uhu9bZlAT8yo4oErVmq8/eYh/umFcWNuGZnkIqjZ5w+NWEWK3cacEIJr+lvJ5wWJhODgji79IvgYSGpPLSR07/j4Ejdt6/SVJ0r0sGmcmesO92AZIZ7mPayG5gV0k0qOoLUqKS3PmUDaskudfEQdymKPTGVAVmH0KYQQtJcmKJSrCCFI11ascR15comURzBzJ01WQOc5AyWXgeW3uT27ITdhLD7Ei1otBUdPJNIwf5EWk/Wwzq3Xkklx1+4eRy4eM6dh8rhP6ysXOh4bWDFixLhqcKU8kDEpRIxXCwS6Aqt6rqxz65Cn5pfDVUq1w7ZrSZ36Tt3+poGV0uozj1WSwUWPVWzrbqZdCfG6e3cP44srXJzVw5L89kKFO4TMDCk803s/5WQL93rae/GaPb18+cdjSAnvvW0rf/G4k4Xw+MC7AMnrjc8qhbafLN85piuttUTG4Uo0iS+kwXHR15ZhJqBeVVjNs5lCzQoo62vLOnniZN00IQvuul/W+Dk7iHOos5nLC97rLRGGMi3BkMbOG9RfTW9guaoZa/Zfz+xymUdPTvHciNdgiILZfNnxMC/0q2Kc3N3XyvhMiD0gYHSuwORSkeVSDdHuysHKT/h+n3RfjJ2TJoRgqWkLF7vu4Y6D18Azn4KiHh2dqRV49KROq369kRO2ku5CYofkDXfYnp49A20G86NgS2cT44sNMADWylB07W9K8fSFbdrYM8HnMvr3vN6vkzX8rvtIXviRS7YAb+5VVAcrhgt+T8/jcKyNw3rnccVoDI3sfxTjKC5GHCPGlUEyIahp0gqbU2HqGKFP5Q1kUq4wLR+SARU/f98uy2jiup+gMPotj2HkTJXQPw20pZjJBXuxtvV1BZ5z4wMHtzs+JxKC3X2tloGVrLNut45rejNmWvcFtPeOZ4a3SaSHBARA1ikabKK3zel9kyKJ1tIP+SmmWq8jn9FzSkwP2Udet8Oqb9TbmmFqxd7tsOv9420fxrwy2XTCYSjNLJc4PDLv22+gI8vUkm08RfF07R1o4+ilRYe3zTaUpJn05OhjhnkevjjP6/f1cW5G96ZkUv5rOnzRX15YnQ8j/Luin9tVPuMgWXfD9E49eVb/WznY2QwLQMH426lVSSUEzekEKxWNSvtWkPo5KZIOGc51v45qsol0kx2qKoCVlP09Mb1RmkihpWwPb3tTmq1tTVxeKHL37h6LWt8v1LWSaKa05U6YP+JdUGUFzjziPJZtVz6sYqeF+nvjzbtTJZQSOPBz0LEF3AZWEBoISV4rYgMrRowYG4pIYYSNjPEKQxwCGGMj8P6Dw+SLVbb3BHt9oqSoqJ6VG7d28MLYouP8TN5JL9HVohgEW29nan8vmuupuCO939B3hruaHV4OFccH3sU9b7kdHp/k+i1r5yqpx5zY6ENutX1zJslP3b6NtiZdvQry6Ny1u4czPjWj3OhucRpY77xlC3uOVTmUh8m2GzxhWKpBLQ98mCNnbM+FIFjl1RK2OnhhpuDY5wszy5ZxquJ9xjpVunfTeAhDQsBQRxMjc07ZLNTKTgpvnNfsc09dtMI6rxuKfj+0ZJIUyrVVeW7dYaUOKOPtH2rnqLQ/q2QZt27v4uREzqrLtq8nBReB8z+AdDPkJhGpDNdt6+XIhWkWV2q0yIruQRQJa48EUE3qnqJE0qnGLzTbDxeKqXYytWUK6W7EjmtgPmt5jt5z2zYHY2JCVj37Mt5+MyNdd7JfjNXdHwutConEaoo9mzlc/dfCyDHPabHzHq5feZxzM8t6CKF5n9z8AJx+CIqLnj6+418BxAZWjBjriLiu16sHLzfDqJ68cUjkKwtbOpshJMccGjckWrNelWE2IBytHio1jZomLS9GkCxt2RTvufdeRFOW33xLnQWFYGuX/QS/PjV9YxujDteWTTHQ0WQp5Pft0QsPv/7afrqUJPz79vZx315nUeJ6YwP0t2WtY4VMT2jfdNc2KqnLjmM7e1vYP9TOvsE2vvF8sL9FNSj0umLwoXt2srhS4RvP62Pu6mv1MiSi1ykrhtQeSwjhe72riazurSguQbN3bXsH2jgzlWc2X7YoudM+rIUm7t7dw9Pn9XzD99y2ldZsismlYuj1f9uNQ1Y4poqsT35cECSC4e5mXrevnyGFHKPVFQYq2o2cwqGbYMEwUmsVkqkMAjg/V2K+uMSOnhZkKmHdlg5PsrKR6VSClZT9HTnf8zo6ipcppTsZ7OuF/7+9ew+Tq67vOP7+zMxONrvZ7DWXTTbJbi4ENiEkIQkhBIhcA7WAmAoFFI2CYvFW+yhKHx9b+4cWW0ofbSmi1lYUK4oijxaiFUF9uEtCYgiEmwkEAgYCuUhu3/5xfjN7dndmdjfZnZmd/b6eZ56dOXPm7O87c+ac+Z7f73xP44psglVdlaS6KsmB8D6O2bedQ1Vdn/mLdfN4oX4hptTAKlLWNMOi1dEwPyn6uy9HxcC+zH0nu8efAj/5Utc0JaBlNg01D7BwajjwkAjvacus6LyrbWsLL7eIPViHX8fTOeecc8NO5gdmruGDhWSGCzbVprPnJU0sWF0t9++ZP+45xMPPv8bvtrzO8zu6hu3NGNf7iPf4saO6XXPqcE0YW805x0ZlpgfSg7VybvSaixZHPQOL2nuXUM+c0zVrwhjOnz8p+z8+ceZRHNsW/eA9flojM8aN6fXavsR7Fa5aMYPG2jRqiYZaGwmqkmLB1O7DJ8+aM4EzjpnAgR69LrWjUjTUpDnn2FZmju8aynX0xDp6ig/feytc1LapNt2temImToC66hTvWjyFVce3ccXJHYVjAhpD4ZELF04OccJro6ex85hLYMGl0Hk+AJNDYlxXnWLF7Kgsf006mU3sqwpcKbtz0liSCTFmVIrp48YwYWw189oKDzXNVcnxzM4JnD2nZ4nyeEC916dkQr2+Gw01aU6YHkscM71P+3bD9ieyk9OpFAumNtDZFs277+AhTOqzvHyy/SR213cNw99b1cjOpnm8Y0H0HpNIwoQ50L48O0/mUga70+OoqepKALfWL2LK+Oi9qs9cykGJKJEpJJGIroWVGSq47KOw4prCr8knPYZd6XGxCQbVPT6fWM9rwSNG6f6dvzmYvAfLOSp7CJpzbmQZk6OnKe64tgbGjEoNOHGZO6mesdVVNNemeebVXdz75KvUpgv/r55VBwH+lKpnU8tZnHbgPqqrEqRTCaqSCcbXVTN2dBX3x+YdzAtGZ869qqsu3Ob4f8y8l5MaRuc9h3Th1EYmN9T0mWweqUwZeTov4NGt00HiAydPp7oqSjjaGqNkZM6kKKnb9NKb3V7fc7jo6HSSvfsOZq8jFJdJzqY112SHB+bKS2vTSU6dPY7pLbXdhoe+76R2vn3/8yyb2cKvQtGFLEU95hPqqpnalCloIJA4MKYVGroSvgVTGmhvrqE5rKtLOpp48NkdbHjxDaqrkgVLsTfUpPnIaTN7JZoDNXdyXz2nXW1ISOxP1OTs7QWYNb4uW8Uza0esAEoqDYkqRqWSjK2t5blkLS/t3I3VJfrueW2YSnLrIYgVrFy9vD178W0k6Dwv50t31HSQOPBA9rEJpjbVRBUz/xDaO3FulKC9+lTvBRx9LuzuXf4/m/TM/8uoCuELj8AbL/aeL4eExPoJF3Day9/omjiqDo75c9j4kzBTP9OYY98Fb7wAtcUbqeEJlhsRPIFyzh0uSZ8HrgAyvxQ/a2Y/zf+K0lm9vKPgdZkg6sno60h+LulUItuD0bo/+jE/tXlgR4YvXDiZvfsPsmZDgua5M6k9uDM6gn9wP4ydRHVVDTzUVTK8ucB1uQaqo6WWZTOa+4w9nij1p2iD1Lu3YkglU4yua2Tf3v3ZpOudx7f1mu2oCWOAVn76eDQUMNXjB/qyGc38YuN2atJJLl4yhVsf3ALA0unN2SId7S211KST/GHHnmyyu3xWC+NCwiOJhVN79+o11KT58IqZ7Nl/sFeCJUR1VbJbb9G8tnqefPnNXu9jIqFscgVRgpVJysbmKB4CUU9iZj2VVHAYYS7HtNaxcdubfc+YUTU6SiQmLaS2422cun0PHS25zz/qVcEyWRWdF1TTBLtegWknwZgJ8OZL1DfNpLHlZA7u3sFp9a001lTBkis4tPt1WJvjXCIlSKj7+lqoh6+nPx33Xqa9dTNbduzBSLAjc8Ht7BBBQWM7LLkCXnkCnr2v68WN7dB6XP6FN7aHN2A23Pvl7s8t/RDcf2N0f/qp2cl11Slqq1OMXnwJbPspLLgseiKeVMXvZ76ro+rgrR6fX7oW2hblb98Q8ATLuWHIE8ahN9zOsXJD7noz+3Lfs5VW9qKgQ2xSw2iuWjGjq1clj6XTm7lz7bZsojKtOfrhOWt8Xd4j8tOat1JXXcXRE+uyQ8Tyap4Je3fAnh2F5yMaDnVCP841rEmnsuWrj7DzY1DUpJO9rlN2yQlT++yZkcTsiXXZBKu9x4/+uZOi60TNnVzf7bM4cUYzhw4ZyYTobB2L1P2crMXthc/9ykgklLNiY66kdUpTTb+qzFYlE3kLt2RK1J89Z+KAh7/GrZzbypmdE/nmb57t13lypEbByZ+ERIqU1I8er5glV0alzVNpOHggGsYnQVMHCWBeHUCscERtC6puAjb3XpYSSF3DOd9z4rSB9QDXjWfSqav57c9/DUqw6aU3OLNzQu9zsGpbYPSJMHYSrP1eNC3ZzwMhyaoo5mfvgVeejHrERscS9GnLuv7NqBRXnjIjenB0LHkbN7vrfjzBSoXkddL8ruQvXRsdwCliefZsc4r+H50bwUZ6YuRJi3OVo6/kCmDGuDF87IxZXL/mSVpiJccLDXe6cGHv3pi85v1F9Pex78BrzxeedwCWTm9i34FDtBazZyqP1cs7eiUq/XnvM644ZTpVSXUNFQsSCXHclNy9eYlE90QhNcBeoIxcn3OhiyEfiQsXtrFt594jSq4ykolo+GX/X3CYBzbi5xQl+/eTPO8nkUhhFvU6tdZX9zu5Oqa1jideejMaDlvXzsstB+DAoa51LFOZ72CsymciCU2x96eqjwMhcbXNMPedUZn3TGK27Or+v16C4y6GQwe7J07ty6OesoZpXeeZvfAIPHk3pAbQvkHiCVZ/xK427de8cq68eRLnhsjVkt4DPAx80szyX2jH9bJ6eQfVA6jENmCdF8Bvbhi0xY2vq2ZVjmF3pXCkCUNf5+RlTGmqYcuOw6j4VkA6leCkmS3sems/f/jjHl7bk+cCsIOgdlSqW/GOSpWpwtirJ7F6LLMmpHju1d3Z4ir9cfaciZzZOTGbDL9/eQc3/uppLls6LZohU9q8fkqeJRymeFI2aoCfW1OOQiqpUdA8o/u0ycdHtxIoqwRL0krgBiAJ3GxmXyxxk5xzbkQolJjGLxbdl+F6MWlJPwdylQq7Fvh34AtExZG/APwTsDrPcq4ErgSYOnXqkLS12M6aM4EnXx7AOSk5DPnQxXRNdI7GQH+ouazz50/qukj0IFrSESUC3394y5AmWMPFe5e15yxv31+JhPjwipld55YdfS7s2g5VNZx6VC2nHjWu8AJ6kES8g7K6KsnHz4hvx8OTRSxxXgnKJsGSlAS+CpwJbAUeknSHmf2+tC1zzjlX6czsjP7MJ+lrwJ0FlnMTcBPAokWLKuIXyZxJ9dnKdGWtYZCPsI8wVcnEoAyvyydT5r8Ep8OUlcbadLZM/eFKxwvZFCouMRiyn1eOzVnHybmrB7rySbCAJcBmM3sGQNKtwPnA0CZYseF/PrTIOed668+5g5V8EW1JrWaWuSrrO4D1pWyPc8PRmZ0TWLd1Z9+FS1x5qQpFRXIVsohdU8t1JyuTLj9Jq4CVZvaB8PjdwAlmdnWP+bLDL4DZwKaiNrT0WoCRfLjA4/f4Pf7KN83MBjbOZQhJ+m9gPtEh3OeAD8YSrkKvewU40soLlf6ZV3p84DFWikqPsdLjg8GJsV/7p3LqwcrVadwr+4sPvxiJJD1sZsUt5l9GPH6P3+MfufGXipm9+zBfd8RJYqV/5pUeH3iMlaLSY6z0+KC4MQ5hSZ8B2wrEB1C3Af273LNzzjnnnHPOlYFySrAeAmZJ6pCUBi4G7ihxm5xzzjnnnHOu38pmiKCZHZB0NXAXUZn2b5jZhhI3qxyN2OGRgcc/snn8bqSp9M+80uMDj7FSVHqMlR4fFDHGsily4ZxzzjnnnHPDXTkNEXTOOeecc865Yc0TLOecc84555wbJJ5gDWOS/kaSSWopdVuKSdJ1kp6QtE7S7ZIaSt2mYpC0UtImSZslXVPq9hSTpCmSfilpo6QNkj5W6jYVm6SkpN9JurPUbXFDbzh/3yV9Q9J2Setj05okrZH0VPjbGKZL0r+GONdJWhh7zeVh/qckXV6KWHLJtz2qsBirJT0oaW2I8e/C9A5JD4T2fi8UJUPSqPB4c3i+Pbasz4TpmySdXZqI8uu5ba20GCU9J+lxSY9JejhMq6R1tUHSbeF34UZJJ5ZFfGbmt2F4IyppfxfRRSxbSt2eIsd+FpAK978EfKnUbSpCzEngaWA6kAbWAp2lblcR428FFob7dcCTIyn+EPdfA98B7ix1W/w25J/1sP6+A6cAC4H1sWn/CFwT7l+T2W4D5wI/I7oW5lLggTC9CXgm/G0M9xtLHVtoW87tUYXFKGBMuF8FPBDa/j/AxWH6jcBV4f6HgRvD/YuB74X7nWH9HQV0hPU6Wer4esTabdtaaTESXRy9pce0SlpXvwV8INxPAw3lEJ/3YA1f1wOfIsfFmCudmd1tZgfCw/uJrplW6ZYAm83sGTPbB9wKnF/iNhWNmW0zs0fD/TeBjcDk0raqeCS1AX8G3FzqtriiGNbfdzO7F9jRY/L5RD+ECH8viE3/L4vcDzRIagXOBtaY2Q4zew1YA6wc+tb3rcD2qJJiNDPbFR5WhZsBpwG3hek9Y8zEfhtwuiSF6bea2Vtm9iywmWj9Lgs9t62hzRUVYx4Vsa5KGkt0QOfrAGa2z8xepwzi8wRrGJJ0HvCCma0tdVvKwGqioxGVbjKwJfZ4KyMowYgLwzIWEB1RHSn+heiAyqFSN8QVRSV+3yeY2TaIEhRgfJieL9Zh8R702B5VVIxh6NxjwHaiH5xPA6/HDnDG25uNJTy/E2imzGOk97a1mcqL0YC7JT0i6cowrVLW1enAK8A3wzDPmyXVUgbxlc11sFx3kn4OTMzx1LXAZ4mGyVWsQvGb2Y/DPNcCB4Bbitm2ElGOaSOu91LSGOAHwMfN7I1St6cYJL0d2G5mj0haUer2uKIYSd/3fLGW/XvQc3sUdWbknjXHtLKP0cwOAvMVned8O3BMrtnC32EXY55ta6H2DrsYg5PM7EVJ44E1kp4oMO9wizFFNBz5I2b2gKQbiIYE5lO0+DzBKlNmdkau6ZKOJRrjuzZszNuARyUtMbOXitjEIZUv/oxwAuLbgdMtDKCtcFuJzrvLaANeLFFbSkJSFdGPmVvM7Ielbk8RnQScJ+lcoBoYK+nbZnZZidvlhk4lft9fltRqZtvCkJztYXq+WLcCK3pMv6cI7eyXPNujiooxw8xel3QP0TkrDZJSoQcnvl5mYtwqKQXUEw0TLed1ude2lahHq5JixMxeDH+3S7qdaPhipayrW4GtZpYZ0XIbUYJV8vh8iOAwY2aPm9l4M2s3s3ailWJhJSVXfZG0Evg0cJ6Z7Sl1e4rkIWBWqG6UJjrB9o4St6lowjj3rwMbzeyfS92eYjKzz5hZW/i+Xwz8nydXFa8Sv+93AJnKXJcDP45Nf0+o7rUU2BmG9NwFnCWpMVQAOytMK7kC26NKinFc6LlC0mjgDKJzzX4JrAqz9YwxE/sqou2UhekXK6rA1wHMAh4sThSF5dm2XkoFxSipVlJd5j7ROraeCllXw2/fLZJmh0mnA7+nHOIbaFUMv5XXjRzVYSr9RnQC6RbgsXC7sdRtKlLc5xJVq3qaaKhkydtUxNiXE3XXr4t97ueWul0leB9W4FUER8RtOH/fge8C24D9RAcB3090rsovgKfC36Ywr4CvhjgfBxbFlrM6bO83A+8rdVyxduXcHlVYjPOA34UY1wOfC9OnEyUPm4HvA6PC9OrweHN4fnpsWdeG2DcB55Q6tjzxZretlRRjiGVtuG3IbEsqbF2dDzwc1tUfEVUBLHl8Cgt1zjnnnHPOOXeEfIigc84555xzzg0ST7Ccc84555xzbpB4guWcc84555xzg8QTLOecc84555wbJJ5gOeecc84559wg8QTLuQGQdFDSY5LWS/q+pJpStwlA0mcHYRnXSXpC0jpJt2eugeKcc66ySNoV/rZLumSQl/3ZHo9/O5jLd2448ATLuYHZa2bzzWwusA/4UH9fKCk5dM1iwAlWjvasAeaa2Tyi6+98ZjAa5pxzrmy1AwNKsPqxL+u2PzKzZQNsk3PDnidYzh2++4CZAJJ+JOkRSRskXZmZQdIuSX8v6QHgREmfk/RQ6AG7SZLCfPdIul7SvZI2Slos6YeSnpL0D7HlXSbpwdCL9h+SkpK+CIwO027JN1+u9sSDMbO7zexAeHg/0DZ0b51zzrky8EXg5LCv+ETYp1wX9lPrJH0QQNIKSb+U9B2iC7Tm3O/l2R9lessUlr1e0uOSLoot+x5Jt4VRFLdk9o3ODVeeYDl3GCSlgHMIOxpgtZkdDywCPiqpOUyvBdab2Qlm9mvgK2a2OPSAjQbeHlvsPjM7BbgR+DHwV8Bc4L2SmiUdA1wEnGRm84GDwKVmdg1dPWuX5psvT3vyWQ387LDfIOecc8PBNcB9Yf9xPfB+YKeZLQYWA1dI6gjzLgGuNbPO8LjXfq/n/qjH/7oQmA8cB5wBXCepNTy3APg40AlMB04akmidK5JUqRvg3DAzWtJj4f59wNfD/Y9Keke4PwWYBfyRKLn5Qez1b5P0KaAGaAI2AD8Jz90R/j4ObDCzbQCSngnLXA4cDzwUDu6NBrbnaOPpBebr2Z5eJF0LHABuKTSfc865inMWME/SqvC4nmh/tg940Myejc2bb7+Xz3Lgu2Z2EHhZ0q+Ikrg3wrK3AoR9bDtQ6CCgc2XNEyznBtF1JF0AAAG4SURBVGZv6BXKkrSC6GjciWa2R9I9QHV4+k9hZ4KkauDfgEVmtkXS52PzAbwV/h6K3c88TgECvmVmfZ0bVWi+bHtyvlC6nKhX7XQzsz7+j3POucoi4CNmdle3idF+bnePx/n2e4WWnU98n3cQ/33qhjkfIujckasHXgs7maOBpXnmy+x8XpU0BliVZ758fgGskjQeQFKTpGnhuf2SqvoxX16SVgKfBs4zsz0DbJtzzrnh502gLvb4LuCqzP5E0lGSanO8rtB+L74/irsXuCic5zUOOAV4cFCicK7M+BEC547c/wIfkrQO2ERUIKIXM3td0teIhgA+Bzw0kH9iZr+X9LfA3ZISwH6i87SeB24C1kl6NJyHlW++Qr4CjALWhKGF95tZv6skOuecG3bWAQckrQX+E7iBaHjeo6HQxCvABTleV2i/121/FJt+O1FxpbWAAZ8ys5dCguZcRZGPAnLOOeecc865weFDBJ1zzjnnnHNukHiC5ZxzzjnnnHODxBMs55xzzjnnnBsknmA555xzzjnn3CDxBMs555xzzjnnBoknWM4555xzzjk3SDzBcs4555xzzrlB8v8OQQTWsAp1vwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Show traces and histograms\n", + "pints.plot.trace(chains)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Uh oh!" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGfCAYAAAAH0zaSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXd4W/X5t29ZsuQt773jPbKns0MSICFA2FBmmaWlQHdL3xa6d6EttKSUvZMSIEAWGU7iDMdOHM947yFPybIty5Kt94/H8sggUNJC8jv3dXHJ5+RY5+jIfD/n2SqHw4GCgoKCgsKFgssXfQEKCgoKCgqfBUW4FBQUFBQuKBThUlBQUFC4oFCES0FBQUHhgkIRLgUFBQWFCwpFuBQUFBQULigU4VJQUFBQuKBQhEtBQUFB4YJCES4FBQUFhQsKzRdx0sDAQEdsbOwXcWoFBQUFhS8p+fn5nQ6HI+hcx30hwhUbG0teXt4XcWoFBQUFhS8pKpWq/tMcp7gKFRQUFBQuKBThUlBQUFC4oFCES0FBQUHhgkIRLgUFBQWFCwpFuBQUFBQULigU4VJQUFBQuKBQhEtBQUFB4YJCES4FBQUFhQsKRbgUFBQUFC4oFOFSUFBQULigUIRLQUFBQeGCQhEuBQUFBYULCkW4FBQUFBQuKBThUrhoya/vobFnYNK+xp4B8ut7zut5mo0WTBbbpH0mi41mo+W8nkdBQUFQhEvhoiXYR0f2yfYx8WrsGSD7ZDvBPrrzep7n9lXxUk7NmHiZLDZeyqnhuX1V5/U8n4nSD6CtaPK+tiLZr6BwgaMIl8JFS5SfB0tTgsk+2c6Rmi6yT7azNCWYKD+P83qe2bH+bCsx8FJODY3dA7yUU8O2EgOzY/3P63k+E/4xcOKtcfFqK5Jt/5gv7poUFM4TX8ggSQWF/xVRfh4khnhT3GwiI0J/3kULYO3UCACe2lVFcXMvdd0DPHxJwtj+L4TQTHk98RZ0lENLAUy7cXy/gsIFjGJxKVx0TIxtNfYMUGkwE+yjY1eZ4bSY1/liUWIwUwI9qGjvY0qgB4sSg/8r5/lMhGZC+HRoOCSvimgpXCQowqVw0eGMbeXWiXswKcwb04CNlekhk2Je5wtnTKu+28LSpEDquy2TYl5fGG1FYmlFL5DXU2NeCgoXKIqrUOGiwxnbeiWnlqlRvlS0msdiW2F6d9p7refVZfj+8Sa2lRj4+vIprJ0awYeFzTy9pxo/Dy23ZcWdt/N8JpwxLad7MChZtkGxvBQueBThUrgoifLz4JK00NNiW1F+Huc9ztVsHBwTLRiPeRU19Z7X83wmuusnx7Scr931inApXPCoHA7H//yks2fPduTl5f3Pz6vwfwdn6ntiiDeVBvOkbMJmowUvnQa9u+vY8SaLjT6rnQhf9893YmMj6LzB3Xd8n8UIVjP4Rn2mt7rvpaPMivXl/qWJY/ueza4kv87IhjvmfL7rVFD4EqJSqfIdDsfscx2nxLgULjqcorU0JZh58QFjKfHO2JaXTkOlwTyp7qrSYMZLN8EB0ZALPfWT37inXvZ/Ejpv6DgpYgXy2nFS9n9GZsX6siG7lmezKwERrQ3ZtcyK9T3HbyooXNworkKFi472XuskC8sZ83LGtvTurmOWWIiPG4beQRJDvCdZYHiHQNXHkLAS/GJEtJzbn4S7LwSliFh5h4K5TbbdP7vYOC2tDdm1xB3+KQ2WaO5bfve4BXbsVWjOh3V/FkH1DpFrddJTD2YDRM/9zOdWUPgyo1hcChcds2L8TotjRfl5MCvGb2xb7+5KiI8bTT0WQnzcJosWiAAkrBSxqjswWcTOhbuviJaxUV7/A9Fycv/SRNLCfdhtieJB9fvc731E/uHYq5DzZ4iYJdtOoXVaiU6h9Q75j8993jA2jlugTixG2a+g8B+gCJfC/0lMFhuG3kEi/dwx9A6eOXXdL0ay8VpPyOsE0XrsnSI25k12JW7Mq+exd4pkUTa3SUzL3Hb6oj2Bs/VT/M1HZeTWdfFsdiWlLb00R67nr/Z1tHz4a3jnfhGthY/CzFvHr/VUoQ1OBzf9+Bs35Eq24UTBmOj+3PKoCOJEjr0q+z8P59F9qqAAinApXCzs+xNU7Ji8r2KH7D8FZ0wrMcSbKH+PMbfhaeLVUy/Fu/5TpPuE05qxGPEfbuPJHZVj4rUxr54nd1Ti6eiVRTkoBfxi5bX4HRGMiXGzUcEIpZ3iQztP66eYGenDTzYX8fTuau5bGsdDKxMp8L2cw/Y4TOXZEDF7XLSc+MWAwwE1e0Vog0ddls5za90lJX7QOH4NE62yiFkiiE7xOtWq+0+Z6D7tqRu/P5/DElX4v40S41K4OAjNgEN/k5+TVotoHfobLPjGaYf2We2TYlrOmFef1T7uMnQu6kmXwVA/6CNkO2ouDPWzdk4yJ3pbeHJHJYequzlS3cWUEC+uy/SBoPDxRdndF6LmiGDELQFDEQSnQnsZ6KOIaMuG9CvZc4YMyBcO1BLu64ZWreaVg/X8Nb2cgOP1FKoyWNycJ8LiFK+GXHDYwdINQwNQfxBULtDdAO3FkHw5DI1IinxjLgyaRIwnuj+d75XzZ6jbD815k626z8NE96lvlCJaCp8LxeJSuDhIWi0idehvsPnrsO8Psp20Wv59gksswtf9tJiW3t11ciq82SCLemimWAdD/WLBNB6FoBRSBgr5yVwH7jo1e062465T85O5DpLsNacvyqGZIhi1+8BFC7nPgVor20mXEdFfyVTXJoqbTWIF+nlAWxGblhm5cU40B6u7uFa9j8TyDfiv+j6Lv7cJUq+C7N+OW0cOOxz4C7gHwLz7xR239zdgKBTrzNorwuEsRm44DO5+p8fsZt4qx9cfPLNV95/yGdynCgrnQhEuhYuHpNUQNU8sDJ2PLNA7fgpHNkx2iRVvlv2fRPTc8UXdaS2MjEDCCtn2j8F+7HUCzJX4emgJMFdiP/b62buvh2ZC7CKxuAKmiPsudhGEZtKiCUVd9BZz3FuoNJhpqciDE29RZPHlWIORrCkB0JxHZfJ9MPNW8ut7aE68UVo51ewFoL29hVbXcLG4TKMxrKBk8AoFQwl0VEBn5VgbKFOvkcGy7eOuy6MvYqo4QOeBF8XSiskSq2vTA5/u3n9SAoYzpjXRfTox5qWg8BlRhEvh4qFiBzQegcTVYmHk/BU0bpDzJIwMixAVb5bt8Omf/n3PYC1sbPLhFw3TuN3rML9LreJ2r8P8omEaG5t8xn9vYrJDTz30NkN/Fxx7CQLiobeZ5vpydncF4rfwDqZ2beNS1SF6cl4i230FG8o9uC0rhrsWxeNxzVP8pXMOuXVdBPvo2NOio3n2tyFmAYai3dTW1DAy736IWQDVe6GrGgwnoS4HQtLA1ATlW2HTfVC6Bd3wAHWhlzJQKuJl0ifAth/ge+R3MONOyLgWPEOgYZ98hnNlAX5SAobVPDmm5Yx5Wc2f5dtVUBhDiXEpXBxMjGklrYbIObDnFxA6HabfBgWvicXRlAvJ6yBi5uTfP1vN06FnxK2XeZ0suG6+ULSJkcPVuIRfxdQkHVG9BTTOW85bFYnsKevkX/vrmBWr55cxo8kOA13sKKqnt6OZ61wPiSgYmyBiFo6Ct1k+/QbCY2aDtY6ghkOQmsWW7jBuywpmbmwAwNhrlaGfubFSVL3nZDszHeEMVOUQm7GQEB83ePZ2cRdOWSoWk9UMO8rB1geMgN0KROI27y7C9ClUVZUR0lJPo2cGGb6RaCyu4LDJvVz+Q+hrh/pDEJggYnM2Pql+zSlYxkZ5oPCJGN9vMYKpGdx8PnNnEYX/uyjCpXBx0FY8OaYVlAwRc2FkCLyDIShVFvLYxTDteih6WxIvQjPHEzGi5o4nDzjxjoDijWK1xGRBeynU7CUhcRU/iXQQ1VIO0QuIaingJ3MTqFJFsL+yjbePNgMZ/HLho3R99AQuAyFc5lYLs++FVY9LDKl8K5ED1VCxESpV0FMFKWsJOvY6P9BtBdUD8Ie7IfkyWPdn5sYGiIBteZSoxqOkL3qa7pJC/GNmE9KdB9354DcFWvPBECKiXfI+OAYAHWh1oPWEKctAH4Xe3RW/iARqeixE+rjhdvubcPjvULEdouaDfRDCp4poeYeNW0hna191agLGxOPrDop4dtaCTyj4xkC/QVyYOm+IWQiOEaVgWuFToQiXwsXBkm+N/+wUooUPiXvwyAao2wexS8Tiaj4GYTMg/2VIuERceFFzZdFUneI9z7gKvIMkoaL1hCRnLHiQWTrv07qvJ5x4i4RpN3JZhrgh3z7azKGqcB4YSGKlezleictFhHrq5DylH0gsrrUQPAPB3R/2/gG6KiBsKmT/Qa4//2W5lsXfgj2/hhNvYY5axFDZdnwSF3KyV02QVxxBllq46k+w82dQvQsMnqOipQK1SlLlZ90JxgYo2ogpcT2GXhci/dzp7GhHX5+PT+NRyX6s2SvX1F4K4TPk/N5hoxZV2OkCD5NdqlW7JZlF5SLHO+xQvl1S8Y3BUmbQnA/6KDmf1m209ixVkmgU8VL4BJQYl8KXh/PVYcGZEeiMaRW8BgsfgdlfldecJ2WB1UdI3MdNL7+DQ9xYpxKTJSnttfvkNSbrzN3Xp90o+4Ffrp9OlJ8707q3MVdbg3/6JdBRBic2QlOeWCYxCySRBJW4ywwl0FUG3uEiYrFZcM2zEDUHa/6LtD99KZx4g4GQ6ZRrMym2+PB2Tilz02LZPjyH1oC5sPFu8I2WzzTUK++NA4YHwUUNnsEw63aslXswFGwn2X6SqKFqEju3Yzv2NqZpXxVXZswSuW8Ohwi0xSTCrfUEc+t48fDZEjBc3aHgzVErqlVEcKgPhm3Q1wYtx8HDDwa6wCtYygOcZQLeIXD0RbFKJ1J/UPZP4GwF3Pn1PZ/tb0bhgkIRLoUvD+erw8LEjMCWAhGreffJ/oz1st2cByo1+IRB9W7oqZG4mDMeU/rB+ODF+oNiaQUkQsm7sp12xenjQUIzZT/w2OYCpvds42HdFv4ytI7HVF+DufdD+YdQ9A60nIDLfgUpa6G3SWI//W2g84PwTEhaBUu+I5/jmmexqn3QDzbT6+JNS+pXyScRVfV+4iJCiAwN4+qyb6I+9LRkPR57AQa7Ry9qdPqDV4RYPzl/ArOB3sT1RA5V421pgwNP4jXYgWbeXVhtI1C2BYISRMD6O+Uaa/eK6FRny/s541NnS8CIyQKPQCj7SBJDjv5LRDMsU+JsbqPxQt8Yse6Gh0S0nA8cwUli5TrFq/6gbAcnTbrlzqGhpxZwB/voPtvfjMIFheIqVPjycB4b1I6x+onT90XMlLTxqLmSfeemh9YiSS93nss/RiyNlhMibFNWyHXNuE0WUJDF2ckbt0gq/qKHeWxzAW8fbWa7dzaxajvpsfE8fbSC6DR37l/8LSh5D/Jfgf52EcvqPWIduWglJqfxkHOr1CK4B57EZ7iPPo0nbjYT1fve4qBtCavS13BrTCfUHcDLzRuvxoNgN4Bj+PTPPNQPqWsl47DwbYLW/x0OlML2xyS+ZDGh7yoUnbMNyueedgO4uoGhTGq62opAHw5dtTBoFmNuotj3NouAtZyQ+5e0Go6/CgVvyPGWGkl0GbGJCA6ZwdVTisdr9kkCjJteLDjnvZ3oop17z+R7zngD5bONsFG4OFGES+HLxdk6LHyKOVf59T0E++gmLVqNPQO091onNdjFbBiPaWk9pauEzkcWT/3oOZ3W1Pb/J8d2nBx3DQbEQ3vF5EU0ah4c/ItcR910/hi1j3hzJyReyt29H2ENnMWWlhncPzcE1GqIW4Shox1t8Vv4DfWCxgvsfaDWiUsyfqm4NAs3QfMR0PlycjAIj+E+ljmyQQuXZv2IP27ajYcph6/d9TVomgsf/wS0TjehAzyCQOMpItHbJGLUchwO/R2qdoJfHFRug5Bp4DpD7knjYci4btQtaJBkiu5qcPUQl6FvjLg4VRr5rpqOQU8teAZIPMxVB/kvgUcwdFaIWPXUgk4vMa6AJBgywWCffKc9DWIplmyWB4rM6+WexmSJaNXukzjYKaI1duv9pG3XqUNDFS5eFOFS+O9zjpEbzUYLR2o6SQnzIc3XAeY2et3CqC4po8tjiJUzk+Dg0+DhLxaI0011ZAMMdMOa34Cxkb9sKUHt6csTV08lys+DprZWntpylHqbPxsfXDR+7ui50FYCOMYtBjdfaDoqsSarWRbU0EzpHNFwCHyiGPOsx2TJfxOF03+KLLgH/8K20KnQVijbMYuguYA7zDtJ8zBi3luO9+xbaG8ow1q6nYChehGN2V+Fkx9A9U6xeHpbxaW59buAGjyCecu6hkCaWDGST5StkrufP8w6ezbV/kulfVP61ZIA0TjaQd47Egbapdnu9Juklq3sA4lBHX8ZUq4ErwARnKqPRVTMzWIpJa6Eql0QMhVUDumyodOLlXjkn3KMuQ1y/gYhabTVleChduCj9YTAJGg+xlDeS/R7ROCnHQLPYAbtdkaCpuGhskFwBui8GGw9iTUgBX1wqrgya/dJHZ6777iLNm6JvIZNO6N4NfYMUGkwkxGhp9JgJtzPXRGvixz1448//j8/6YYNGx6/7777/ufnVfiMGBslOO/qNr7PYoT+jsldx8/FiF0WRo8AWZCcWX9hU8HdF4cDqtvN5BRVEzlSj0tIGjvrRzjSNMQS/078fP3FvZT/Ilj7JKki/2Uoex+mXi9BfYcDm6GELWVmig2DRLjbeGfrDj5u0rBmVhzz4wMnX5PdCv5x4xacq5tcn0oFOm9+9vy/aW2oIGOoUBb+uv18XN7Jb3OHCA/0Y2TQiI+5WpI5XN1o6emlv7EQL5UV2ktEyHyjIW4hhKSgrdpBiLWGopEE+vt66WxrIsbRjC5hGaRfJdmN8+6DzmrpfOGwy0LeXgFu3uzWr+NtYwp61xHsdhvDIxq8HEb2uC7jN7csBocKDjwFtbuAEflM/gkQtxTKt4goegRJQXZ7sbjnjI1yH3Te8j2bGsAvHty8xO0XlAJ+UYBDrCxjnVhhGh1U76Ji0BuHWo1HXwPq3kYabHo67FqamptwH+xgpDEXrWoY1+RVELuQ4e5abO1lOHCgUWuwtpVTl3ovPpmXo+tvEas2MEFiY8Z6cRPOvQcyrgGv0cxOr6BJ2YwTh4amhevx89KSfbIdPy/t6aNqFL70PPHEE62PP/74hnMdp1hcCmfHmSzhjDNNzBz7LEwcuRGUfFpzV727K6vSw3C3tPJipRt+nV109w9x08J04nwdYtVkrJf3yv4dtBVInGXp98b3u/tyw+WXAtv55/GTPN+aR74lhFuWZvLwytHr3fFT6ZiRsX588SveLAkcq5+YVCybFOKJd9FLbE67jvWpSbxZq2W47B2SPIYoL9PQOdIDM+cT6e7Ls9mV7CwZ5J9hKokD+cfLa+RssdoqdgAO3N08Se/JoWkgnN65P8Jj2Qq5Bqf16RcD1z0n93nj3VC5U0TCzZfAlv3cmTGN2yL8adx+nIPDyewemUVAQLRYit110DgxC88dDCekvs1Jn0GsR+9wOZ9HENQfEKtzsAeC0qQlldpVYl2uNfJ7sYskM9AvXlyG+iiIX07EiXeptgXhqarHfcpChjwXcKCohpkxLlT0u5DiH4N7TyUU/hvil6Az1qEe6qFbm8mQqx/YGok2fIyHqkHiaINGyLxWLOKjL06OaTlfT3HRnmtoqMLFiZJVqHB2zuc4ik+YbQUiXlPTM/HRB1LfNcCcWH/SwvRyLqfITFkumX3tJ+V1ynIAEn/4IZf8fhe4+7Jo5jRS3XspNHuyzHaQG0Lbxk8SPl26abz7sGxPbP/073th64/HevfdlOZFaHAoEaXP8vtN2fyqyJeRGbexOMGbowWFdLn4sbfWym8+KmFDdi2PeOzAr/IdSLlCXH2ByVC0ETY/KF0owqbRa4cmdQxhLj20NNZS2mqS63jpasid8JBZ9gHU7wNLF+g8IPkypoa6clvHU9Tu3kDOcAo96iCSaGDx4C6x7FoLYeYd8LgJ9FMAy2iSxhCtuFHikjqeJanW8e+uMEpPHgOtnwhk/HJxi4ZNH49nadzEdVeXI9+7Txj0tsCWRyDvFTwDIkjQtFDuiKGrZCcp+x4gK9iGruskyd278Vn6KKRfK5+jZDNYe9B4huDGEB2eyQzOvAeP9hOjSTDHYdHDYmVajDDnztPdgjFZsh/G0uUnDQ0dTZc/dWiowsWHIlwKn8z5mubbUy+WVti0ybOtRjFZbByp6aS9z0pMgAdH67pp+viZ8XRoZ0zLUAheYZK+fmQDWIxE+7tR3TXI5b96lxe35nDM7E0IPTQTSN2Hf6K1eK+8h3cIuPlD4wH48LsiWgsfEQsscg6UbIQdj8u1dVczq28vcaomEnt2MyNYRadLCHb/FO4NOUnm4W+zv6iKVw43EOnnxiJdlcS0fMIgej50V0FAstRs+U9hqOR9DH0jeM27BV8PN9bYd7I5v1nEK3KWdOd4doX0Bfzou5IeHjEPpt0qnSy8wqjv7qfd4sq+8K/ywLrFzPHrpa+niwf32CB2gbhRe+rh0WNMdKZ4o0JvacZibgc0FLcP4G0sxxs7qF1AHyPiZSgRt2XWQ9DXIe7ToBRxfRqKRWCbj0l3DlM1VO/Dw9ZPimkn+sEm+tRB6PqbiKGVfssAg+99U9LXvcNERF29sARnoDHVE2gqwt5SzJDNJtacd7i4XT9tD8NPmS6vcHGixLgUPhmLUawtfYQE47Vek2NenwZnTCthpcS1PAImxbxMFhs7S1opbDJx64IYliQF02+1UVjbxpT6N3HzDZX6ofx/iXtr1U8gdKrEvFy03HHDdew+dhI3UzX7jEF04EeQvx/XZ/rw7wZPUlreIUzVI5bMkm+DzSrtn6KzYNE35RojZ0lGX9HbclzlDsp0U9k5mMgVLrlo++vpV3kyWL6HRb1bOeq5DHN7HVbUpCYmkD59Ht6mCkkkiF4gvffKPwR9NDQepsNjCrZVvyBuzloYGca9aitxkaFUucSTEBdL38k9uBgrcKnaDcMWSL0Kg2cSVY4wQnXD0JTLe9ZpZGhb+EpoG3gGkBIfR117NwVGd65dMkusmp56+OC7YO0eu/1a1Kg1I1RZg7COWIgZbiHEtZvgyDRJeGk7IQ8kWk+JGaZdCdHzoCYbLD2g9ZBuGw6HpO5Hz4XeNrD1Yrcax55+ax0RuMfMJLK3BHfjSTrdonFpK0Q7YACdHvtgD4MjWlRxi/Fp2I2uuwQGTVim345Wq4POKum24Rd97r8p36jxuJe5Rb6zM6TLK1xYKDEuhc/PxJiWM/Nu4nbpB1KvM7EQN+dp+b2FXx+3zuoOgc0y3k7JGfMajev0We24uKi4aV60uAeBVelhFHivpqzFjwW5z0lCiEeQxKImLk4tBQC8f98Mpv5mkF48UQPvf+9KsBjp0xZQVNHLTGdKtdkgbZ9iF0Ph21LftP4Zea9590HeS9BRSpdrCE3GfsITluITOZ012X+ipaWcIJWRMqL5XveVpKobuExdgN4znfKSSlxi5hNqahRX6KrHoXwbtBeBTxShVz4unTLqD4pFseBBooo3EeVhh7KjdC38f3jv+TH64S7UXmGULvkr5R9t4NLuv0qyxCWPc4fWHbYXQfNxcUVOvYFrfSK41tgglt6sO+C9bwJ2+TzTbhfxHOzCEx2xrp30DOuwqF3QqxxiFQ50gnuQ1Gm5+0DXaFyraLNYQr7x0FMt9VaOEckmPPkBaPXYkVIuO65Y9Mmkmooxl3Rid/SiCZuOp8YPbeth8AoB33DsdZ14GovR6FxhZBjtUB9WN39c6g7BNU+KBV36Acz8yieWPYzxKdPlFS4+FFehwtk51zgKZ5GuM3bSViSuvO4qOPmRLDhtRdCSJy2MOivGXYR+MfLk3lNPRG8R18yMGhMtkJjX0uRgFixfK4uTuRUyrxlfnPb8Bo69LEL2/OX0PpnBc/wMgGHghcfvgt8nc13e1QSaTsjCVvSOxLgWPiKuL68wKHxL4lAAf54JHcXg5oeHrYs0XSdrul4BwOGmJ0LViRp4bXg1HloVU9Ln4TLtBgzHPqBX5YW1vVYyEN30o6n6XTIaZKADjr8Bx1+TbvMxC0Qk06+WlPPARGJatuEz0o3JJQB7n4Gh1+9k+swZeETOBvsQtB4X1+bUm2DaTVIUXXtA6r08AsQ66u8Ep5yETB1NdfcDrZ4BbPTY3AhV91Jui2TQMczwQAdWNOCqhf5WCErBWJdP+/Y/Qm221GSpRsTKxjFah9UjBdKjFp0d0GHDd8iABvAZ6WbQ1ReufBJ9fwOuYdMgJAV623ALmypPyoYisA2Auz+6gTY8dG6S8DHvPrnmT9s95dR0+VNbRClctCgWl8LZOfUJd9+fJI3a2YE9NFNGXnz4HZh7L+z/E6ReKY1ZC9+Q9OrqbLG0ApOgYDfFrmloU1aTlJwx5kKs8JlHTXEbl2WEnn4N9QfBxVViWnkvSYzsyD8lU2/hQwC80BDKbXaYqWnkbfv3yWE6t9q3YAc0uGD2Cof5X5Omrt2IEA6aobcB/BOh9F04+SFYjaDzh/v3UP7eU6Q3vg7DgbD/D7iODDOMFhvDxKp7WJESyqHqLqYtiyfJfR6WuuPEXHqZuLqyfytuu6Xflfv10Q9ku+kozLgZgtPkc9XlyFDJYy+DuQVN6lWUBl6Pae+fWW3eTecxHdz9Jnz4XZoLtrPHloJX8mquXpQs3epz/iwC4B8H1fug8iMISIApq8SqLH4PEi7hm00LWNj4PEt1JejcA0i2tKK2g10Damz02Wx094L6+FaGhwYJcXRCcAJVA2609/qRFeov4tFVCaYWsMmDi2b0P9wCwdIBgBrwGuqWCdSLH5au8BqtZCpW7ADcgEHpFG/rk0SS9mJpDXXgz5IGn3m9WGmzbxf3oU+YuAKb82Hdn8f/Lpzp8jFZ8ndxpo4mChclisWl8OkJzZAMuYodsl2xQ9xGUfMkzTpyriQZaL0k8+/4G9JY1sMfcp+F+GVoU1ZTdWAztfnbx0RrY6UL0QHup5/PuTit+xMs+pZ0WHjzVij9SBbu1LUAbLTOoVQzBY0GZro18pBmCyqgwe7L+17hU5kTAAAgAElEQVTXcJNngSQ9XPscxC6E46/QOfUeTDPvFfFSuYDViNXFi9ZbtoNfDEPLHuOw21IG+3tgxMaIxpO9rgt5kWu4y+UjVnS8zFUzwth7+BhBljrWXnoZLVUF7C2slsy79PUi8P2d4+n3Gq1YZEc2iMUYvxSW/RBGHOATSU3CbRQY3Tnody1brTOxNOZTvvsVak/sZmtfMjOpJHWkQizf+KVSQHz4GSjaBDW7wEUDGTdC1teloNlhBY2OSoOFWE8boTPWgT4SPTYGNa70oMem8UFn6URl7aavtZqAvkp0LtBm96Ci5Jj0/IucDcXviOAPtI9+OROWjsHO8Z+ve1laapW9Bx//Etz1cj9K3wX7ADCIyNsopmrJaNzxY+geHXFibJRY457fSsePuhwR6YhZ47/XXnF6uvzce2S/wkWPYnEpfKp2Shx9UTK2FnxDxKvpqGS7+SVI7CN6gcSbMq6H469IHZCpToYaNh6CJd+DmbeSBLj2NVN5PIfm2JlkG1xYPytikptwjPYKSQoBWP4DacbaeEi245dC7j8hYjYfef8ObP0QOgNN63GGVWCxu7DO9e+U/GCNFObu/ZUkZDTnQeh0XD28qYx8mMySjej6mrGiw6EawaNxD7x/K3MDptASG4GxRIc/VrrsGpaSzfCUxyi0BzCtr5Ca/jbuDKlg/8h81LpMdhmtXMshidP4REHyGhjshZo9Elsb7JJ71XJcMg8TV4HVTMFV27AbSuk8vp/bRo6jz5zF7wpXs6ujh6/u/iNH7FGEug2gXvItkiufg2AvEQcPfykMrsuRjMnYxeKWfP1mydJb+Ai0l7L11jAoSoKyD0ddfZ54ewTg7RkI0fMZOPoSQX0lDGv0DFpVGHXuHOn2JSvQRCgG6VoyAuKE1YBnEAz2w3Df5O/rlo1QuQPSroaeRuhvkexEnf8pX+wpvRTLNsurZ5i4CsPS5e+x6mPpZNLbCIu/LTHWtiKx9J1p8W1F0pE/7YrxjiYKFz2KxaXw6bqyO9OPdV5iYeW/JAWtLg7p4Zd5ncS/Kj+W40dssnirXSXmo/WS9819gbieI3jEzqS7tpC5fn2kqRpksT+VOXdKH8Hc5yQO1V7K2J/soX9IQsGHP8A+1IPFMQKtx7EjyW9u6hHetT3A7l+uY1ulmUbPNAzFeyhSJcHMWxnJ/iNBry5H3deMGQ1qrFh9YtDnPiXnqPiI8Jot6Ny9qCWKIHqw6pNY0PIK/uHx7J39d+LVrZiN3aT6w+b8Zi5ZOBtH4irMGh/orYVN94pFajgpouUZJm7BmAVSg2ZuA8cIYbY6djW6EJwyH33iQuzHXmZFoIkV2iJK7WEs15Tgm7SI5BW3iRg1HJaYn0Yn2X5+8ZK8ggoSL5Eu7A0HpB3WnHup3/Mi9sKNYlm6eoJ9ELPaiz5jG0PH32BkxAEaL2mzFbIay4CF2Y4iQvXe4j4t3wIatVw/dhkAeapoAbx+vSSmuHrAsu/DtK9Id5PGw9Iw+Fy4ukHmDdJeKnP9aAy0Wj5f6hXjMdW/zYetPxDROvGW7N/6A9iw4vT3bMg9rfSCnnrZr3DBoqTDK8iCofUSsRqxS/r7qYXGzvTjXT+HxlxZBAc65Sm/KU8W09YCaSFkaoKREYl7BKWKYKldwdgMZe/TbXNhryWJ4CnT0RW+hrfhEO6pqySucSq+UWLZFb4F0QulWLinCexmqNgKDhtmwI0RRoD6QR92apeQ7lKDn8aK16CB/QOxJPflUuuRgb+xkM0dYVh7WskYKaFpxI8RFz3uWi2e/QYpwLX1gcOB3dLJkN1BKB0cc51Dne98gqZeQrSlAv/0pdQ1tlBp9SWsaSvR0XGERcZQlH+IWHcL2qE+sTi6quX9vKNh3R/lXnuGQsplcs/3/AYvUxVp+kFKrcHYvMLoNpqIa3ob2xBkahr5m/0q3h9IJzHEi/C0BfLdNB+HvOdk9EjCMnDRQdV2sA3B/HuldVTZe9Cch1fLQQyuEfQnX4m31cCQdQi1pR2XkWFU9gGqCcKojcQWMZ/h5kKMwbMwdTRS1GokyV4tDyCmOomn4cLYqBQn874OzUfl58odMP0WCMuAwETpFN9VLr+j9YFh69n/Dm1W6dLhHQINeTJKJTRT6shcdFJKYRuSCc/l2zmRt4scoz9pPdniLk29gjv3e/Due+9wtedJiJh+znZj56QhV95j4rE99TK52ekNUDhvfNp0eMXiUhA+TaGxtU+sBI8AWPAgLH9MukO0l0vnh8FeyU4LTAZbL2i9wdRIrX4egye3Q+6zNMZezUbVGlbadhFkKiTDz0q2JZFSxyfU7phbIW6ZZL9FzYF7to7/m8oVfUAydqDV6oHKzRMvbNhVHmgAT+0ga4Z30jH96/xW9zDvet7AkrZXiaSOYkcsWp0ej8w11Cz+I0PeIZKA4B1CWdbv6XQJxYc+rJ7hHJn/NJvVl9HhkQCLHsa94j0cbp6Uu6Zz3O9S7AVvULr5DyzpeAPPRQ/Ad0qRWI4DUMHlvxBXV3A6JF/KY+8UsbHEJC7PxkP4t+xH1XKcnQdyULWXYba7Ea/rxDVuHr0ZX6HGrGHDxg/IL68VMW8rArWbPBS4uEJYmrhtu6qhYies+TX9aBluLUTjE4Jqxk0Y64oo0E6nyDUdF1cPVCoHQwEpeGjd2WhK5aNqG67JqwnpOEiDVU8STdRGroMVj4F/KuIvPMXNt/C74OICl/128v6afZD9R8kkdTLUe5a/vQDAXerXdv8a6g6Pd6z3CpGOIHnPwa5fSaH1wochOJkUGljZ9Tb2svcg6VLubL2S3opD/JR/ShNhmNxurO7AeD3hKZ1bzop3iPyO02pzCp/3GR6yFP5nKMKlIEwcu25uO20S8etHGmg++o6IWua10HgUQ1UeDa5TJK6SdLl0JbePSHeFaV+B654HnQ+BfRUYhz0wek2hJHgdkamzKBiOJ7rvBP7pK0m+7B4auiynnS+3rks2ln4X3PXU+syh9kQ2vDjan1DlCg4b2KyYr3yVw8E3UkY8CyjCLSwV883vow6fx5RVX2PWVV9nZowv2zUreFFzNc3Dwbip1fhlrkTfkU+Yp4P2uPXYvCPEFVr6PoEjHaj1UegGWrik8hdcPieZygFv2puq2Nbmi6bxKN/L8mDRouXYvMOJM+zEGL5Q4ixPzUEW+VELZfsT4iKMnA0dJ5kTBn/fU8PGwZmw+Dt0tlYTV/8mt1nfwjHSj1YDw1ELCTIV80xiAYsyYikbCaertlAs4sSVMm6lYps8bHiGgn8s9LWKpVP0b3QjA/Q7dNj7OgnvLcGkT8PWdpJ4RwOuKtBp3fCytBOfuQxX/2j6LDbaS/exuz+eBd4G9NGZ2NsrRxstayd8O2rwDJcfSzZByhqxhO/aCnPulYSUxlxoOiK3wC/xrH92NlQMooHgeNB4g2OQodoDmEPniNXmGQxBSRA5H1TDMnCzpQAWfwudux433TAOO5SU5hFd+QZ/dHuBONdu6TDv5Bztxj6Rzyt8Cv8VzptwqVQqtUqlOq5Sqc4QrFD4UnPq2HVnf8IJ4jXNUUpLq4GStIch5QrKQtdibThBWF8RDR5pmPr75enY3ABRsymd/2u2DU2F9Kvx9vJAlXElT4f/Gpt9mKayfJZ6N+GfuhRaCkhTNZyWCp8Q4skrB+spObwNcp+jJOoG/mRahr+pGAY7wCeWOwJfo8UlHHrrsO74GSdNKmZRjJe9C2vLCQz15Qxd+Q/QedHyp+V84/jluGtdiBisI0rdzTPD69jgcS8sfAT97h8TUvNvBiIXQf5LpLa+i2baTfBoIZqpN5Fk+IApB75DgruZnHY3grzdyMxaTWDbfmx5L7PAlkttyCpMLdXwxwzoqQC/JHikUBZ5U7WI2Wgt3NXh/fxoupmXdxfyu4NG3rNMJ8RtmACdC0muRmoS7mbwmhclppXzJM8kFrDvJ9eyet40ESqtF2/Yl1CceJ+4UYs2QcMhyqOvp/Dgh3DkWTTTb6Xrin9RrUtlqOwjghrfI1XdiMpmpXnGQ2LJaHRQvoUfRZQSpzNRYfVjtq6BuNTZBDtMJGp74PDfpWEvyMMCw+L+1AXAoAn62mUmV0wWhM8G+6A0QQ7KkAchY+3pf3Mh0wEXRnDgUGsxTb0DftyE6crnMfpnoPENh4Yj4qYzt8Ls2yRT8sPvS1yvKQ8sZnTu/gypIXG4hW9qNxGnboesb0oyj5NztBs7J59H+BT+K5xPi+thoOw8vp/C/4pzFRoD6eo2PBbdzz9qgnnteDcFJwrx1w3iGphA4EAlQ00F2LsrwSOYwbYSyj/aQFrPrtGuBksJ6SlgubqQutJcVgztIjDrdknomHbj5CLmUebGBnBbVgwFx47wgdta/lETzG1ZMeitIlosfpR5ERrW235OGbF4D1Zwp8t2NtsWUamZgho7UQcfQ99ykJb9rxLce4xG10RqOwbIDBihjTCColL51/46duSVgH0Q14AE9Gt+KokEniFSIAyw/hk06dcQaS7g2EAo4XGprF62DG8XKxWtRmYZt+M39xbS1n+H6rArsJmbwDsKHj4qC/c928A9WGrRQBb79hJWzp7GnHBXDC31LNWcJCAgFKxmNPooYtPm0N5rlaLchY9IFudEq1ilIjI2gV83z6DBZzp0lNGmi+TvbWlED9VJMsOibxLno6IzOIsawghU2/CKnYM9cRUfmpOo10+HRY9A6Awq66oItzWwQlfCyaFgjlQbwDtIegzW7pfr9oyQmKbOT9x+Dpt8h8dekXhST720h3J1h2ueAd9QcPcUq+lUDAWQsg5dQCKOKStodY2jqbWVetdEvOJm4x6aKhmY+S+AuV1ietl/kNEqFhPkvQDz7uEx/c85bk1ApXagHxmgZ1gL8UvGzzOx3VjsonHr6bOI1+cVPoXzjsrhcJz7qHO9iUoVCbwE/BL4lsPhuOKTjp89e7YjLy/vc59X4X/PCwdqOFjdxV3qbWR5GSS93NrPcG8zRpUeN60rhR4LmWHZj9tgF4TNgPt3U3f4XUYO/BUfewcuQ3203Xt8PAV+YkrzWc6XNSWAuxbFn/bvv91awj+y6/id2wvkDk9BO+NmrpgWhf/mm5jSl4sGNXaGafPP4oceP2V2rC8Pr0whe99udCVv0+WbTlzNG6StvFNEwknFDhkJsuRbALTUV7C/fpDYyIix8fC9tceJOflPvFIukaa4CStpJIje2uOku/VM/jzOBXTCWJeN1XBkx0YeZCP1dl+GFn6bS6OAvb+RottlPxhvp3Vq+63R7eLi47gde46egJkEd+ZiS76ChFX3Aiqo+piGQXcO5hegjZmNW3c5CYvWk6QfobGykBptMkunJvLk6++yrXKAnwdsZ06AjSpDN+V9ngT4+TL/slvh31+T7FGdB8SvlDZZldtE1AJTpRA8dhF8/HNJ809aJVZSbwts/ZHEPZ24eo8VMANi9bWewOTig7q7iuH069HHzZIp00WbpZTA2AC+sZJhuOhRKH0PoubyYPMK7FUH+JXbCwTSixktDruKLk0wcSvvlcGZg6bxUTZOJo6yORcThc8v5vRthfOKSqXKdzgcs8913Pmq43oS+B5whr4sChcLuXVdHGswkjUlgDca1uIxxYXpgyY4+QFqrxB8+rsodM2if/YDuJUbpPi49TidL9zMa0H/j2+4O9B31NMZs4bN+c0wCxGv0MzxBXrCzCzn+W70PIY97xi5kb9ibmzApGv6/uXp5FR28WPDV0kI8uSJmdGE+LhhuO4thl+bisZmRqP1JvKbW3llwu8tXbIC/LqlcPrKb4nlMJGk1WMdQhp7Bshu0bI0M5IoPw/C/dw5euw4yzSFeF3+xKQFLSphJcxcePrNm+huCpvGxmqJcf0prpf4oCuoVM3jt8dc6dXHc/2yH0DlLhFz5305k1XcWUVG3Stsj1zPO71pfCXUlyUdu+GEHhoO0aEJotQSzpxLrmZKZhYt7z/B0LsPUL/8u8RkLCLK3Aa9zezo8GdpsidzAqKhr4OECB0NXb7k9AcwvzEPEpbKqJbWE2L5gXSIt/fLdfjFyGKeuhZOvCkZp4kr4NXrxW3oxEU3WbQApt+CqaMOz8Zs+n0SsRrbMHnFoh+yQMx8iZ8OW8HcJB1HQjJl/InFyODvX+ZrXvsJtA+CPgbvtX/gzfffZU3fG7D/Sbj2WSnfyH1OkilisqSovWyLFCs7+aQ6RrNhskid0mdT4YvhcwuXSqW6Amh3OBz5KpVq2Sccdx9wH0B09Kfo/qzw3+P5yyUBYdXjY7sKXvwWMQMn8Htw19i+3Louqgz93DIvmty6Ll45WM9tWTHMjQ1ganktAW9egVVrQRc2A8uAkTqPaFKtRRj3fJXK698kMTkT3rod37L3+bbhqFhgqVcReOPLrG810dBlOb3wOHw65DxJeXsfr7Sl843QEpIrX6d86j387aC4aCaK12+3llDV0U9CkCdVHf0cyM/nkTVz8Nl8J2qbGaurN7ohMzx3Kdyzffw8bUXSTSNqrjx9ByWPtrA6KIXPzgJXJgwrrHobgpOIislCGzpMs2Mh/r3NULVHjj/Lgvb6kQbSPHqYPjjubsor6GFGVCTTb5L+ipcCvfp6Chp6uf6acdEc49T2WwCdlRQm3M+H1b5cry9m08AifBMzmGo+DhoPfKo/ZEbKjYToXeDAU4RXvkl71GLqem3E+MVKP0m1lo/uXwX1OdCokzRvnRcrYoJZobJAxS6IXyG1UuYW6O+SuJNngMweq/pY7mP61ZI1GZAA5R9AVwWggpEhuVatDwzbxq/dOwoG2rG++008e6oZCJmF3ieI3qlX01OWjUtwGN51u8RtO9QPwRmS8Vm3HwLjwdzG89+9HTbugahvS0H2ob9x08x5cCJKuvNPvIe5z4nwNh49vYv8Jw1MjT7DffeLUUTrC+Z8WFwLgStVKtUapBGZj0qletXhcNw68SCHw7EB2ADiKjwP51X4T4maNz64cNXjsPNx0hvfYIfn1QTVdTE3NmCSUAFUGfrHRAuLkVnuBnr8QxjuKsTa00C1LoPE4SJ0NiO2gEh2HitmWKcn5caX0fw+EU1/u8Q6bpQ05bQw/Zm7ZYy6dAJ2/J4fhs8mvPIELHyE5Iz13DYqpE7h+u3WEl462MAdWdHcuiCef+2v5I3cCq6uXE3sYDmmqKX0r91A+Ls3QdNhePEquPO98cLVzOukWe2UFaPDDE/I9sSncRgfSugswgZC0pcQMrFfHoBfDM8U2Ei1GFiePJ4u7eipY9/uD+GKW5geO40CszczbO+Qkj75Ae762TFcf04nyTh7Yh7kuX21fH2ejqy+KiJM1TxbHc9dKQuZFu+KTu1KSMWbYKmFtkLIvJHghOUER86RNwifLk1/bVbJGjQ1glor87NUaqjZDSHpEJQoblOdFwz1wYAZ7DZw9ZIi8IZD0NssLb+m3yTNhDtOinCUvAeOIXGlDg+C2l2Kr1Uq6K5F01mJ3Scan/TLISYLn/aT6OrfZ6RyAAJi5H2WfFdqyPLbpPzCMQw4pPzi9tGuG8ZG0PlCwRsw/WZJ4XdaTc4u8hXbT+8i7zzGmZDkHSpxxP90YKrC/4TPLVwOh+OHwA8BRi2u75wqWgpfMpyWVu4GaaPUWYHr/PsJSnxIMvmaTBxrMI4LFXDLvAmL7Oj/6H7LH4JtP8TS10u0vh+dyQyegeiXP8o8r1kY64rg4PclPdozWF7fun1MvM7qoomcTWDyQnm6jl08JmZzYwMmWVt5dUbuyIrm+5enA/CTdVPRadQEHKkBnzj01/wFvbkO7ngXnl8rHRxAXHDTbhQLKyBexEcfKa2qVv707G2DnPs/4ek9Ndyb5/ZJFt3y5BD2lBuoqKoiacZa/lU0zExTDccahrl78TVM139CMe6noKzFzD1L4shKDoF6C6kHnuKB8GFKjHFMi/CQ+qrgNGkxFZIhrrfIOeP323ndOX8Bn3DpCzjjK6DWyNyt+Eskxd7YKN3pvSPAO1I6Y3SVwYnXIWEVxCySonP7AJRtFSGLmDX6OlsmBtj6xeoKyZC4k084dNegDpiCurtGshBjF4OLFp3VKMXtw/2SSQjS63LG7XItvS1iuR54Eio+hsyrJSZZ/TFMWSlF0L3tMPNmEaCJXeRr9kLBm5LCv+iRccvqwJPSEX/Vz8S6VUTrS43Sq/D/Kqsel/+J28soHYlg0+A1/CQ2gJImEweru+jtH+QXW0p5/6HFp/+u02217UfQ14G7qzvuPSchdq4UHW+6ixQ3fxlGWLFVOsbf+LKIVtmWcfE6m4ums2p8ZlZTrgTTJwbXR9n4tdNjSd+/PB2mvC7dyYs3S7dxN1/pgbfqp3LQiA0KN4lwTZzplH716aJ16syxmCyZs1X4Nky94bTjnZbWc/tqOV7fQ369kXtWrWV5cghDExJNpmeenmjyWXlwecL4RnAaJK4ipXInKf5dcKxJxLjxsIwnaSsEQ6kMiZzIxM+ftg784+HEG5Jk0VYMsVniSo3MkvuQtk5aeGX/AXpqpaZM6wELviaCUPWyCETyGulRmP+8pM6DZCK6+0K/Ubrlh88Cr0C5hoLXZWilq04KjFsKoHK7JGL0d8hU5rCpMnPM+bcCkPc8lL0rluDc+6SbxdEqqNkpHUUcI5O7yIdkwPuPwOGnpdP92t+JaB15VjIxnXWMbr6KeH2JOa/C5XA49gJ7z+d7KvyX2Pk4A60nMXvFEddfh/7w73nQ9BD1XRZaeyz8aPApLOGzgAnCdWSDBOev/adsT7txdLSGWbLFGvOk+wHIQt9WPC5aMC5ezcdl25l2P9FF01kFR/8pKeAZ60V8cp6ksqMft+nXEOXnMXY5jT0DtPdax115TqLmQuo6EUmVRqyFefeL6yr791D8b1j6fTm2/iBU75XRII1H5Ul+ohg5++M5P9OxV2U4Y/LaMx+PiNfx+h5yqrpYmBDA8uSQSYktxxqMpI+6ZM8LTsHPvE5EuWoXWC0yBmTeA/IAseVRSVhwdZfkBpDvs3yr9AaMWyKjRVxUsODr0tw2dZ3EweKWSRunQdN4DG/evdKXsrsamk/IQ5ClG/zipHtHU54Iz2AXoIakSyVDsOIjcemFTpMswanXkR96PQkDFvT1u+Dqv4GbnubAuXi0VOLXWy7uyuTLJ1vn7r4w8zZoL4OSd8WNaR+EgrekADt8JnTXymDM2IXj31HSarjsF7D/L3DyfYnFdZSLaK35/WkDU5f8JZ8Z0Xqeunnch/vwG3kcbzCx7/uXnJ/vT+Ezo1hcFwvO7u0TFtHtW98l0aWJ+Eu/MbYvt64L7d5fMr35TcqibuIhwxX8NfID7m18g2eLHWzjZkYAS/gsLje9RfVHgUxZ84gscjlPiqA4cfeTmMWwZXK2mE+sxJLOhFPExt5jQqsp3yg4uXVctIBtLCAtbYAgYzEfnFzE0pRgzIM2jjcYcYw4WJpySo2QcxGfeZt0WajaJSn5VR9LkL9uv7jLImaKaB14SmZizbtf4jSnznRyWlon3pKZUMWbYOGjMPPW8bErE48H9pQbyK83sjAhgPx6I89mV1LcbB5zvaaPxg+B8yNezhhNe6mIacIlkPNXiFksohWUArPvkj6T+S+L1VL4tswN8w6XziTBaTKKpqtGBCLhErlncUvGMwPNMmxS6slaRaQSV0pcqXijuBYzroLCd8UNbe0DtYcUA0fPk76Vh58Z7WdZL4XCU28gvLGaAu1sEm58lIiYZJraWunc+jvS+mshch50lMigzJmnRCAac6G3CWbcKt/L0ZdA5w5ZD4or0mqGY69Lg+A5d8vv9NTL+JebXoRXrpd7FpAwLlowqY5xRrSeLScMQB5P3Tybh9/IY8sJA+umKS2fvkgU4bpY2Pd7iWlc8+xY2u+ioscwDQyRm3zzpISLnw2cgLn3MWvV4zxwsIaH9l7BA5pe5lDMCJAS7Mlt3/wF1R8FEnziH9B7VOIkCx85pdZpmyxwnZWjjVQBNODmLS62M9RlncapraYWPzrJRRMd4M4rdTNYP/sKlrq58uaReuq7LMQEuHPTvJhJFhgwvog35koLqoRLZOyHe8B4zCzrG7Iod9WOi9bETLH2islWVGimPJUffR4yrhtfQJ3HTDh+T7mB5/bVcs+SuLEY1y+2lHLDnMgxkXK+Tkw0+Vz4Rp15sGLOXySBwd13/Hs78GfYeDd0lkHMUpg/eryxEVY9IQu58/MkrBxN35862aVrbBz/uade0t+DMyUz0cUFRgYhMEUGicYuFNHyDpNMRP8pMqYkYpYIaE02YXYLLnHh5FR1EjEcyFDe28zr2YM283pIvkz6HeaMDpB03vuKHTJeZ8E3xNqqyYahWrH68l6GBQ9AztPQeVKEGSbXYOW9IKKnjxHL7MCTk7JscRdX4VM3RwEiVrk1OzGYh1g3LWSSBabwv+e8FCB/VpQC5P8Cmx+EE6+BPloa4B56BkwNNMdfx280X2dmtO9pCRdO7n/5KDtL28dEq7ZrgK/Mj2RWTABxux4kzV4q7rebXpt8zp562HT3eGdwJ56hcNumcWvlbJylqPbUjK7SVhOb85uZGqlne4mBcL2OS9JCmRd/lkW/YgdFm35JxZQ7uPbGr8LOxyF3AxWeM1D3tTHl6h9Lp/vRmipiF33ydTqzEMOnS+zFmdhxBp7ZU0VquPekrMI95QbKWsyTY1LnmzNY3GdK7efNr4ion+n7PBM9dePWsF/sKf9WL+5YfaTE0Q7/Q5I6XNRSNBw+A6wmmP4VsaqP/Asa9kvRsqVTJjUHJ4/F3WoOv0uuehZLO14jLCZFBMlZQ3Xs1ckTkJ3TuHVeYjV7BYv1ePBv4gHwixMLe9ZXwW6RjMm0ddL9P+8FsQjjVsDCB6XAuq9FXKSZ10ryjrllklt8wS930mYeItRby6HFRZMngcNpBesK/xmftgBZGWtysZC6Vob31R+A2gNg6YJpX8Hnpg0YTBYOVooWeV8AACAASURBVHcxN86fK6ZOHsXw8sEaXj/SyNCIPMAsTwlkdqwvLx9qJKjiFdaojqCNmSMW12A/hKbLaA6Qp9SSf8vP7oESJ+rvkGB8Z42kJU9ky6OSWRg2Vbb7O8QaKtokT9bO8SpWsyQAjBLk7YZpYIjd5e24aVxYO026V/h5adG7u55+L0re44DrfB4rCkFf+yHTuraR47GCPR1edEf+f/bOOz6KOn/j703dTdv03hshJCSQEEhAQheJoIBYUGynWE9Pr8hPz3Kn3nl31tNTxA5YEVABRVAglIQEAqQQUkjZJJtedtM2ZZP9/fHNZneTCOihB7LP68VrmMns7GQzs8982vPMIfjkf5D2q0U01lRssLwYC3rSirtOtHE7eIh1B48xbVimhLgS4u5gsi3E3YEpISPNFM8z/OJHz3o5B4jtemStE07E/oni72lhDf4JjMTOgnr6BgbwsOoRxCX3o6LyNDl1WkJ9jB4WmkpEJOWfKP6WVZmiTb4hT6T4elWi1nRyi6h/Ko9A2FwhmmvrBKd3CXIbfyXVPTYca7QgQZvDKds4XK17kY2/3BAF+0wU14geQckiWs79TFw30x8QEf6evwNaEXlZO4pOyvTnBIHbe8KJD0XDTvRVwv7l5BfimlYeF7U53SB01sPRd4RlTOFXvL07h52Nrng72tDQ0Ue4OpPIkrdELcw5QDS2ZL4m6mR2buKzMLp+zTh3mG1NLkVMvgmsZGJexkoGk28a1RQwrLgO3Lgug+d3FSGXWnH79ABWJPiwKaeOHbn1vGPzLL9lE/azHxZP5tOHOrHeX2Lo6Ko8BFgLMdWIodbpyEVg6TBKexAQ6aFDL4mnZxDdXfv/ZWrJXrbXUDcaQmGdmoNlzVhbSJBYSHCUWZEa5Ul6USPVbd2j32fmwyy/7naWJ/jRUXaEv6oXcE/tIlri70Yln4jWN0HMKZ2Ldp1x6zyIZdx1YvvFBOMapf7veehlsX0EAt1kfJ1VREXRUfCIorDHhc0KR8IkVaauAYFJghjU1cJYNDAZPMIg5lqQOkDobKjcD3ae0FAgiOCatwXh2DmLz7+xSCiTFDUyZfIkQscnkCSr4UinB9V4iJSz/lo68r6IIuvzDcajds4iDaxXL7GxN5xfVx189wQwKCKz4+thUAJzHxc1vz6N+Fu2VQny6lWLiDr/s+G0+Nvljkyp2cijwafIfGw+jwafwr/1MDuYAcc3is7agy+LlGVA0mgDVjN+FphrXL8WKDJgy10iLSIPArWCrk/v5IDLn1g1/8oxmwJ6+gewt7Hmz1dGkzbRjx15Srbn1tPW2Y+fswWuVo7Cph3E0lomDCH1XYDTfwv27kPdZeUgdRGdZ8v+YxCoBcOQp74+ceglUW9qyANLW8OXzVAHIdN/h1KlwcHWCqWqm605SpKCXRnv60Rjew9bc5QsTfAjNcqTxvZeQ52rKltI+ww9pT+7NJ5bKq6ms0mJu6sNdtY2pAVLcAt+9NwlfMaq0xlLVF0sqDliWqPUL2uOmNYtEcPhlW7wQYmUBEkXeTVqlk6NwlrSTV55DRMnjIhOG06KyCpqEUxaKf7eOeuhp03McdUcEX/7+X8VtSiJJURfPdSVOZGWpkahTEITNBXjEprIFEU+SuVpAtyNujo9I8WYg60zzHxIXPOVhwwD4Ec3CCKTOkN7pek5ajWiM9IrWrTye44Xv3e7UtTiHDyFIkhzsSCgoc9kvXoS+MMdkm2wo4E7JNm87X8T69WTSAs+LLoyPcaJKFKf5gZDetWMnwXmGtevBW/NE6mYuBth6euw9V60uR/S7jYZ19/uHd7NWMYJYEeekrX7ypkc5MyeokZ0AzB3gifHFCoeDyslqeYDoYiQ/7kgo8UvGeoeRTtEbt8/CabfJ97gwItCvTv1D6LeMlbdastdoMggcyAKL9tenNtL6AyeR2BnPt+7raSiuYuZjtW8L7uNxGBXonwc8XO2o7ShgwgvR5SqbqpaNKOsUEYKoL6zfS+1R7Zx0i6JHLUj86M9ef2mKb/AH+PiR3VbN69+V0L/gI45UZ7EB7mQXjREMCMbYowGyZUqDQ66LuTNx4XVScFnaPySsajPxXb8YrCRiZqWPkIq/Ep0eTr5DDkVe4BvnDiu/m/ZVCysW8ZdIVr2e1UQMX/0APi2hwzR+1f3mZ6jz2RBnk5+osW/s0FEVxYWEJAs0o2FX4C1vRh+vuIfpoS+44+G5p60fxmaQ3zixIPb+MWCtI1a6c1zYD8e51rjMhPXrwWvJolaw9LXDdu23ivmaX6b/cOve/cKvu8O4c/ty+jpH+CZpTGkNbxFw6n93MFfeNn5Y8I6joHMQ1jRJ90l6g1VWZDxbwiYJp60g6eLwr93nKibaFSi0L3nWUF0d+wW73dso4i4/BJpK83kG804rrTIonvQitOuqWxrDeF+6TY22a5g3Nwb8XKSCdHc9h4ivBzHrmkZY4i8NlXZUZR3BNvo+fTbB6FUdbG7sJFrp/jx7NL4Mx/DDArr1Kw/VMmgTkdX3wBB7vbckBQ4mrRGQN3WTF3JMXxoQH7ibdTxd1CHl1jPfllcP8aE0KYQ0S4YXIX1hAVQmwfdjULnsKVUpCO7mobscmbCtHtMT+DYRvjqAYSDpSXDjs2WMpGa9I2HsFki3XjgJehqAHmIkKWydYGmQvCIht42Q4SqzwT4J4mB+NDZUHvMkB7MelPUyiIvF+/hn/jjSOtMIr+XWNT2S6vDm3Ee8NzXp4j1dyLNqIFiR56S/Jp21iwaf+YXj0VOxiT2AzhlE8PUqvXca91Lu4WUpN1PQWcZXin38nhfKfLcfeDgAKpyCEkVN3DAVKHEkPqIIDFrO1BVs77Oi+UNn9Nv5YZF4i04ff803QVf8d7gQm7S9NOf8yHux18dnoNyObaRtB1PoBnQYoOOyMZd/NHahq3WNzBp0S3MHudFdWs3jdWlBFipkctmnu3XGVZh7znwFd5hcTTaB7E0wY9oHzmPbT3B3qJmCuvUY+skmgEYujhvnh5Mh0bLd0X1KJq76OjpP+tr5RINRE6m8/t/0hN3L9Ve84mQD4rt9g4iyjHGWIK1+rqjxzhBWvKhBgj3SIr3bMDVdgCP+KEBcNcwMjo9OKF2FF2bu54ABsDeR0hQ9arFMQe0ot7W3SoyBe21EDIbyr8HdYVoLuosEZFT7LWGrkJ7D0NtUD8Qv3MNxN1gqGlNvUvIYVUeELJZPxZnEvk1Y0yYiesCQqy/E2v3lROR/zyRcTPZMZjE2n3l3D0r9Md5CJ0jduQpWdu6hH+GwyrFh6ht3LDrqKLTxhsHKylJhf8GWwtwcGNDUyLzizLxdvcTUVxQCv9onU5ldjHPTBvA2n8SRa4L+KDemptz1jJYsp2ujhq2907hkPf1TG3oIKbphGF4F8DGHrm9HRU9ART2eTPb6gjWuh6m2FYR79mDWtNPm/I0IW0Z1LhNR6rpP7eIq6mYVcuWUJCbjU3EIJFDJPXs0ngKf0iV3oxhVLVoWJrgh6PUmmOVbcyL8ia9tInjCtXZPzfnAORA+5ynKG/T4O8kRa6P0pwDxpTuGgVjCxhbJ0FacddBex2eklaKWh0oZwJT48Jo+e5F0vvTmLbwWlHjHOgFv6lgay8esDobhOwUWki8W3Qh9rSASzj4RIuB6S/uE+35ruGmA/JTVwubHbdwQx1Wf/4FW0TEdtlDYt0jHEJnCOWXduWPi7jGUpAxpxrPCHNX4QWEtIl+3D0rlM+UHrR88Scatj/D3bNCSbPIFk991jLRWfXfYv+LYtappp27Z4Uy/qZ/gZ0nco2SblkgKksnyFoLvV3gEgBzH6d24n180x1KV90pCEqhqegQnRlvMd2rF6vw2ZT0uvLILdfQ7DkNZZ8LlqoqCnv92OJ5L09MsyZCPoh06cum6ge1J/g+8Ld83DeXKZan+aYvgV4LBwbaqslP/5za3O8Ibz+Ma9wigsLHU9rQgVpzhqf+EW63MTOXE9meZdIxGO0jH10bM8MEC2O8cZRaD9e0poa6cUNSIDqdbuwuzhFQa/ppaO/B30VGQ3vPmf9mu54UD2XGyFoH6S+I+lHNUZES9I4FdS0uCx8nxNOR5vR1fJLXxrr+NK4O0zFbkgt7/yaGmq95S6jGx98g7hnPGLCUQtVhoaYSPAtil4LMVZCiViMiLlWVqJMZY8FfYOJ1op5Vsktss7EXkVzwkFamPjpyCRZpwt4O0+7Lc4Gxgoyjt5m0zgJzxHWBIW2iH9kVi9mSX8VK7VfYn+wQSgORVwgFgdBzSJedDd4xkPkaa5LvF0OUn94sJHjkQci7G5F7ToBOjbC4iF4CQSk80rKRJlkxT2lupLgmjXEaZx6y2opKGojcxZ0IaT+lDR1c75iLT2srhdoAxlnW8k/fA1gG/k6kikZgvcMtnMzYOFTTuo6WmAW8lPsV90u3sb/4NPEDvdglzASXIORAhJcjnb3aH466zKZ/5w3DHmRD0VKAi93oLs4xoNb0DzfRyGXWOMmsTdZHYch/DRDRjHHbfvAMkSbUjysMDVJ7dzaQ8N2rfFpxCtu46xkfXCWIJWyu6DTMelPUXYu+FrNZaf8SbeuNp4SO4YQlIqL7/hmRbky4VTQdbXtItLiDYdAZDIPGma+J9GF1lqhvRS4wVREBE7moH0U+IxVkzCK/Z4SZuC4w7MhTckyhgtj7OJpbwbTTe7D1nShIa6QB3k+F8Y24/3lxM45fbKTg/qVobZe5iK4vnzhQ5uCxcA3FBwMpbugErzRaw4NR5h+gYZzwn7JNfwZvxde8rV3Im5Y3cJf2Y+489R5tFhLUVz7NyCTTMYWa2wJbyLO/nUnxy5g9zov1Xk4cPKZlgcURDlrMYkJTsfjycglCLrM+c6owMGn0NrPp30/CKOFiBHmdrTmjs1drQlJymfWZHzj0qbdDLwvSyd8ME64yNHC4BImRiYMvCzLRqDjW7cZhqzSu1X5Ndm4NLadrcJv3sLiuA6bA3r9DWyVtVQW0xt5OWMkucf+4hqJtOkX9wQ/xf2gPdLWK/WcM6W8ufkm01xftNCUuvWpHwFRhfRKSariHxmqekP1I0hnZeWvuTDwrzMR1AUHfmq5PD7aVd3CqI5Do2nxsXEPPC2kZGkAWCMLKfJ1G5zjedfw/1pTsEh2Ajr6CtOY9BXueEeKscx/nH4VyTjdVMc7LgdNNXeyImEnS1ct4e38Fh083M7P4IO8MLmCH+22sXRzLS7scQAmzT6XTMGX0U/fLN0wCJhFndH43j7cE6yAI/w1L9S3TRi3uZlzY8HOWjdp21geOmKVDM1kHBJG0lom0XOQCscz/TEQ4GhXHcjJ446QNK9PuxkehZU7BTvZ0xeGki2M2iHZ3Oxdor0fi6I19zpv0DzRjPf0+yrSu2Le+gZc6X8iAPZBt6GrUX1vTHzAMyU++ydAFGz5fRFohqZC3ScyizV5j+B3+G8knvb7mfxu1XUIwE9cFBH3NSV/TcolfQvfpExRoQplctB32BpreLGfCU0PxzVNqk22/A1ac3o5r3QGS67MoCltFd2kGqZa5UF8rpHpil5qS5Kmv+XrvPj4omzRs3Kh3HwaI8XVkX0kz7ww+SVyAI68tj6dB3cP6O1K4/V0J7zR0ccj4qXvEoDBg2hZtTvddWijYauq/Fjr7B9NyxzQ+rJzly+zmz6AqC8eYhcwsPsj+/J0gjRCqK/29ELMU59xP6NapabF0p7zJCuvavVjG3YJ1+zFxXBDXlFRuGBh2jxSGlfoheeVRcU9UZcLsx8R5SCyFyj2I+9FY8Pen4HxEbZcYzHNcFyJ2PSmKysbpwb3PCR+pJa+cW+T1lFFi7im1yXpm8pvYZr9OfuBNfK4ez6PjlCTXf2T4ghgDK944RGKwM49cMYGdBfUEusnYdqKG7041IpfaEORmR0FtO2sWRTF7nBdqTT+dvdoxn8BHRVFtCvjuaaG3aNx1NpZIrBkXBs7X7JGRWoqx/xryAOhqFBHOnMdMX1OyS6S4fWKFNUpTsVi3sBIPONOGZsWObYT0f1Cntaevr5c278uI97YVdbWotLGFnfXXZtlegwizblAYYxo3Fu19ThhuTrzWlFx/BFZ/cISEYGfuSo0Y3vZmeik5lSrW3TJiUP4SmfU61zkuc1fhhYgFfwEHb9Oa1uw1grQaS0z3/WcEbLjGdNuGa4Q+nB4jSCxZVovcQsPCimeYHORM8uXXixuvvmDs8/l4JZtijwp3YSCmfgvqz37HitOP4ekoY0m8DzEDRTzhk83b+yvYW9yAXGY9NmmBIYo6/R1UHhTL8WlCaVyRIfbR23R4Rp7jh2bGLwr97JG+e05PAD9Wp6/2hIn/GjFLhwZ8jwvSqs4ydPPpUV8AM/8gSOv0d8KB2SdWNBNNu0t0DyoyYPJN1DrH49pVis7BG6+6PZRahwvSaioSafGRtSSXIOEjVpUp2uCrMkVta6QX2Ow1Qmn+xMdCid5zvPgM6vOFQn3hdsj9BEq+G3HuBp3FhGBn1qVX8GZ6KSBIa116BQnBY0Ra5+vz/pXAnCr8GfBRVhXhXvYm9iEjpZbOirGijKCU0dGWTxyU7RZktepz1O8sw776e7IkCRyc+gWPZKUwAOiAYodpPPXGIV4c2EtQfwmn7KZyTKEaGnIOINZ/AmlGh/7+8BHyGnU8FDBVqGQAJNyCv/o43qpt7LCaT2yoIwOVWSwd+Brn6ffQ1xPCqdoOE1uPMWE8q6O3FnH0EmRVlztazseMCwvna/Zo5FxiyS6hSnHlS4YaV+Zr4mf6iMa4jqS/hqykMOtP4nrxjoHst6nf/W8clAdoCb2KYDcXVBU9dB79APWp9cgjLhMPS42nhHmptUyQZMxyIcYbfxM4egqi2f+8UH3Xk9c3a+Dkl2DnClIn4YjtGip8yU7vBgdfYVTa2g7H1gOD4tz1ah3t9VB7jLvmPQHAV3uzcM96AXl3M6tn/90kAjvvn/evBGbi+hkQ7mVvImarN3BclXKeajR6L6LIBcL3asM1grz+6on9YC+tPrP43vdpHsxIQWtpEL8ZpzrMus5rcaSTOveZaK58n5ijNazdV85z2uc4kBvBDv44LLjbsOddbnQohvlbxPseelnoubVVYjV5FZPr6rBQfko8JThf/gAEpTAbzk5aMDwojE+cWMoDxJdOXa5BzsdMWhc2RrpXn48v0foC07SbfllfMDoVZ3wNqWuFLxeI6+bklzif2kA/Fvj2VkPgIpxVNVh25zLQroHsNyHnPcBCSEApDsG0eyH9RaGF6BIoSNEtCqoPCLLq7xZi0lnrhLi0rYOod9m7wf4XxNCzc7C4frtbxDyZvbsg3n3Pidb8y58Vlim5H4NrKHdNvIxxGVsI6c5jh9PN3DsWaf2cn/dFCnOq8GdAUrAbq1KC2JCh4L2D5cOkdU5ut6rq0cOLGpXYrsfQHFb27s8orFMPtQ5bwGAvA9ZyDk55jQdzLsPeErr6YanLV3T1AlbgRCd9Vk7UXfk+GzIULE305+5ZodQ4TuIW3VdU7/gXT36ZT/WOf3ED3+IZu0A85U24ClyC0dSX0uI8gcLEpyiwiCJxIJ+MvjBeKPoRTr4jBoWH04YFW0WkFTJTLPVpQzMuTIycPfqxQ7djYebDowkqcsHobr2R19DU1SK1d/AV+PoRKNqGdPwVONpYQV2eULSY+2ccrW1xHlCB1E3Y/wx0Q8nXkHi7GEBurwSXUMNxl/0HAi6D/g4h9ZT1hiCjqDRoqxBRWX+vMK3EQsyIeY4XUlI7HxXn3tsJtTng5C+UPS5/VjSi7H2W2nduILRXkNY7ndOG04a/2Od9kcJsJPkzwc/Z7owGjsM48r7QVNMXWHU6yN8EiizRGqzPZTv5iRtwUCtEbO3ccDqxluqCTFyz/oEN/fRay7HsV+PTWYisoxINcJ3Ll5Q3dzPNphJ/6hgArAd7aTx1mNhFvyEp2I1ILyfCE+ZgLYHI8vdwrstgju4wDrMeEirvg1o48DJNhQfIl4Th1VVMSVEhU+VtbKj1wUOdR6vEBWffEDwcpWf/cJpKhMahvktQXxQ/+j7MeABilgmjxuy3xfJXVHz+1cC4qcHRWxiANhWJpfU5XAP/Lca6htzCoeIAlH0P45cMid6miH1P7xb3T0u5ML+0cxapvf4u8XpVjUgVhs6Hpa9BXb4gGY9I6twSsSnfjVVvm9i3vxttUyltU/+EXWsxKA4IVXuv8eL40+6CbhUUbRNuyy2lwrPOzhnqC4VjdFgq9Sf3I+2qQCfzZE6UJ4xbwLr0Clw6ipmgLRZWKT/0eR96VaQ5vYyMXQu2wolPhOHpRQqzkeT/GMYGjgkH70Sx5UnTHfY+B+uXiuaD7LcN0UVjofAssrIeXTx29DKoCEQuwLGjgoTmTdiiodptJs/H7aTLPgAn5T60tp78c2I6FS3dvGX9L6YN5FBmN4mP5h3nmHUScb1ZJB24y+SUdjhdQxHBxEpOU0QwO5yuETfMoX9D4RcckF7GvT33s103hcs6v2ZbWTf/7prPTts07pB+h7ro4Ll9OIFJo1vbNWqY/YghPRiUImpcI5tRzLgwcKbZo18C+mvIOEPRrhTuxpGXi6W9q6hLLXlJkJTymCANe1ehFt/VCDZDjUsdNeLhcNWn4riuQz5g9fnY5b2DZUctvbZiKHsACTptJw7H34Sy70RNa9zlEDYHZHLI3yr8wmzl0FkHdu6QdDtMvB66m+C7J2H777HqqsfC0h4fTSl01HPXRBv+EVmIvGSzeP8zfd6B04RQQP7nYl3fjel7aTgfmGtcPwOMa1pJwW4oGmfgmv82CiBo2V8EaR1+XeTU9V/Uxk0JyfeCk+/oXLZxN15PO/R2YwNogbJBL65q/wj7nmZ0AL0qvjt+mhunRTIlX4FCMp6VbffifLiSm1LfxPLA3YyvOYZeB2FDZgWde19hjmU1Mv8kYmty+WjbM+ycNJ+FqmqY8RDLEm7h0GsfcbrFiw2k4kMbHnYWrH38AVBkkHwOJJOjaMPTydZEgaG6rZtGz6tGqzWM1YxixoWBC2X2SN9t19MOB14QZpE+E6E6R6QNW8rh9PciazCohdYScImEjmqwdoS+XsOx1FXCCmjp6waj0C33Im8upMctiiavy/A59T4MapAAtu2VQuNw7mNg7wVNp4RqfHMJ7Pkb9LSC1FXUu8rThTKNRAK7n4DmItzlgeKcpNFQvg82r2aeRySs/N1oo9KRn7ex4khTsZh/M+7O/JXDHHH9DDjd0GVS0wpa9hdaY+/A6+S78M5CA2nph4mDUkRasGK/WHpG/3Au2yVI3KT7ngO/eGonP8wgVkxv20RUyatoBzR0X/Ea93ls5Lex/Twxw4mBFespm/8+zm7uWFlacNuMUCwXP89T/u+TXdkCgGveOlZpt9A/6Wa4eSt9yQ9w/eB2JIqDcNMmmPEgyJx54f6VfM9UnuE33M/vmRbuJY4RlHJO81aeTrakFzUOi7Xqbds9nWzP55/AjEsF+kiv8qCYtao6LOauoq8UTsl7nxWdiQm3iv0s7aGtBLQ68J4I9IHbeEj9P5Huy/3YMF7iHStEee19kNpI8VZ8ScXkNdRJ9Sk8CWhaoT6fbJtJfNGXKOSaGgpFG33cjbDyUyGnVrRDkKJ7pGivd48SpOXoI1r7XUKEz1ho6rm7a8csFR5hlQfE8hIhLTAT18+ClVMDRzViBC37C1LfCcLHyjPaVAFDkWFoSqg8JGpcHlHsVEopGvQ1md8oKS6grnA/BE5Dq8ikXFFLj9ck9II6TTZhKAOX8MF9l3PT/GRQVePg7k/zgB1/vyaObx+aBUC8bTORXTl8k3UKgDT70xB1Od91hPLgR8c44bsS7Yzfc7lzPSDEU3MUbUx/KZsa3LFEtNgfq2zmzX3lwwR4NujFWtOLGskqb/lhV10zzDhXyJxhyu2iBT3uOiGuW3MErG1E19+Eq8A9gnsG/0C26xVCh9PBFbqbOeJyBSusXhD3459KDUK9igzRvu6XAHYu9KiV1AddhdtgM5591ey3W0iXzBtsHOk/+gFNW/6Mb0ikIKyTW4Wi/LhFwvH5uvViveaoWHfyA51W3O8ddXD8Q1EymPOomGurzz+333uk4shIlf1fMczE9Uth73OifuU9USz3Pie26wdtk+4Qbq6x14i0QmMhgW4yNhd0CvLq7aCkuIDTB7fSMetpmP0Y1X5XMq1lE04NRwCR9/Xsq6Pv6IejOpBWTnQyJVP3MJLdu7FWHGBPZhbNkddyWhfA5mopPnJbOnu1tMevRnnFO8OK33/67BhXtm/iKlk+Zc+lEekhQ9nej4Pie6wO/fucP4oAFzsivBwpUKqJ8HI0k5YZo3Eu3bXG2/XXulQuopqqTBG9LFsL3hPAYxzznJVI63M4YZcM9q5sdl7FLc2rSAx2Nhx71efi3/7nRQt8rwr1ZY/RMP42PCw6cK3ZR0/s9ciCEsiwSETbp6Z9QEeKtISkmo1i3tHeB0p3m9TJWPo6rHgHttwjalPTH4LZj4JXDFQchOYy8J8iiFf/mjPBWHEk7V9ieejlS4a8zDWuXwLGNa3ZawzrMFohY8LV4OAJjSVET0mBBNico2SqaxcNFQVMmbGUyHEx0KYgxLKNYWtypwDwiMa2ch/x+X8DadNwem9MtWmXICbMvQnLgbfYv38T/Y6DvNuRxOSJMaycGkxejYqd+XWkhLtTp9IQ4eVIjaoHlfM4/uryPfU5MfxteQqbPnmXxZ1fMXnKU+f8cVS3dVPa0EGMn5zShg58XWRm8jLDFOfqCjxSsqm9VtSLQmeJB0B7TwifDbmfsrz9CJsjf8MHJTZcLzvCxNp1PB25muWzkkU05OQjjhmUIhouVBUQMZ9O/1Sc3SORFmyEDnfkNlZET76cnVbB1OZn40sDVk15kFEJ1nJQl0HYfEPKL/dTUYeqPQHW9uAZJe7x09+Bdxx0N4OlnaG9P+46aFWcoxgmvQAAIABJREFUOWU4luKIfvslkDI0E9cvgeos05qWflmdJQzvRsKoKSHaR06ZfydZp1WkersTGejPwpfSmR5gweP1eWJ/Bx962xvY0hXPDTMehiPvQGORaceXbhAKvjCtQ0nlRAUHUt+ST65KiqeXJ9NC3cUhba1wtrOhTt3DuCFV9+Jn04A06nOisM3+D2GBOfzDJweSnxLk2KYYWzjXyG5EX9PSpwd9XWTmdKEZo3GuShHG3Xb1+SJNmHQHYCGuv65GEYVJLMF/CstnLuHzD07yfXML2MFKy0wochNjF05DIysFW0FdDeOvhOoj+PnEDd2PV4vtikzaBt3J6U5BHvc4Xrn3I9H1YdndCjQL0lo11O3nHStIqyoTApNFPavoa6GjGJwihp2n3Cn8w3rUhvvlbHWusZzQY5ZeEqQFZuL6ZTAWOZ2jynthnZq8GjUTw4M4XGmJX9FR5vn043X8DbpsNNhPXMmOZhdUrflcLd0LxMDNWwzpBu9Yww0dd53hwBoVlO/jZHUTOzXjSXauoqPlMLV1bthY+ePhaIsOsLe1QnvkXdQh8cgjZ6DW9FPjlkKky1dYn/qc7onXYhe5YGzhXP26EX6qQaEZlyDORSnCuNuuVSGuce9Y4UCQcLNormhVwJKXoU3B+t2Z5LbIiXOPJ7ulFzeNjsurMsUAs8x5tOivT5xI5fd2grYHYpZT32vFYP5WfhvVRUD5Vvot7dEOdAGDWGJjIC0Q917tCUFatSeEGkfUItHBWJsDrmFifagjM6fdCc+27tFdt+29Y3qkXaowE9cFjMI6NVtzlCxN8CPaR06YlwM7Mo5wTYSE/spW1rdfhqbIkSOdrlwXkoC9/wQRxelJ0ThFob+h9Wgs4uSpk7xQNY7l85NJC9AStOsD3so8RDvzsbe1HiYYdV882sw3qOvTonSYSETFepyqvqc7ZB79FRmoC3Yij1loaNX3GCfedwwPrZ9qUGjGJYgf6wocfaXh/8amokPX/T8Od/JBvlxY88zyY+vmMnYVN6CTeLCwbJ+IeE7tME3BBaUI0qo4CHEroDqbXJcFTOlU4lr6MfSpsbb3RdvehQZrHOiDlybDQ8cEaeV+arj3PMaJdb8EUCtBHiSW6urh30vfdZvW8QkuwZNpqa+goMODmJSFBs+voGmXvGuCuTnjAkZVi2aYtACinXWkhYJC60bE4j8waO/N1o5oGlwmc/U1twlb8sUvs/CldB7LHBDDiFWZ4BvPY5kDLHwp3XBwiQXpFsksn5dM2kQ/1FJfLKKvZmmiP1WtPaRGedKg7kGt6UceOQOr5HuwyXmb8ceeQn7kVUh5ALsVb8L0B7HJelXcVMbCuR7jzP5ZZvx0GNeuXIINacP/QuboaKVqmLSoOcrSqVFETE4ls82J7v5+0Uo/5VaIWYpa049SpREv9BwPSb8Rsk7h87jcqRrXQRUM9sOADtorsQqbj8NTzSAPEzWuDdeYRoAgln4JooswMFkMRwcmQ84Hw80Y+gzEUY0/bXte4nRVHTNVXxBw8i2heWhhaXZNwBxxXdBYGONtWBm6kUOiEgmROfPXlzOp7ZTj7OJGUZuGx/a1sSI8kYasPBKCAzh+JIP9yuPMTL2c/enfcry2kYQpom4mXJD9uHeZQYbqqxM1lDdZ8OSSJeiTe05S62HzR3nkDGjNhyPvQtRi0fgBItKysRBPgvpIy1g410xeZvwU/AyuwJvumS7+U38S0IH/FO6OcEat8KQ9420GwxJxaCpGLfWltMeZCK8hyxDnAJGubFUI2ahT22DCUgifC+vmg6X1kF4oItLacI14eDOOAPUY6BWSZm2VQ5qHi8T2hpPQXgf1BQTMfJja2CvIHNCRWvEi9h6holsxajHU5dLinoi09hT2RsP5Z/S/+xXCHHEBOwvqhVitEQrr1OwsqP8fndEYGLqRcxp1PPjxUd6rD6PKOZGnFwWxKNaLD7OUPPBNMy5RKTybbMka3+M8VzuJOTtdea52Emt8j/NssiUAsf5OrN1Xzo48JQA78pR8dqSGxGDTNJ6Jp5Z+1mzK7aJuYCyAG7kAYpePLZzbpvhFPh4zfmUYq6Ylc/7xupX7Xxzt51V3AqqODGtkyhuPIku5g3K7ySg9ZqA6sZ0IqUq4dRufj70rfPNHqCsQqcT6fIi/TmiNfrTCsG/DSbCwhtdnDG/Kf2Ex7X+LgKDpgqz8E2na9QIfb9kCUYt44OPjZH70FOR9Suu2P1Pa0MEjJ1zZ1uzLQOUB6OuGrgaUA05Y1mSikPij1vQD4rtqe24tDraXThxy6fymZ0Cgm4ytOUpIEF18xrWlCwZDN6ynUzeZZa0sifPixuQQ/r2vDKmVBb5yG3QDQpmewkxmXvMAT21oQtGqIcg1ipnXXDbcYps2JPi7dl852RWtHFOouHtW6PD2UTCeNQtKMRSswdDG39FgWtPSy1N1NJijLjP+dxhyUgAM/l55nwrrFBi+buUuQbi0dlPVpiEw6nLkfc1AqOE465cKMrKUCUX5/6SAWxg05Bn2WTsH7t4DSKBTadj+0Q2M79jPAabSXWVB2kRndvRMIFOzkAf5FDLruEF6gP/0pHG8+RS/aX2b9sFK4vrGkyI9hXawF90gNNTW4Nx/nNygW/FFg3r3P/jCfSW7Cxt5NG28KdH+yiHR6XS/+JsmJibqjh49+ou/75mgJ6uJ/nLyatQmtaULCTsL6rG1lqBsFbNVT2zJp083yD8sXydp+gKYupq9xQ28tLuYmNrNXGZbzgO9d3PtFD+eXWoqwPnkl/lklrWQHObGX646Q/vtkfdFTt1YN1CRcckXiM24SKA3owyYKpqXku8HbZ8YEB6qP6k1/VQXZuM1WIfCYw4RQyMgw9j7nNA+dA8Xoya6PsPPrBzAxh40zUK6SVUl5KM6a0HmCpoWCJvPjrhXWLuvnMlBzhRX1HDnNHfmdu+CinQISSXh4CRaunW8wovMtjoKVrY40U+vnSeS3g4Y6CNflkiAtA+JtpsMn1V8VO3BossSuSUllF8DJBJJjk6nSzzbfuZU4RCifeRM9JeTXdnKRH/5BUlaIKLDjNIWbKwkfJ2npGdwkJbOPjL7QulJf5HCr17k7g05RNds5g92X3PFwsVcO8WPD7OUzH1hz/BxduQpOaZQkRzmNuyC/IOYcutosdtz1CY0w4z/OSIXCNKqSBfLyAUmqhZ60gqv345HwDgivBwpbegYTsUBolN3xoPQWAoWI742AxLg6tcEabVVgHMg/KHQQFpSV0j9A2kR9kwOcibvtIJ5Hq3MdRiyUglJheoscq4XCbDXWY4OG5zoBSdfbCfdgI3UARsbGRO0p9C2N1AiCWN3FaRODGGCr7PpuV4CMBPXEPTzUknBruTVqEfVvIax+U7hgGqMrHVi+9nwYix8evPQG24XOfJPbxbbQawXbj/jIaJ95KREuLE+U0FGWSuOUit+c1kwu2VX8rp2Ma7HXuMVyxf4rc02Tkf+BqauJj7ABUcbSzo1WkCQ1vFvN/KH+H7+clUsd88KZe2+ctL37znr+5thxkWHkl0mBEHJLhFpDckrafM+J7x+O9KEleAdi1xmTYSXI529WsMxVNUQOhPsnIQBpTEqs6H4GxFp6SOu56OFAK/MDXraIP15Mg4fQFleRJq3mnqlgqZ9a0X0N+cxSL6fzI+eYgYnWEgGEgZpwAna64Wn19wnwD8BqY0t1hZwqNMXj9A4Qgar8T79yWii/ZXDXONi7Hkp45qXCfyniAFFEJ1EWesMA4tng98k0ZH06c2Q+kf46GZorxCmd8YzH2dAdVs3ylYNQe72aLWDTAtzw9rCgoQQF3aeTmOG5CQLrUpR2MezRjGV+E+Pc6JKxRNLxrMiUdSa8mvauWzqFFI1e6Deg7SJsTioirE9+Rksve+nfIRmmHFhQp8mTL7fUOMyrnk1FeOmV7UwmnOUy6xNU4W2jvDdM9DVYNhmKYWBftBpIOddGH+VENR9PlrUuGQesPhlOPEh2pKvkZQ18pvLHiJ58hQKd5fwimIhyT0TSAMSPtEyvieNP0o/Ic6yiTcGFlHQG8ga2w8J6FXDiY+hv5N2nQ0D/d3Mc65ir7qMiepvyPO9liBby+EO4GGoqsV5Gze5aFSi0esiN2c1R1yMMS/lI2dpgh9VLZrRO09dbRC0/ORGA2np22HPhOvWC4uDU9tgwzJBWk4hEL3EdFAR4Vult/7Qo7qtmwMlzfi5yvB1knHlRF9q23po6erhWKWK37scJLi/mHrnOIJ6ilhtt5fsilbiA52HSQtgzaLxpM6cYxD0zP+cVM0epi2979wtFcww42JAfYGBtEAsk+8X20eqWpxJ2PbwWmFECaixp0/mCQODolEJ4YnX0tkzdAydIC3doEhJxt9IhWwiE60UJE+eBB31RE+9nKtiXMivaQegpVvHKbtJxPm6Q1Ay96xcxVTbCtb1LgaZC1RlUi2fRFmfOzKplMkDedyhep4qVS9uqJBn/G10K7xe71E/+6afjbN1PI8f8P8G5uaMn4pPboTqbAhIgus/POvuSpUGB1sr8UT0rwjoaqTXzpPO1L/i1nxU3Dyx1wzvP1LTT7/u5ypqXHqiXZ9Rztp95fwz+Agz6jdQGH4HzzakcB07maJcT7rHTazrns09s0NZods7usli79+F3fmU203e3wwzftXQZzi8okWLem+74eHR1mmUxibrlwrljvjrac/9kjxdJOMdO3Gr2UdT/N2cqO1hijYHu4KN9DoF4xh9+fCDqPqV6UjbirC9bZu490Z26Y6EPiqMWQGDfVB1FBrzUata6AichX/9PujTgFZDTegypA25uC/449g6hXqyOpPe4wUEc3PGz4msdVB7XJBW7fHRNa8x4GBrJfLQH62CrmZ67Tyx7G7C/uBzYz7x/ZBvVW+/ziQ67Owd5O5ZoQRqTsL03xG95GHGedvxhDKZ6ujVXO9dxz2zQ3ljbznft8rFDaOfwTq2EQo+h5DLfpwPkBlmXOzQq1oETRfzhrZO4ss9/0ux7ugl9qvPF7Ngi1+GxS+BVI7TvD8xQd5NYZecrLmf8q02kaiZy3Ce8zv67bywU5fQUfgteMfS9uYi7NsK6HGJEnqh+Z8bhIDlP5Cu0/YJ0uprF0P9y9+AuU8hj03DvzVbpCf72sHGAf+mzB8mLTDVe3T0vqBJ68fAXOP6sTCuaRnXuOCM6UK5zJqYDROxGuhAHbqY6gn3EL7vXqQdlfDl7+COb8QTHwyn64x9q2L85GNq+t07O1z8J2Xj8LbefgmPXRlFUuLlAOhHI/dUtTM36Q5BXsU7oXiH8AWafJPhCdTo/c0w41cLY1WL8HnCvNXGEWqzIeh+MXuoyIDcTyDqSij8SnQLhqZCjxoXSy2xyk/J6+0kInk1Aac/AeUx7D0j6VF2I1OXoHnKA0f66PCZjstdQ6Slr6eNFWnp4RMryNNYgSZyHtjaQdn3YC0D+3HQ1ylclG3sTV9vXMf6sXqPFwnMxPVjUXPEtKalX9YcOWudSyoZRAuordzxGqxDGjQFCiqBQQNZGPnw3PRWJvZSK26fHjrsW/V1npKcShXrbpnyg+/z7LLRxLMiMYgV+gC8LhfyPoNxaYK0YMz3N8OMSwIuQcLQsWyPuCcq9osv+fJ9hnSerZO4xxsKoKkYZcR1tFQ1kljzAQUZGtQ2TchrDoCFDdLUh9Ds/is29NGHjSCtsVTi9feZ8Zyk3lVB5gpNpw0KNN0q4XJsYQHOEVB1CDwngKoSst8V2Z+RvmUjvcrG8uW7SGFOFf5YLH9rNEFNXS22nwXq3yuoj7od37KPkB78F9pT22DqPfDnWrGDd+zwk2B1Wzf2UisOl7VworqV1ChPntl+ktf3lpEQPPqi+6FmjhxFm+mOeummideCusZUusno/c0w45JBmwLalRA2Ryi1W9tB6S5hRqmPjIKmia7gulwapCHsrbXFbe5vsQtMIL5hM53KEnqwAlsZnYffwXqItKzpQ/3qTEP9LPaa0S7HnpGGFH5HgyCtU9vEdomFIKW2ChGteU6A7kYIvgxaTwt5tY4akflpqzQlpjPpPV7kMBPXT8A5k4QR1Jp+Shs6cLzqn1i5hmHXUYbGIZj7WpezPqPcZN/1GeU8ujmPP185gXtnh7EuvYJHN+dxuKyFJfG+3JUaMer4ejsE/Xnpmzk8nWwNOxkXhafdI5bGNS8zzLjUYOwbN24huEdB6U7wjIbmEgO5tCmGBaR7lCeZ7duLn5MUfOOxcfTCo7+KXpkXnd1dyDoq0MgjkT3VRIfPdOxbclGX7DdVide7HIMgR/29uOlW2P1Xo0jPEdJfgOKvhRltXT44eIG1VKy7hMBlv4eO2tF1rPOl93gBwkxcPwHnRBIj0NmrFTIy+x5H21qG1jUcWWclN7e/w9p95byZXopSpWF9Rjlb92axKELY2d+VGkG0rxPlNUpme/fx9NUTxzz+DzVzmNTEGktMO5mCUiBoBigyTQ/WphBGfGaY8WuHscamIgPK90DiakEAUYtEZFSyy0RAOmjqEvwqv4Tst6A6B7pbsZH7I28vwaZDQY+tJ45OrqDIwOW6N+nwmY5V+wix6ZHZjaAUCJgCWEC7QtTUAPY9ByVfQ/BMqM8DRx+QSCB4ulDzkPtBwZcQd72hjvVfWL9cLDC3w/9E6MlKLw9zTtbz36yBo++hjr+V0thHiMj/B/IT75PjuYzVDUuJC5RTVNvBb6d7cEOIBjyieDO7iY/2FTDXvZXvm11ZOStmzIhLj6zyluFmjqmhbmf/Rc7kXGwWxzXjUoFGBUfegaChxgl9fUg3CIrDwv3A+H44uU34dxV+KXQLIxeJ9GJPOzj7Q9wNopb8Qy3vI6HPhgRMgcx10D6kwqGuhsTbYNrdsO33ULlPvJelNTh4ivePvhpmPTK6xnUR1rHOtR3e3JzxU7DtIQL8EojwusLQ8VexBQ7miJbZzXcKhQ3jWljWOjH9nngb8iueI0LTTymPENY/SLgyk7jAW8mrVpMQ5MINqXGgUfHFrt1sP9HDQ/FSrl6wHK/sJtalVwCMSV7Vbd2UNnQQ4ycfbuY4K5nqVdzP4lxshhm/avR2wJTfjF0PmjkG8UxYLJo1wmcJQd1TX4FzMDQXgoMvBE4VJNTVOvq1IxUtFBmw+S6ImC9S+D5xQ0aUpWDtCLPWiO+PDiWEzAblUfFeRTtE27yetEae90VIXOcKM3H9FPgl0Lf/Rfp8W4hJvIm+oxvpq/0Am5kPi5//kCzUnMeGyUwus8bLSUpR3BqyHZsoOlJDQpAL+TVq1meUc3NKKFlNttwZp2XJzCkgc+auVHEh5lSqINVwOsaK8frIr7tfy+t7TnPvnPBzIy+9c7FPnJm0zLj0MFbdR3aW1vHxVw7Ne+lEjaniAPhOhsgrRKrRJViQ0pH3DYLUqmoRxRlHRZWZInVYvhd2PyNU5bVdgAX0d8D6ZaJhJPURCJsNH62ElmLxXv6JY9exfsWkBWbi+kmoDllG5ekWptZ+gM2JQvpqj5DlewvBIcsIAEOkdehloUhde3yULJRa009Dew/Z5U2sz6xidWoId6VGsD6jnAN7vkHeHsbfF3iCozdNdQps2tXIJb3clZoEqaaOp4FuMtbuKWNpoh8BLnYU1qnJKG1hQYwXje29Zycuo8Kz2bnYDDPOEZUHwXUonddaDu4RUJkBvT1iFqupRMyBJd0h9l83B3ziWJ4RQIe1K7vuQKQHy/ZwZ9dvsOvz55WutdDXAVZ2EHcTNJ6E6gwInSuGjLPWgaoCvOOguUgoa1yCMBPXT0Bjey/B8+/EZm8hKDKwCUohePadpiQxdbUgLb0s1AjSKm3oIMLLkY2ZClanhpAQ5IZa08/NKaHI28NwKNoMpbkQPgeb6BvQZK+HpJuRf7OGnspsSq/4fNhaPNpHzt1zwtiao6RTo/1xfmIja1ryAHONy4xLDz9FkNY1BL77i+jwS30EmkuhvlCYSx79QKT2ku+H758WdioBSXD0PZZYT0fa30Pd28fwsexn18AEEgYKyLGJBSyEeK+NPTj7gaoc/JJEh+Pe5+D4eph6N8QsE4r05yB+8GuEmbjOhMLtJmZzANTnk9ClgBaVyDUHpYDyKAEVWwjQD/MCFd+8gn/NMayNZKGqI2+isb0Xb7l02Kju5RsmAYYISi6z5qppEyDeD3b8Hxx5B3ltAcx7lq79r2Jf+RXNETeOMrqL9pFT5t9JdmUrScGu5+4nZnYuNsMMgyCtPn1n3OTwQ/BPBN8EEflUHRat82n/FLUn5VGIvwE8xwvSyl4nFDhilnNL7if0Wg9gMQhf98dxgASqrP35MHgvNFmAg594/7xNQjEj+DKRkvzyAYi9VtTPbB3PWfxgZ0E9gW4yk++Ewjo1VS0aFsZ4n69P8BeFuR3+DNihtKX2wHuGWY76fGoPvEdOziE49JKQS1r2JvT1ws7/E9p/hdth91ME5DxHV+8g1Ze/BbHXot3zN6p3/htPJ1v8nGU8+UWByfyWXGbN94V1/O7j4+IJzzsW5q4B30RQZiHffjeelV9RG7YS3YJnR9l0n7Of2EgEJo0mKJcgU4FRM8z4tUPf1NBUNHqQ94fgHADXviPa5uuOixZ1Ry9Rw5pyu1CgV1fD/KcgabVoca9IBwawtYDqAVeqLPwo1vnz4WVd0FwMbuMgYgG4jwO1AupPiWP2dcHCZ8DWQfxff17nIH4Q6CZja45y+DtBb+MU6CY74+suZJiJ6wzwiJjM++3JgrzyP6f2wHu8356Mr6XKoPEHYh6jr0MoOrsGwZF3sNJ2o4tewn0vrWdLTjn5XkuJoZgAFztufTeDbwtqWbuvfJi89Crvk4OGnor0dad5j4HMlYHmUjQOIUgW/o2G9h4T0zhjP7HF8X4sTfAzuVDNMMOMc8BPEaQ1Nqks+VakBcca8O9RC8ml9hoAlIOO+Fm2MmcgGw9JO4cPbBM/j1kq7FMiF0DiHUIlo3gnDA5Ae50gRbdwHtuSz6ajprNhm44qeGzLaKFsvU3T1hwl204oTbwHL1aYU4VnQFKwG8ydw86dCqYd/pbDA+OYt3AOPsErTHe84jmxPPoebF4tLAe8J+ISPpVbi7/iTdU0pA4T+PL2VG59N4N9JW3MinRhTpQ3r+0pY19xE0V1Hdw9K5SbU0JR15czWPItLrGL4PAbaDWt9Ns4I+soxzHrrzjNenq4RiaXWY/pJ0aC8Bm7mC9OM8z4RfFjBWlHmlR2q6AmC3o7xc/181uNJYIMu+oA6BwEm0EtvRaWREqbWTm4E6dBDQ80L+XfbpGiW7G5VOgaTlwOBVtF+lHmLCIxqZz4QHhjr3joXZEYxKajCt7YW849s0MN52dUt9OXEvJOK5jqa33Rfy+YiessSJLWIrOu5IAmnBRZJbHSWmCMwd4rnoPydGgpBY8ImP4gHaUHcI9MRlobTW5NJ7GPf01Hv45ZkS68f7u4qPcVN5GjaCMhyEWQlqaf2qoyfCMvh8NvwNH36Iq9DZLvRpb+DBx9DzkQMevp4ZrYWHnqaB/5RX9xmmHGL4afIkg70qTyyn8JMqsvMGwLShHbqjLA0h4sJHR363C17MLKwgqcgkntruKBvjvo6QPyPoKAaUJ6ysJCEKjMGQb6IHAalO0HlYIVk28GhF1R8/GvkTQUcM/CP5kYxhrX7QpVEoora0h1aeFwoye+deqL+vvhv04VSiSSAIlEslcikZySSCQnJRLJg+fjxC4IDNW0tpGKTfwKtpFqWvMyxjdr6KovpXTQB5pK0aS/zHGiaCzKRNdQiKO1hI5+HY7WkmHSWp9RTlFdBwlBLuRWq3lld5EYHI6dhdw7VHQkJt6GfOk/xfp174op+ups5DLr0Y6nZphhxk/DTxGknfmwgaD0iFwgthujOkvUuO7PBI8oPJ3tsbJ3E9++/WrwnMC/0wJYF7IferuhLg/CZgoZJ50ENGpBWk3F4BIoUodFO4Tjg3MRCbUfovOKMSUto9+hougoezKOsDyogxkpl7FoatRFX0r4ryWfJBKJD+Cj0+mOSSQSRyAHuFqn0xX+0GsuFsmnkvSP+Py0NfPmziEp2I3syha++34P14T3E5m6ktUfHCEh2Jm7ut+Bo++xXTKddzun86TNBiZYVLPJ8go2dU3iOquDvKudT6118HDENSfKm7X7yofTg6/sLmJ9ZhU3Jwfy4PwzdDKZYYYZFyd2PwPH3gW3cGgrFxEYWiETNagFn0ng5A3xN3BCF4GHbS9+jQdFl69UTn15Lr3VeQR5ukD+Z+RbRtFTnslRn5VsUkUJl/OR5AWkZx0hyKqF4NAoMRTNhdtV+Is5IOt0ujqdTnds6P8dwCnA77897oWAo9IZw6QFouY1b+4cjkpnAJAQ7My69AqUJ9Mh8Taapv2ZqRZF/KVvFW/1z2NcVx4yKwmfamdwn/sx8u8LYFakC/tK2nh1TymPTNZys3Mhak0/0yM8uTk5kK9y69hb3GByHtmVLXyUVfWL//5mmGHGuUGp0pg0TIEYcVGqNGLl2EYo3Cx0Bp38xLyktlOYV+oGhX1Jf7uwUvGfgk9/JYW5OSg9Z4BUTkP5CdJbXLAavwDcI8m3jEJXlo40NJl77rxn2OVc37Dxu4+Pi8YvjYpUnwGCQ6P4JuMY/7dxPyBKCRcaaf0YnNcal0QiCQYmAVnn87j/K6ycGjh8Qerbz5OC3Rjn5YRSpRnWC1yS/heilU4U1jZz/5x7sN23jw8HFrLfaiq1NiGEhHqxZNECyP2U9xddx61Ad1UBV0mqUNuvGG60SAx2ZWKgC2/vF3qEs8d5kV3ZwolvN5KcmAAEGk6uPl/YIpj9s8ww438OB1ur4ftY01SJ1saB+h7bYZGAnopD9IYuRj7vYTi+ESxthQ5hdQbI/aGzCfr7oeYo+E3CKzSeiUDG6SYi6yop6PMhJTYcPxc7KNmFtPYoPWGpxA4UQckuViSKlOWJqnadzneIAAAgAElEQVRWJMLkIDkb9+bj0TbAFXPmsP54KxtPWPJQfLOo513kklDnTR1eIpE4AOnAszqdbssYP18NrAYIDAxMUCgUI3e5IGGsciGXWY9aB1j19mFya1TE+TvTrumlpbYcf0kzNTp33HxD+fK3QlhwwxfbcD29lbTLFwkX1LjrUErDcbC1MpnL2lvcwMbMKmaEu3GsSsXqcd3ENu8UHj7esYK09MZ0ZrdiM8y4IKD/brDXdVJ1KocJk6fh7+2Duq2ZupJj+ERORu7iLnbe9YQQ3XbwFBGY32ThwOzoC1InoYrhE0dh2G3kdzoRHB7N1CMPQcVB8IkxNIWM7GwEnvv6FLH+TvQ0VfLm4WZCAnzJqmhlgo8jH66KPrMayP8Yv6g6vEQisQY2Ax+ORVoAOp1uHbAORI3rfLzvLwG5zHrYusTLSUpDe48JaVW9mEpKexD430tGWQv2ui52S9YgsbHmvt6HKVY2cNWr6dysep2JXYXUxK0WTqaByeAdO2ZOdfY4LyqbusgoayElzI3YhMlQL4dvHxeyMf3dBtJSZIh2W72IpxlmmPE/gV44u6ZNR+D4BDoV+dRq1LQ3VpmSVn2+aLwKSgGVAiLmgc9EIXRdexw8o6A2H23ZbmQt3cRMexDb7bejbU3HyjXKtJNRvzTqZIz1dxqun4cE2JBR1oJOp2PltKBfjQDv+egqlADvAKd0Ot2L//0pXXgwXJAavJykw6T1ZnopO9qDuN1iFxuCdmKv6+JRi/dxse3DUdvBKtlBxklqWK58nkW9u2mQ+pNmfQLcIkTEZeyuamTcmF3ZwrEqFSlhIuLKrmwRJBWQBPmfCaVoPWllvy0svs0ww4z/KfTC2f4uMrokDljKfWirLcPJM9CUtHI/hXlPQPI9sPBvoKoSdS4nHzH4bOdOw8wnqXSdRYAqgwl77iS4dR+VrqlUr9pj0skYvGYHCZ9oTToZn/gil/zadp7+qpADpc3odDqsLC1o6ez9pT+Snw3nI+KaDqwC8iUSyYmhbY/qdLqvz8OxfxEoVZpR6Tpj9XXjC7KhvQcnmTVymTU5lSoSZj+ObV8oZK8jLyCE3uYyvrG/DhfLLua37CBKkk+gZTO7rKawJDkBQmYKGZiQmeICbq8T6+HzAEFaGzIUrEoJIinYjQlD67KWU8T2dwutspObQdsD6ppzN6ozwwwzfjaMLCFI+tScLDxNaGg4GScKCOmzJWHc/7N35vFN1/cff6ZJm6ZXkt73SQ/oBS0UCoVyixwC4onnPAA35vXb5jZ3qJs7nFNxThFRUeY1BeaBnAKFUqClpdD7btMzbdM2SZujTZvfH19aKOC1KSB8n4+Hj/gN6TfffMW+8v68X5/XO0LoSyffTKVBiqZXxtyUGGG/VVcDRGSAQQtHXsLsOxfnm9YjezMdrN3InDzwmL6atpZaQtQJ8I80CJ6Il8ti5KYOMp/8kCz/DTS01qCz/ANfhz5crV3ESXUsC+7FMG4l6w8IG5bvnBr51R/m00cgKPVMMhAI5pLm0/MGLwP+Z+Gy2+3ZgOQ7uJZLxtmN1XP7WOf+hfRQOI4cb7hr0ukzPAG1B6C9DLn/WJauXg9A1e9jCZO0Uzfoy157BoerInmweTNBEfHCj/nE0nTsI+r71WRojsKK16jW9o2IFghmEIWuDGnxv+Ga+4VKy2aBso9h7FJRtERELgN6rbYzvz+6O+ltKCI+ZQoSZxUREjeysgU3X+q4xUJEW2Uzy1P9hB/2TxT+6WmEqExwUhCe/QKUbgBrt2Di6Dfgu+dhfMcuBa87hYDfUx+QH1zPJ412Yi3l9Dd20Y+ahc4nUau8ce0p51ZFLu90L2KSk5U1MyMpaNBz51S+PPl+y/1gtwtZrCCI10f3QcXncO0zF++Gfg1icgZf3cdq7jGP6mkNv3Y4tQKAPU8IYwd8xwqPe55gy9EyFg52oJH6EmbvIFNWwm9aUlE7+fJgxyZcEpdRNaCmvMXKHD6GBKHUXzk59LzrS1T0nBGthhyh0hq7VNjY2JAjipeIyCXm7DAAs7F7VE8rSBUBwJ78alrMTuePHXomWpiFl/6AEBcVmQmafMACTkpIu18YUtl8DAo2g14Dc38DXfXQeJjrcGRAOkA9at4dXMCT/lkc73FlhqIU13m/YdJQKl9kHWRO5gxhGsXZKSHnjnMJngTZz0PAeEG88jYKG6ITrh9dgV1iROE6zdl9rGC1YkSULpROoTy9VAgIopW7QdgZP+8J2PMEA4fXsdA2xOfyBaz47QccfP4OFuq2gwJed/8xoQNWlh3/F1aHMOajQT7tJ189T2fY8j7c0xpeHhw+BlG8REQuE/xDo897LjU2ghaz04XHDgUkQ80e6DdB3LXwSiZgASSCw7C/F27YIDgR67Khuw62PgBWPTjIsQ1ZMQ05st2ewQRpLUXNJma7lSMPmQqDNq7hGB4JSqprTkKUQoiRshig+D+QsGx0tFXSTYIglm4Trk1XK1zfDRsvxq37xojp8Kc5t4917mbCL2U4zmXeE8LxvCfoREGvTMWK334AwIxHNnNIuZCxg6V8flc4vr4BFEuiCbe3IA+dCG4+gkHja9iyax9feCw5I1JhU/nCYwlbdu37Lz6xiIjIxeIrxw7d8RFEzYPGw7D/T2CoB9cASLxZCNxtOSGMRLnuRfhlrVCRmXXQ10X/UD/1Vm9cnAZ42OULfGQ9TJBWc3LAB9pOChOSfWNIN+zmjngnocIytAiTmX1jLjzOZeYvwMVHEDh3f2HyRcG/LtWtuyCicDG6sRri6TKybPiNxOueHWdE6zTdq8vYMHHHqPk3eWN/DauzOV5SRnt7KzEOzRRJx2JqLRM2Hxq1Fzj5aIZS7uDpU6qR3fEfHm/g6VMqhlLu+NafWURE5CKw+/doDr0zauzQHcoT6Lb9+nzxkqvAZgIcIWIqyF2F8SgzfgY9zcLAyIJ/CWHeZiPYetEPOLJVPh/HqPkwaCKdCnQyV6JtjTD2OmHA5Xu3C1VU/iaoOyg8dtXDh/cK733uOJftPwNtMfglgkQiRFEdfv6yEi9RuBjdWIXRfayv491jGsGufs75nB2l582/0RosnDh2kGVDe1HN/RmWFW/yjux6TLmboLXwwm9wFjdODBuJdnn0gxMjYwwulE8mIiJyGRA4Hvf8f3KH8oSwPFi8jdDSDYQlTkWjM5953eYbwNoDMhdgAFpLwc1f2DYTkgazfwXacjj0d1BHgIsaQqbho/bmF07bhVUbqSvgwBiZCXXUZBgwQ9RsoXpqzYeeVkGQelqFYz/BJNbS1kZvZ5Ng1Di6Aco/Qz92Oc237oJpDwvJ9gETBFfhZYLY4+Ib9LGGObeRCcSqBin//CUUk+eQmJoxYmdfFWvC3FbNp/WpI2vaB8o7WKpuxCX+UZi8ilkAPMSRXDfmnB6/nd/Qja+HnBC1y8h7NHabaDdYSQ1Tc+PEMI7UdJFb10VahKcoWiIilzMJy1ED6sMvgKEQmnJh2sOEJiw/E+C2+QahxxUwUeg5le8Qlg1rDoCjAtrLIWwKmDohZhFMOCsxp3gb5LwizOsKSABdNUTOgq5q8IwEqQyW/QN2/FIQK2Mj2MwQkCpY2809eBirqRoKJtI5CKWhhd7ku6iNeYBIuexM770p77KxwsN3GPn0bfihpMOfx7kze04fl7T00Hp0C8bYFezr9mVVrImAho/ZMjCdwNjU811EX0Fjt4ms8nYy43wJUbucdzw8MG58qIpCTY9YcYmI/BDY/nOoPwTh02Hag6O/AD8TDb7jBPdgQCKowwQxaz0J9+8V2gihaWfOdfA58E84sxFZkwu7fyO83jsGFv5V+Jnc14SJynY7FG2B9lLoN4CTB0TPE0xeyhCQu6PHdcRV3dnRTpTKjodfxEW/TRc18umq4exGpru/0Lz0iSM+VEVlNyjKPmR5aCoBDXVsNqUzLWMaaeFeRPm5sS2/md4EG0Eql6+coxWidiEzzpes8vaRXtu5ojUsVsPHgCheIiKXK8XbhEorfLrwWJsF3mPOfAH+ad75Qyvv+OjMz6vP+X/bP0HIJwRBvGr2CZb10Clg6YG9f4DpDwui1aUBbZFgs+83gsILzF3Q0yRExZ02einhjKvaxxcPTxcuZ8Qe17fl3EamQkVuvY593b44haYi1Rwjrz+MaRmZOCBBbx5gXICSeQl+5NV24SaX8fjWohGDxTAfHm/g8a1CBFSIWjCIFDfrBcPI6WXDQo1hVIU13PMq1Bgu7j0QERH5ZhRvg8MvCL2iRX8THvNeg85qNn+yk31Hjo0Sre2nmvnL52Vffc6Y+UJe4ZGX4MN74OjLkPEw3PUxzHpcqKoOPSfM+JLYwdYPHSUQcy08Vis8NudC1a6RU+rNAxys7MDBgVGu6sZuE/kN3d/nHfqvuKqE62tn5nwTzD1CpaUKAWMb+RV1Iz2t2e4tBI6fjWPbSRS6spGKqbHLhAMSbk8PR6lwZHyox6jZOWeW/zwA4S9LldZIQpBS+PluEwBPX594XmV148Qwnr5eTIgXEbksaSkUxCphuXCcsFw47qwiKDSC4F33UbX3zRHRWn+glqVdb8Ab1371eWPmQ8hkuioOofGeBrN+SX5DN00eiRT7XEu5Xgr1h+l0CcfUUSWI1cr3hJ9d+Z5w3CIYwoZd1RPCVFS1GXGRS6nSGilt1ZNV3o6vh/x7vEH/HVfVUuFXRTt9I87tcTmr0GVlsSZSTnxnNiTfTLR/IhZlFNLif/N5iwGZfzwDg/aRTc37K7R0GAdG3IFHarpG9arO7WkFqhWjjkVERH5AzH/y/OcSlkPULGZ3lFMVOpUgzVayXhxkPXfxjOcnjG14R9gb+lVU7oaSbRgCptLVUkfzrvcJSc7kP2+9gLu5hYwx0egdwVywhZMTnqHCKZEfw5k5fsMixmhXtbuzI1nl7QSqFByt6WRpSvBl+XvnqjNnDIvVhUaUfC0XcBVi7hF2oIekjp6N1VZE3ol8nqqK4s70UCJ83NEazLx7rJH7ZkQwK9aPRz84MeIOfO7mCQBf6yoUERH5gXPOF+CsF+9jUtd/0DmFE2JvgbjF4B0L4elnwga6G+DzX4HmsBDLVJ8tGDGcXNG3ViGx6emWBeJja+Ak8WgmPo6Lo5TQkvW4GyqRRUwl9JoHaTv0Fg0h1zFgs5PhaYRxi8/7/XKsVkdxs56EICWTI70u6q35puaMq2qpEL58RMk3QhVy/iwbhUqYhXXOQEe9Mg7J2OtYMzOS/xS2srukjfUHalk5OYRZsX58eLyBQk0PaRGeFGp6RpYNU8PU533DCVG7iKIlInKlYDWO6mk9y13onMLx7q9H5xIBIenQWQHZ64RYt+4G2Pe04Aq026FmL8g9BNNF4xGUtg7sOBBkq6dLEkCg0o2sojr29/iy15aIUtKHd2ce5LxEQ8h1bM1vIrTxP+AprPBot/+ZIN1h4EybIt1+AmnOCyNtisuNq2Kp8OyxJcPRTh4KGcUt+pERJd81w+X3xHBPKtqMHK7WkR7lxfhQT9EdKCJyNXM6kX24p/WM5yeEGFvQKWOR66upOXWIKJqFPVz7/wwSKXTVQMIKsPZB4btgageE1TITElwHLTRKPVnjvp7rPBu4t3Mb20+VEyOpZCDtLlpqi/Fqa6HJeIKfeNZjNFkoraykwNGdueMm41+0AZ22EK3OKhxXvkVb4ir2XqZtiqui4hrubQ1/m/BTOmPuHxwxP3zjXMJvQZDqTE8rv6GHaWO8KGkxUKk1iO5AERERipoMo3paXo8cpnHMnQQ2fy60JDorQd8M9YeFvVc9GkhcDuOWMCxaVkCOnQGpBI3Nj2BjIe+2BOLdVcitDttpwpuBphNI/JNw1FWyoP4ZQhOmIfePxffon0gZyMc/ZTGETsW94FViJBr8izZA+lr8UxaTGedLu+HyG0B51fS49OYBcqo7CfNywdQ/OMqgMTww8huRt0kIpzw7jb0hR9gTMenuUS/dX6Fl48G6kZ7WucciIiJXOW9cCyGTR+ed7nkC6rIAB2E5UCoXLO7hM2HqT9C9fQtK2SAywAYMAhIkHLLEYZQpOWqL4y7ZdqJkHdikbvyLJVwzeJAgmumW+TPoHYdR4oYkeBKK6s9xGTMNdWc+uHiDoQkiMmH245fgZogbkM9DqXAkIUh53tiSC0Y7fRW+MaNGiXy07UMyurbhP3ftyEv2V2gpazECjBKp4ceyFqMoXCIiIkJI91k095hxS7wTpaEFNEcgLIPB9nJsyJDXH4D6AyhloLPK8JLbRn6B11k9yHCu4Hh/ODfJtPxJupbN0Tk4VO1hJVtwph+ZegzdIcuwlO3CK0BJUOocutEjKdmK3isCpalTEK3GY3BsA7gHnhmpdJlxVSwVwjcfW3Kh0Nzceh3vHtMIB2FThaiU3I1w9BUyurbximk2+y1RADy7s5wX9lQyNtCdH88aw6xYP0pb9ewsbgME8frxrDHf3wcVERH5weIml9FZtI/+rnpIWIHVyYO2sMVI5a4M1xkyuQpHuQydTc7H1klYbODpaGGXwyzChjp5Xno36dYjlFTV0CILQ4ENmcILZv8KpVWLw6QfURdzLxR9jLozH4lXBK5N2eAZJVRacYuFTdPGlkt5K76Sq6LiOnu/llLhiIfCcdTx2Yzxc2VzjuDwSwv3GgnNvWPqWaaJsKlCLljdQfzjZzBTvYSNB+s40dDNh/mNBHrI8fNwBoSRJut2VxKgdmZBgv9F+8wiIiI/PJQKR6S+3mjsNxDQnk1D1G0EJc9G9kkblH0GbkFg6sDTRc3D3Utpk/jiNmgkU1ZOv8nImoDNfBazE/OxL6iweOPt3InUJ04I3z20Dr/pD+HXUgiOg1CTC+lrUbYVg2+EkKSx+3dgHxI2SVt7hYv6sm1AVuOI0eRic1VUXN9mbElauBd3TA1jc04Db2bXjohWWvhZ+xkacqAxDyJmQGMes5xrSA1TcbhaR1q4miGJhHW7K/m0sJl1uytpM1rIjPW9WB9XRETkB4xb8jLUznZqI1biHjMd5d5fCwG9CddDYBI4uWM1dXAtOTTZvdnEUkqsASxzzuVF/cNYj71OG17EOnfyHvNgxQbwjoPOcmg6Dsk3Q/FWobKKmQ8zHhWS3xNuEIwggeOFVPgZjwoXJHcX9p2Ze4Tj4X1o8m8Y3PA9cFUI17DDj7xNguggiFeQSiEc520aFQeVFu5FSqiKrMoOonxczxet3I3CcuGUByDtPtr2voS+IptpY7zoMtmYHedDna6PDQdrqNP18fC8GLGnJSJytaHJPX+yeXeD8PxXYNDWofG7BlXcDLQGC5aOKvCOB4Uakm/lFctsLDYJSXIN2b+YTZC8HwepIx1D7oQM1dGNC44KJRVBN1IU+wso3wWx18Cke6ExV0jOmLxa6GENU7wNOqsg/QEhCqqt6MyfXWhK8tmBwJeAq0K4Rhg2VpwWrxER8o0ZsczrzQPk1us4VtdFhLcr5W1Gcut1/OXzMrafahbcg2n3QdhUtp9q5oFsR0522LlHdYJH58dx34wI9pV3kGQ5zkLDB7g4SUeWDQH49JHzJ4kW/Et4XkRE5MrB3Q+q954Rr+4G4dj9y7/E6s0D1PRIiHZoIkTRT7SfO2XTXuDwYDTNWi3I5PT2S3hDdgsu7n4cWv8wP/c9SouDCtWQiQ488LL1cLRbyY9alzHPvRY6Srl1n4LwrOmwah94hglDIT1Ptz+Gg4CTboLEG4SK7OQH54vXOeHil5Krosc1wrCFPXej0KNqzBsRISUQ7efOx4XNZFW0kxnry9LxQVRoDWzOaWCMrwvrD9TCzHksCgsa2TwY7uWCb9r1hDVuhsrd+HlMZrwljzX9/6De71p2DsK63ZU8ND+Gca2fQkcl1B8UriPldkG0Dj8P0wTh2lncRqiXYtTsrtJWPRqdWeyRiYj8kFCHwZi5glj5xEJHhXB87piSs+i12ogMDcINFXSUo3T3J9qhiZzoRfyrqJTry0/y81V3sd8azYFPHmcax+hsd2CmQwv7HSbz/NAt/HZwHctkufiaf0eMNoqbqlLJJQ4X6ek38U+kuqMXhy9eJzIpA4o+Gh0EPJwC1NVw5t/PCRfHWXVJxevqEi4YZawgYsao/VhKhSMGs42MaG9mxfqiVDiOLBNWa/tYMzOSR94v5IXdFTg7ObJmZiSLkoJ4fJuUf2sz+fORl+iy7mSp5Tjm6OWkdx3i6ahkHq9NoHbXa4wzvjciUBx+Xli3bj4uPJdyOwChXgq25TdDKowLUFLaqmdbfjPLU4Mu+q0SERH5H1GHCaLVehICkr9StODsaexnKhy3U28x3y+RsMgh3qv3ZGpPFoMt65hLIa7Jy3HLfZ1SQtkX+RgOtU0ckU9FaTWRKKvn+eo0colDCny0NgMQvghva1ByZ2iqYLlPvOGMaA3jnwj+iYI9396H0lg9sjyox43+upP4RCRfMvG6upYK4TxjxciyIUKZPiXSk7lj/UdZ5tPCvVg5OZRFSUGEeSqo6jRj6R84LVqF/DuvGYfoORAymcje46hiM4i87QVq4lYTU/kaL7ttJL3tLZj2CI0R15PvtQiCJgrvHTRxRLRAEKvlqUFsy2/m08LmEdH6JtOTRURELjO6G4RKKyBZeDy35/VlnK5wivqU6O2ucHgdsSoH3GKm01J2lJnmvbjGzYOEG3Ce9iAqex/uZe+RPlSAn1qFRe7JG7aFpEgrSaGcTx/KYFt+M68cqOa5XZXcHKYnxFQBoenn97TOwk0uo6G5Fb37GEG0zANU6R1wCogXXIWXiKur4jrLWHHdJ4Ms9XLn3tObifW+k/j11kLqO81sf2jGiGW+fdsvkYekMueG1Ww/1YyzkyMrnA8Q2VnNpD/a6DENcNOkIJ6Ob4cjxwgcf42wga9yN4qYmWiq9hKmy8cxZhqNEdeTU1TNXOseodIKmyo8FvzrPPGqCe4lt76LtHBPUbRERH6IDPe0hpcHlSGjj89Fkyv0v5yVIwYIT7uWin4fYqOWIDuykaSBLMbLCvigP4ODxWPZONOPZ47okfdPYopDGXUOcSy1H+UXljnsYgoptnKela1n+0sn8Jz3BJ+caOaGED3Bea+DixKu+SP4xGLJf5ee6Bvwj0kddUlKhSNhUXFCVJ7d9O0nanxPXNEV187iNkpb9WeeaK+kNvJWdhojmRiu5JkST14fmA3tlTy9vYg9Je1MjhRK32HL/KBfMgHF63nztedY+24hUV27uZdPKXccQ0fvAIND0H7ic2EaafpaVjXO5zPXFXDkJQJPvUKYqYg8WxSNxYdo3Pki1+j/jdexv0PABLj+VWGZ8PDz8NF9sOV+QCjlTzXpSQv35FSTfvRnEBER+WFg1I4WqeGel1F74de7+0HRh9B4XFiWs+gJas+m2i2F7U0KSs1qJtiLcUpYyPOKNTT2Sbn/r29w1BREpLQTj4T53KQu5s9tk9jFFBwAZew0PrZN5kZJFuU7N3DdhCBim7fRr61EHzEPECZZVPsvxs3ceMHL+p8manxPXNEV13n9ouDlp5feFCxISALgmaPwYZsLdbo2bk8P4XdLkkZ+XqlwZMnKn/DFRzJST77C7yTRTLBV8dLgEvZIJuMADAGR/XW8bl/IvTHzSW2t4vdZAZilHsyp+5BTUT/mjWoXFnhEsVyzCYVnKMQtBE2OEKsyeRXUHoDyz2DeU6N6WuMClET5uY36DCIiIj8QQtPOf04d9uV9LnUYxFwjOPrsNjA0Q0ga44daOFLQRizV2HySkTUd4/cerrT1a8keTGCCQw1LltwAQ/2Q8H84vHeIoKEODv/lbgBe2e/Fn3e9xlrZJ0R36bEMFvKp911IpJlM7jpdRY1Lw+1LBOnc1KHva6LGt+GKrri+rl/0uyVJRHi5UNPZR4SXyyjROps5N6ymXZXMNHkZxwej+dw+hYEhQbTUCtjAMv5QHsLj2wpZnRlNsFqOydjHC9zO2qoUvPxDGZ8+h74hGX39JhrnvEjd2NWCBfXFSVD6Mcx7CiavQqMzj7rG4c+g0Zkv1m0TERG5VPgnQngG1OwDZyW7C2vpbyriOqfjfOaynEKzDwUmPzK73qdnUIEDDpjsTqz/ohit21h+/d4hOp0jOPzjcYCwevPc7ko+JpNenwlYa7NxdoApUV5YbfYzVVTZBxfcknN26lCIpwvRfu7f20SNb8MVLVwg/OJPClaSW99FUrByVNXy1KenqNOZiPJ2pU5n4qlPT13wHF989CqBxlNo3FOZJK1iPkcBUMjgxO8XsXJyEB5yB/6d18zsv+2jtLWXV9wfYKt9JqEu/Uz1G0QVGIVjVAaSzjrqtzyBbMr9IHOFrkpQhQuVF7Agwf+8ympcgFK0wouIXA10N4xUWjTn4+oIjeV5aOIfwDr1/8i1RdPYryBncCwJzm38/fpI/BWDbDZMoGjL04Q56fC21LH4zXI2HqrmP/98jBfsf+cO54OMHSyn1DEJi1mP99E/E1C/lWC1Auvxf2E79Dx63xTyG7pHiVKv1Yaf0nkkZeirUocuJle8cH1Zv+ipT0/xztEmbpsSzM5HZ3LblGDeOdo0SrxufOUwzz3/ZwKK19OasIa5//cWr9mX8GPZpyzgKGYbLFl3gN/2v8SphY2EqBU0dJlROMK1Azt4yfFFfC11NDuGsK/Vmaqkx6jynkNa67uEvDlZEC3PGLD1CcuGIiIiVxWjQr1PmznqtToOV7RC3GKiug7hMX01HzSpsWT/gzG2arIHExnn1ERauBeFmh4iM1fSJfOlzzLEvewgxEmHo1lH0/ZnuZft2J1lPKrYiSHtQeQ3rUfjNp7+fjOTa/6BzxcPE172Ko3e02lvqsfXQz6qonKTy9DqLbjJz3SVRlKHLiFXdI/riY+LaDVYeGhuzEi/aN3eSgI8nCnQ6LltSvDI8uDw4/H6M0aIieEq5AeL2KpewV1z7mDSH3bQMTgFpLDEt406FBS19o7STIsAACAASURBVPFKn5o7K//GFPNCOp3ms9C6m9XOn+KfsZo623ReyunkmgRnrDYPkuc8ifyz42DQgEcoPJgniNbhF4Q3PV15iYiIXPmMCvV20FLkEEtB40GuUVWQ3ZSEf9wKIis+ZU5HIRKZEw2x95CsDKK1sILUhl14uJmpU05iU2IR0VVNVLikc6PhANGSOhKlDbxiW8QTkxV83jOfX+4JIK26nDH2WfzEvR6ZuQ1r+W4qpGEEO1bQN2YNIR3ZeDWdopR78PNwvmxchOdyRQuXm0JGm8aC1mBhXIASrcFCW4+FaD83Pvnp9NPZhb0jm5B/tyQJGnI4+uFzjGvczGMR6fx1xuP8K7uebS8d4qG+l5niXE1QYAiVsnjenBPMY59Us655JuMkh/md/G2WyEqJklTyQv8yJN3X8PTy8bQPlLCvrIOl40Pg0N+w9bYh8wgFqx72/wVm/VK44KY8UbhERK4ihgMONuc0UBLqTV1NBUtn34p/yTMoKtaxV5aJT3cznfJgenHBo/R9/NJvon3679l64AUWGXcRXPx/OOnr+US5ktLQm7j2+E9IkdVQYItiE0toz8lF76LC38OJfeWdEJeGu9tJBoo/AgYYO1hEn/+9hKoVcOQlXNLXjrgIz55deDlxRQvXz+aPJTVMOzJyJL+hh4fnnxV46xtD3c4XMSUbiJ+yYGSfl06xiIN9kSw4+T6PJcMu9Q3c3fk8Nztn0xlxPZWDHiS2vI+sVM7mpct4762XmD5Yi1URyKTBSmQOZq7zauKeghY8nB0JUrnyb/+/o3x/L322QTY53sQ1P3qOkMIX4ejLwrXM+qUoWiIiVyFp4V6UNOnJqdExNSqW1NgIGJiPcs/vmCLtY6NpGuPDvMho2MQet3m8UeGMk6uJuJSfI9Ga8Gs+RoUikme7p3Nz+yuMkzZQaIsiUdrA3bZPOWJPYoXlC446OhAaF0983QYMkh2UEEeYYx/OEj2uZf+mX7MfpxmPovdJQas/y0UoMaGUmC/ZCJMLcUULFwiDG080dHO4Wse0MV6jU9rDpmJKNmDKfpU6XSkRpmJKQm5iZ60vk+b8jcOHf036yffZYN1FiHMX/x7IYEf/vTw0JxZZjRJyN0B9NjdShd47HmVfPXqfFJTN2UwxfsGHvo7cevRuNqleR6n/gm7ceJtrsUz6Ke0GKyHDlVbjsUtzc0RERL5XmnvMuMllo6oWvXmAXqttpE+UW6+jQNPD1CgvCjQ99O2rZIGPP2N8xuHeVMQq6ScM1Vnpk/syPjKIXIMXg0N2fuT0BYraz7FKXPF30PCW24sEG4o4RQgKuYQtTsv5Sf82sMCWwen81OEgi1M9qGvMZ0f/eCKkBioHvHCVGnFxkmHCmfbAWRz54EV6+8xM/L+/4SEx0VpZADEpXE6bca544dpfoSW/oYdpY7zIb+hhf4WWWbF+5Dd04+shJ37KAup0pehL9vKF72Q+PtHP3bPVpMZGcFvRWoK68giX62ixq/mrwxr667t5aV8l45zKMA44otKWg1yFqq8BqV8irjIFmrTfEJr7R+J1O8lyysdV38EXTjP5he3HrMqM4KHM6DMXOCxeIiIiVxzDUyeG+0Rn28uBUYNq08K9iK/XsW3HLupP7Yc5D6OUv49D+W7MEmcKHMYxs+QVVsVDW2cX7tmvYndQIB2yIfEfR3LbEVpk3qRRz8fypbxiXohEIWGStYhIhZlWvYXtn22hZTCJSdJyciwRTHRuYMhmwYQzzi4DHHr3SZQ91ajHzITuepTGNohJoVfielkJ1xXtKtxfISwT3jcjYmTkyMaDdeyv0OLrIServJ3W4gNEmIrR+U5G0pSLe281+oaT5FfUsbj1b4TKu+hEid9gD78YWI+Xi4we8wCnajX42nroQYGTVYdUKofWEzgHJdE0ZiWayb8BByfUAx104cVD1jUEeypYfbZoAaveyuPVrKpRz72aVcWqt/Iu5q0SERH5Hhi2j1dpjTR2mc6bvF6t7Rs1qDZNZeKeaDNNIUs5kHMEY0U2la4T8HYawFNiYbfXShLqNjK7532sdin1U57EOfNRPDtPYJL74kcbnyiW8gfjYsYFuvKhbBm7k56hc8id5Y459Bt0pFOEBj9WOB9DjYF9botpGXBFozMypeczZGFTmLvk9pERJkq19yV3EZ7LFV1xlbUYGePjiutpK+fwMuGe4jZag63Mca/HfOgVtofcxPpWX1bGxjK16C0278vgXsWL3EghzV7prGi9m0cdNnOzczYYwWhVkThUwwlZHJPkreAUCMYmCJoMbr6MoQFD3VFsQwMYZd542jp5RfInfqp7nHV7y7lhYtjIX4TUcBUbsuoAWJ0ZzatZVWzIqmNVZsSluWkiIiLfKWdHJp1rdlg5OXT0i+XuRMfEE12xh7bKrXyuXkFMXDK1pgwyajbRExxGR3sSIYYCdFFzqAlcSnSCP7qSPTh3FtPrPYF8r1Xc5CzhUGUXc8d5M8GpFU/ffjZqF3O9/CAmu4yZDieQBU+gzBqG1CqlzikWhbWTSpdEFkW4XFYjTC7EFV1x/XjWGBaND2RzTsPIXglXuQyjdZAxfq4EmOvZNDCXPxWrWDExiFtvvAVN9K340omvpZETjuN5QHcTZpk7Jal/oNhrEROl1ST3V7DZ4RomPfwRBCRBnxbkapBKIWQSgbsfZEz757Tgww3W31EjGUM6RbyleoPXD9Xz0fEzCdGrM6NZlRnBhqw67th4dES0zq3MREREfpicG5n0lakTddlgH6Kn8STt8ggSwgOp0vbi5WzHJXwyge05hJiKIWwqjq0FxLd/Cvv/gktXGVbPODz0lax22MrTy8fz9MIQwmV6Tp46wWeSmUim/JST0mT8ZAPUDnnynjaY8ZEBOMnsOPd3U6OcgqOli71NQ0JWojr8zORjc89Fu1/fhCu64oJz7KZNego0PSOleaPyJkpzTzA4aKKs1UBjt4nQ5Dn8q1pBdX8I2l41gQ5d7FW+jMSWwTL9HbQN3oq7kwMP9G+i5YXpBLpIwTMKOivByVVIgNY3IAOOOk/nHqeT1MQ8TmDH+0RrC7h3+pOUNI8eB7A6M5rsKh0nm3pIDlZ9pWgN9+ZC1C4jzzV2m2g3WEkNU38v91BEROS/4+yellLhODJ14kv3RnmG0ZnzNrudFjB9kpwQwwlibFpOVXvjEBZMkClnZH6fft9rqLKfYmDIiiJxGR3+MzlVeIRp1Ztgj5TpgROICXDkV20zuaHq1xia5MxQd9HkNg1l00HSLIcwHu3HeSgIXeB0brz5QQ7u+ICYin+y710Ls+/9I+x9EnzHQmct9LbBjEeFaRbN+TRP/9PXGk++L67oimuYtHAvUkJV5NToSAlVCaLVbSKrvJ3nV07gt0vGUdig5+f/LuT1PYXcGW2hwSGYVnwpHwymUeKPR8lb3Nn7BtOilGRPOsCPnHfiYTPylsMSWHsMxi4RRhZsmAUKFaaQTCRDg6g83OmxOVGvSqNq0RacHaW4OJ35vqA3D/DMjlJKWwwkB6sobTGc1/M6m+HeXGO3CWDkc/h6yL/3+ygiIvLt6LXaRonUV0Ym5W0Cq5Eq9UwW2rMIceyFxuOoBvWEpC2kpbaMxvg1IyOQQmbfz4DCmzppKHv876O8tJTI8ek4TrgNqnbT3VrDYZ2SJ5clgdyV6yVHONrrwy+bM5C7ujPWoZEhBmiPXMb8mx+ktbIAz6RrqAm8juiWbVC5G4JS6c96Dv3+Z8E/4czE9qDUEePJcAU5LNJnp2x8X1zxFRecbzeNr9chlTiQGedLiNqFELULuXVdZFV0EOlo5q0qOSYHN6ZGeOJWl8tfdJksA37k/AX3WhuQFtRgk3uxxe06nu+7lrsAbn4bXsmA9gpMASnUSUJJdG/lVFMJnlY9+WHLOFls41BVLaszIwHhP/TfdpbyeVEbqzMjR/W4gAtWXiFqFzLjfMkqbx9p+g5/DhERkcuLC1Ueyi9LV/eNgSMvkx45E8bNg+Jt0NsOQROJsFQyMO9nvF3lwIp6DXEqCaVmD7aNfQdPV0f6mutJjZ5NqO04qEPBdRlb2qOJCHESfselp7DrmISp1nzGyWoIGDLSF7UEJ6kb14UpcKEPYlLob26lLmkNjvIMOPIS3d6p9A85orL3QfGWkYnt+rE3j4hyldZ40VM2rnjhupDddPh4+Jf99lPNFDT0kBnrw/tHzAw5wC1pwSwZH8T72ypZqNvBhyxgsVsrys5KbHIPnH/0MXf5JwqiBcI3EZsZYq9hoPwAVp8AYqbehDb3ME3tWnb3tZLf08vsWB+8XOU0nh4n0NJj5uZJwUwM9wbOiFV+fQ9kXvgzhaiFlObiZj0JQUpRtERErgTCpoKxA/I2gs0kiJbvWPAbC6oIYvTHWNv0EaW1/uyY8gsK2o2MD1UiPfIyiYOnyOpfTpuXHZdeLTJXJRkBA7xRZcbdX8f+wZt405zGu06/JXKwmRq3RIzTXyTazx0XSwsYtShD00hSe6PuNrG3PIFMt2ScKr+AccvRtNYSWpuNPDID/dibqdIacZFLadNbLknKxhW/VHie3TTcizumhlGt7QME0Vp/oJY1MyMpbTHg5ipDrXDE282JzTkNWHzi2C2bxV9kr+LWW0O/zA35QB+ceOfMmwyXz9MegdR7aAy8Fr+Og7RnvUFKxjX0Oyrx6ColyseVh+bHUtHWywlNN34ezjy5LIkgleuopb7VmdFsuGvSl36mxm7BVpsQpBRstqeXDUVERH7geEeCZAgGrJB8K8x/CjoqBQOYTxxKDy/GG/cxmP8Wnm5OSI+8zOyu9whSujDLtRpNTQVaRSSG1jqCjSe5QXaQn31QiNuhp3nWaT3x8h5a3BNQ9VRg37oK5aE/CnPAzpod1m6wEqk/Co1H6Q/NxK9+B0HdueQzDlP9MToOvYmLXEpBfTcKJ4dvbjz5DrniK67z7KYI4jUsZEVNBm6aFExGtC/FzT2UtBiYNkZNoUYPEjs51V380/sYsYYmjK5RHA2+m6muGpTH3xROdu1foDlfEK2xi6GjnITrHqRym4k6bSf/2NFAqSGRRaoGOvpaOFQZxIRQFdUdvXSb+um3DbEgMeAbV03DPa3h5cFAtWLUsYiIyA8XzbH/4DUowzXlNmjMA6uRluibsdYdIUIVSlXqY9QYw5jT+R4VOXnEUofTjIfA0ZWAgk0MxtxICyr8gsdB/tt4xtxCd98AwU56FpBDd9B1bPN8jOtK1jLesBd9t/LMxuLuBjBqcdE04nLyVRqTVzNo0OJj1mOSKJAkrGBHcyPzCl/mZI+ZlOl3Y7IOfnPjyXfIFS9cX8cvF44daSqumRkDwKbDDfi5y6nvtjA53INkQwEmdRzqWY8QUZDFK30zeGA8KBtzhZMseV547Gk8bR+tJOaWP/HTN2tpbe8gyRsevHcRIYeO88fTdvfJEV7kNXThLpfh4fzN/yO3G6yjRGq459VusIrCJSLyQ6YhB6/eKg7630VC7AJCApLpy15Pidt8ksYkUtWvIqegmMnXrEZxsJT4xuPUycdii7qbcd2HIOVOgnf8nGAkEDGDjqTbqe+Wk+1wK3KG2CebSUxTCasUrwI99LjHI+1pRW8eQGlpoeLwVvZak5hsLsR16lpqZalMbX2a993uZmKEJ576QhoSf8yuU0OkWcpwlJhRSQz0WhUjfbth44koXBeBs3e3r5wcwY5TbTT1WAhyd0LZW4PWexok30qZNZgDnSZ+6n0Qc+zdKJf8dfSJhkMoQ9N4O6eWep2JcF8fai2DvF02yJwZC1mlbOJ4fQ+uTo5MCvPkVFMPVVojE8M9v9G1XsjyPmwwERER+QHTXolrxhoSPMafNl/FYnCbT5qkBGXkYk7UWJicPo24onXQehLHkImEN59E+8m9MO02cJCePpGdvros9CYXJml34oqdPhzZFf17rHXPM7vpMLrgqTxrmMf9ftX41xyiov4k/2yMJDEhDL+EXxGidsFQq2O/7Ve4OUsptRhI8IqgqaWV2Em382FdEwsbTmJVxRLpO3pWl2jOuIgM727/265SWg0WYv3cqNOZSFbreKU7Dfd6N05o6nlw3hzifCdAV8OXnuvtnFrWH6jl8UVjuXNq5MgxwMKkIFydHM9b6vNTOoviIyJyNTPpbgBCYMR8lRKRhDJ6MShULEgAstdB6TZIuRvm/Q6n7HWEHPo7fNEASSsgIhNTXRZyIES7AynQhyMvTTzInbI8vCUVVLmkEKwtYGFQPNuaPJjek8Wh3mDiE8fh6iS4EM/uo+fVd+Hn4UGefpAVYZ0YHToJ8tLxTo0781IvzdgTUbhOozcP8PfdZewuaefaRH+eXJrE+gOV/DMHIr1d6G/oJj3Ki0VJQUAQ+Cd+6bkKGvSsmRnJnVMF2/vwY0GDnvggtbjUJyIi8qWcLRp19Vp8fM0ED0cuNR6DtFUw4TbhOOMh4fHUBwzkv8VA2AwkwdMYbDqMHLAC22Jf4haH3QTXbqFn5v9RPDSZ/sb3GV+xDjeX8ey0zWS8vIlTdVUsnjn5gn30jQdrifJV4uXvhmtHPZVyX2IjvHGQXBp/n8Rut1/0N504caL9+PHj39v5v2qUAHDenzV2myhu0vPSviomR6p4aO7YkSbjQ+/lcaS2h1smhVDQ0MOamZEsSgq64HscrGzHxUk2atlPTLUQERH5ppwrGk1trZQUHCU+ZQrB/gFC9FJHudBLV6hgy/0QPAkcnOhrLGCwrRRZex4uCKIlVFxShvzTcUi4DmXGaiorinHZ+SgD/WaO9fmyPfjndDVV86eA/SRHBJEf+8gF03k0zS0oeqrokXrhbGlnyDuOxDFh32nFJZFI8u12+8Sve90VaYcf3tG9taCJ0lb9qB3dzT0mNh9pGLXbu7hZT0KwkndXpbMwMRgQSvUPchvQ6Kz8cVk8Ty5NZM3MSNYfqGX7qeYL7hrvtdg4oekWUy1ERET+K841XwX7BxCfMoVeTTF0148WLRBE6/AL0HYSV2M90vY8nAA9UHfth/ThiJJBHNpy6Om1oj21D3ndPswekUjMBkpcp9FrHeD6sD7kHWWU9ykwWPr5tLBl1HWFOPeTLG+jwzmCIVUYoXGpjHduo1bTfNEs8GdzRVZcIAjJ7tI2jtd1MTHCk/nj/GnuMbEtv5l5CX44ILngbu9hkfPzcObZneVkxHhx48SwkfNuP9VMUZNhlBvx7PMYLANiqoWIiMh3gyYX3P0Au+BaVoXw9lEN49xNTMxYILzmg3uwlX1Cq1ssIb3F6AG7dyqEZaCafj/6FxJRYMc4/U9Y2itxCk9n+7EiWvskLOQg+fZYUiUVdEQuZ78klXqjE/fNiKC1x0qsapBUP6GjVKmHj8t7keDAzFgfopVDSPqNtNi9cHd2/E7yCa/qigsEs8WUCC8mhKk4XtfFwYp2tuU3szw1iLRwr5Hd3n4ezqNK3bNHEPxsQdwo0QJYlBTELxeOBWDtO/l8fqpp1Hm25mv4IE9DcbOeaD/3M6LV03h+wrK5R3heRERE5EK4+0HZp9BSKLiWWwqpP/Qej2xvY3+FFoAqWRh1Ayqc9fVYoxfRsOIQEp9YBrUl6C0DzOBdHup/EFPeJlw8vGg5+gGfaT15zZiO59hMrldWUySJ46WWMfQ3l7JmijApPlY1SFb2QfK1NvRyf462DFLeasTXQ46f0pkqvQN6Jz96LbaLkk94NlesOWN4lMC0KB+0PRaKS0tIGRPCuADlyJ8V1WhokVnwSJ84Il77K7QcrdZxe3o4WoMFj6+wdyYEufNWjgaAhUnBvHusjs1HGpkUrhpJtQhUKwTxkruPLvPPXqsWERERuRDOSlAGg74JXL1B34TByRe9xYX7Nh3nJ7Oi6DjexU+lA7RL1Xg0HGWM5Flcrv0DeusgPYWfsUTaxUSHXF4zTCG6opdjnfHESBqJk3cQYiyF+LlkFO6naKCCXu/xTFfqoNuRVIUWMmawKb+bKE0/5W1GVs+MItbPQ4h8cpJS3KRn6hjvi+4svCIrrrNHCRitA+j6+lGpPWmuLCC/ok74M+UQGcp2sjVWPi4U1mn3V2h57MNTDAzZCPF0GVnuezunlse3Fp33HnPGBnDX1FA+ym/h6e0lbDqsYXyIB08tT2JypNdIGG5jt0kQq+HZNhdaqxYRERE5F6sRImdC4Hh6ao9j9Erk2cceIURhYdAO8n1Psla6jQ3SZfje8CJDoZNx0WSh3fcPjnS64BmRzDLvZk5K4rAh5ZMOXzzoxU1qZa3bAUhfy/6g+3hPupQHHHcS3FvGkQ6ZkAxvHyQ1NoKUUBUlLQZm+1tIc6gZWZXSm20kBCkviR3+ihSu4dTi4Z7WLZNDWTkzmbjkNPKOHkZm1KA0VjMuaTKpseHsKW3jzexa3jmiYXGyH3tKO/nbzjKUCkdKW3p4bk8VHorRt+pwVQcnG7t57Np4Yv3dqWjrJVSt4OF5cRe0ugOCSLn7j4zEFkVLRETkK1GFgEUPHRVIgyZgPboRfdkX/OyWawAIp42qoSAmefQiz3kOhVcYJic1rUXZ6JoqcS//iIkeRpa6lTM4BHn2sWQNjWeBWx3+s9ey357MxoN1TFlwE+GLf8HNga3sPnKS/P5AKN9BUX42BZoe5gVaGaraQ6Fe/u0GY35PfCdLhRKJZAGwDsF9udFut//luzjvf8twk/BIjZnlqUGMCxDSuDISo/FzstDdXAvByaBQkRnnRE5NJ27F77BsTDLJGdfS3Wvjk5OtODbnMtBWxq1pd9DUbSW3XkdauBe59Tp2FLdxx9Qw1u0tp6LNSHygBxVtRg5Xt4+yw49KtTD3XPYjsUVERC4juhuEOX9j5uKuDmOorxPLvmd4v7MQmMLrLOYhhw9x7y6jxOZNcudHFLjPIUjdSHjeU+id22lxjuOYQY23Qy9BQx0048MjhlvIyLZg8GrivhkR7C1pRx8QgK93OhKjmROWIAqNk1DkvspPZi4lTtpGSeo0/lE4wNTeZpaOD7ro+YRn8z8Ll0QikQL/BOYBTUCeRCL5xG63l/6v5/5fWZDgP/oJcw/Rij6YkDwiHK36QWrae1E7BBFX/BZ7jBYevXY5b7zzDjGNW6kMuYWHr40fGY9y9hTlI9UdvH6onnunh/PQ3DjW7S3n9UP1ADw0N+689x61POisEpcLRUREvhqjFnzjhV4XoExZwa+2FHKHbDeJsibWxkt4qiSdNqsrsYZGlKoxJFjzUXn64q8vp9ASyxG9O1sGpyN1gBtjZWysc6Ch34f2NvA261mQ6M/4UA9e3X4Is4Mrv7o2EceuCn5fPMSayGnEmU+CMoT4pDTmygxodOYLDsb8QQkXkAZU2+32WgCJRPI+sBS45MI1igsIR+mpY3xUqeC2KaHsLHYm29mRjIYPOPpOCanaE+T5XU9WVyibnvyczBhfUkI9yanRMTXKi3eO1LGjSMtPZkeNiNTw4/H6nvPf32ocLVLDPS+rURQuERGRCxOaNup319ayXrIHE5niXMHtgV30+c/nlqRM3nl7I9lDicwLCcHQ8AWKrgYUPmFY7PEcaQylDR+mRngyf8E4gpp7+M22EsyDdiK8nHl2VyUTwlS02L1xsMO/Cnuo1tj4RUwbaW46TC6BuAz2U1jdQJvelXunR466xIuVT3g234VwBQFne7qbgMnfwXm/Wy4gHCUDQaycMIRXkD8anYlTreNwHipmrPYIg2EZ/P6++/nweAO//6SUj09qOVrbzZrMKF47VEOLvp+lyX7nVVbnVVrDDAfwno1CXCoUERH5Gk5/ye1tKkbeJ+UPkWXMlDsgi5xPV9Eu6i0ncIi7nifnTqPsk+e5pr+FTqkXSksz5bZ4kuUtdFq9edhhJ8W7YmkOmkuwWoF1YJAkw0Eyeot5seQ25sf7U9qsJ6e6izS1DToqMQemoFNOwGgdpPHQVjKmX39JzBjn8l2YMyQXeO68Xc0SiWSVRCI5LpFIjnd0dHwHb/stUYWAQsXD753g7Rwh8PbGjAS8gsbw189LaegyszKgmThbOdUuKSTbq9BXZnPjxDBumRSEkxS0xn42ZAmiFah04rb0iIv/OURERK4+FCp6nbzJpIBZ0pNsdVzKPvdlHJdNJFzSwh3jHPHR7GKm4RMKBqNolgVx2DaOOeRg6h/knsBqDne4MKllE02H30epcOS5JA0LDO9TaIvA2j/Ep4UtlGv78HGT4WpqoN05jI01njQ21LCtxEhI2lLGK62X+k4A303F1YQQaDxMMNBy7ovsdvsGYAMIyRnfwfv+V6SEKUeS2u+cGslbh2vJretidWQ7fhVb0KbcS74uhCC1hulHXqHVasPRwZdX75zIrz86RZuxnwB3J164NYVqbd/IQEoRERGR74R/pEHwRFj+8pnnProPf80xTvgtQxmYib/XeHLqu0hLu5cBSxpdtUUESBvQB0zEppjIb4sUhKsVzO1+h0SnRvbbbyNcqefZZjkPyP5Ds7mWoOJynmUZx+RTkFgH6R8UKplkHwdSXAN5rcyZsEAVls4h5nnrcHEPY79ZQesxzQUH9F5MvgvhygOiJRJJBNAM3AKs/A7O+70wnNS+/kAtpeWlFLQOsjg5AufGI7hkrGZx8hSCazS8fioS76Bb8Gsq5vb0e3h2VylaYz/+7k5ojf28c6SOdbd+bTKJiIiIyLcjeCKc+kD49+Uvw0f3YSvewi4yqFSNob3eEZ+mXDQD/nyUpyFU1sVzixJR+GeQ0wxftDgTHmmlQNONb/h9XBNmZ/cuCeCMp0sgj4Z3Mq0zl/d1EXzGJOaM9WJ3aTuOwBDQ3a3D6BdDQtQgR2u7WRnbQLtBjaWpma21Uu6bEQFtRcJop3GLL8kt+p+Fy2632yQSyVpgF4Id/g273V7yP1/Z98idUyM5XK3jaL2Rhf49RKijCEtcS7yfFDrKGR8Vx/WOVg5VO3N7+v+zd97hbdX3/n9pD2vYlm157z1jO7GTwLSYngAAIABJREFUOJskZJCEEGgKBdoCYRcopS23lwJtuffSDZSyZ4CwoSQkZEG2EzveK/G2bMtbtmXZlmWt3x/CTkKA9ndvSSDR6x890nN0zvE3T/Q+n/F9fy7hPz6o4EjTEGuz9Dx+9UzufrOEjyp7ae7bz8d3L5o+7+bCFsoMZh67Ovss9/hSwxAKqRCtQjrdru91jvfixctZTEVaVW9D22Ec5k46QlfzSP8PkTQZuVxZToM8jbbBHvxdbhZLq9hSuxhZr576nnFCtQ6qOs3o1TL+0eJCpY/gFh6jlmhU4xMEmSvZbU1koeg4gaIneaD5blJDVBgGx1FLhdSN+6KzCAnRKPjVqmDqT4yzePJTnm/P49IFi0gRdELlh5C18bwt0b9lA7Lb7d7hdrsT3W53nNvt/q9/xzm/STYXtlDdaSYpOpy9/f6ozA3kaS3TnTtmfFDLJNy+JIEIfyVt/eMUxPvx28uzAHj86pmkh/hQ0z02XS+bGhaZE+VpW/2ie7xCKuTDUiNm6yTgdY734sXL17D+KYakepzmDpyaMEzLn+CBNakMCAJ5fzSNwMEKgtz9bPQ7QZN2LiVDal4/2oHDaedI0yDZERoGRidJ1Ct58bCBdnksv5Zv4Wfit/iZcQkfWNJALCNT0MytgdXkRPkTqJIyOOYgWifncNMAwb5SAI6O6tkpWsQNmiJievcQ3Pq5aH3NTMJvmgvWq/CrmBKYqUGPmwtbeGHfUYTuYi4tyPMUQYetZ2yoO/wfS6fneU199vHdi6bPdaTJRHXnmcMjp/Y3TLnHj9ucrM8No6xtiA9KjbiBHxVET29OLm4z0dQ7dt5zx168eDnP1H0MFW+gtvXQLwwiYMRIwqHbGVEtQ6OMxGgJ5KQ7nLmKdly6bMTSSJz9Y6SFaqjoGCExWEVt1yirM0No6h1FKRFgCV1EkqaOupoykgUdzBI1UJJwL3qZnSXjJ9mrljFT3ESFRImPVMNPliTw0uFWfKxGZvjZCE5YQllVG1eMVUL8kvMqWnCBWj59HWdNJ87256YZCopMKnYXVVJa30qY76lx1DuqunjxkMefayrFZ7baMQ5buX5uLBnhWkoNQ2SEa6fPOcXpTvN6jZzUEC0JejV2p5MTXWa6zVaA6c3N8Xqfc7gSXrx4+VZS8QY0fII48VLary/kALn4NH+CqPJthsYmCaOfBEEnR62RSAdP0th4kvhAH2abtzNTfJJ20wTRAUruWppElrueTT6HSAhWsXH4ZnY6ZzFPXMNxZyJvDcax5MpbSLn+r9gcLnpdftwS2sSkqYNDTQPIRo0sElYRGBLFfE0flwf1sns0lq6ThZ4a13nkOydcj+44wfYq4xmfba8y8uiOE//S9x+7OvuUwHy+sW/lkiU8+MNV6GIyPTb+9a2AR1C2VnYhFQnPGBg5NZRyKuWYG+VHdad5Om04xRc9veq6zTT2WliVEUpKqJZn9zfz8uEWXis0cN3cKG+HohcvXsDUDIkrQRdHnmUfEl00O125BE50EODq5ypNHdXyWVS4U3hjMIUN6lpWRDiR6pO4yrmbhIkaarpG+GT7+8wZfJ9aRxg7q7uQtB1kiU8zIdkrmSNrQG08zIa/H+RAfR82u4u5M7PZPpbBYnElgrZCLlPW0KGbS5IfRHZuJXLxDaSv+DHlviuh8u3zKl7fuVRhRrhmup19dWYY26uM06m/09lZ00OkTjHtUwhQ122m3WQ9ZQX1hU3JuUmefVnP765gd7OVruEJbpgfQ5Jew+66Hmx2F8dbTMxL1FHXNTx9XZ1KxuiE/Yw2+9Md6rUKCRabfXoeWGqIllA/Bf+zvY69J3pZmqL3ipYXL148/KTY81r9Hj01+6gXJfCm5hpaB8ZZ49dOg2oOGaFxuDqGGR6VUq3QkOjo5x+mKBYHb+DmwX9QbG9DWdHAc+KVXHnF5Tjef5WblTvRBeoZVsXTmxrH7XXP8ZwRjIfLuVVSjinhPnZKgzjSH8hcpYEmq5qEkFHmBUC7cC0R2mTygiUQvQx6gj1dhecpZfidi7hWZ4Zx66JYntnfwkMfVU+Lx+rMsDOOi9Qp+LDUSF23GfCI1oelRiJ1p03p9I1g71+uZ+vzD09/lJsUQ8rYURIP/wyNXESSXoNxeJyS1kHEIkgJVfPCoTY+KjdOi9Yz+1u4ZnYUty6Kpczgud6UQ/1UytE66WJ9bhhahafg2W22YnO4SApWU9Y+THGb6RtcNS9evHyn6Kmm62QhO8wxXKIx8uFV/lyRE8qhiVjcmnBidD7cviie2xYn8KtrV7BrKIoFSQHcvGYRo74pzBOeoFKQSKMsnQSti/9IHqQh9ke06S8luPppFEzwieoqNmlLWG5+mz7fTD54+xVEncdZqjNhFgeyQVVBZecg99dEEJGad0azGcEZ560VHr6DERd4xKu4dZCjzSbmxOnOEi3AE2nlwoelRprDR6nqNJ/hFD/FeFAO2YbNbH0e1m56mNeeeIArRt/jA82VHGk28ci2GkRCISNWO029FjQKKT/Ij+DdEiMHGvqpaDfzo4Lo6Xu4fq7nvF8cY316y/tUTeuWRXHTbvOvFRoAvJGXFy8XOz3VUPk25b4rSZ+VQ6y8i/Z9LyEenMXs2ASK24ZYkhLE6sxQOobG+ajcyGVZIcQGqSj/7D0ih4vZa09lpqSJenMRj75Szbj2EpZkJyCN9ONPFUZ+UP0Meap0gibbeUF0JbX9cxG4jnKjfDd1gvnkBDl407iCNGErHWNGtIr882Km+1V85yIu8NS0ygzDzInTUWYYPqvmNUVqiJbMcC3FbYNkhmvPEi3wiFV51PVkGzaz9+HlLOrbwv6ga7j7/j+wLiuUwmYTPSNWZsfpONQwwPzSe8g2bsHfR8LhRhMBKilXu7bCm//6nuum3rEzalp50TqumxtFU+/Y/25BvHjxcsEw0NGAOfkqVi9bRl60jn3mIB4fyGVNlI2bFsSzKCGQVwvb2VffS4SfkiUpQRxu7OfTTz5E2/AuL7lW4wifRaF0LjeLtzNpHaduyIVOJeN3W6t5e2IWZY4E8ty1tCnSOSIroGvIyqIkPXXq+agdJkY1CbSq0znhk88deWqAMxrUzjffOeE6vab1m3UZ02nDLxOvum4zVZ1m8qL9qeo0T6cNv8jaTQ/TLE0g3XmCenE81931CHXdZsYnXSxP0zM0bkcmEXLjglhK3YmE1j5LfMurROuUXGN9DZ/iJyHiNF9h67BnWORXcE1+5FmRVV60ztsK78WLFyTpazFYhJiHBgAoNwyRlDmbjII15GpH2Tg7EqVEwJ6aHsBTlugYsqK2tHBEtx6/rJWkhvoSGeTPJ+LlhDHAiA3++NExBrsNrJUeY75PC9WSTMLHqrlcVoKPTERxn5ScINDEzmTYUMW6SAffXz6PSnfS+VyOL+U7lyqs7hw5o6Y19VrdOXJGynCqpjWVHozTq/iw1Ai5nBV5bX3+YbInGzkpTSVpspE3n3yAluhrWJ8bRpivkt11PfyjxEh+vB+VQd+nu8nG7ZKPuZlqFPZWdkkWoJAvx13TQ7y7lfihQsi4cvo+2k1WVsTJPc0gX+YS78WLFy+fo1VIiAoLobuhDEtkBgsSg0jQuigqOoIuJpNBu52rZkVwsMHEw1ur2V3by7oZIUz4XU+uRo5zfAhjjYnGzn6SokLZbc7Dt2eUMHsnEfTwM+U+dml/wBN9qVylSOTagS0EBlpo6h+jMuwSPmmXM0+vxb/pU2ShGq6Zk3d2Y9t55jsXcd2/KuWsmtbqzDDuX5VyRqt8u8kz/bi1f5RHd5wgNUTL+tww2k3WM7679fmHyTZspjzqehY9uIvyqOuZ17OF2LYthPkqaey1sDw1mGvmRLC7rpfi1iEO+X+PemKRjzSBWo/f/E30NVeSaKui/9CrtPhkgqWbk23tfFhqJFo16XHlkKnP2Tp58eLlu4vWLwBVZAbDbVWEuvvQWprQxWTySukQlgkbDT1jgJtPqnsI0Uj5uKqX6o4hRs39nKws4tlmHcL4xehUMuItx8kUNNHkDieBTh6bWEWw9QTXqsrYOpnHTu33CbFUE6iS4lf3Jqsy9PSJgvHNWsnB0ho2F7ac3dh2nvnORVxfxz9rlU8NObvOpewrozzqeqRzbqWu28zaTQ+z9XkI7CujvH2QwTE7M6P9UcrEOB1uQvwU3K/ZS+poGycFSaSMNpPT9hwLs68E4z7Iv4I3u8PIcQroaz5CTngUfmN9EDtjuu3e61HoxYuXr8NstdNjkxEaHIX1yDP0xc8md/ZsnDINrxUaCLdUoG6vIS7qSjqGJojyl9M6OI7bPEhhp4qYMD25yZF8sK8bsVWISyTHT+PPk8M/wDoBUMSNvIefaoRdtvkEBSpY2r2ZyqQfkRIuY6a/lYaGbvRhUWyr7OY3l6d7fjuHDJ6pzJF553V9LijhmorEntnvGVVSZhj+0lb501n6n1sBWP6XfYgFAv70/WzWbnqYum4z971VjsPt5oqccE50WbhiZhjpba+R1vYabcmbGJ+xiaMHnmBR+yswOQj5NxOr1ZDjFFDY5WBhZCyZGgtHeuTMDJUSoTjlUbgwOehcLIkXL16+Y0zvAdW60FqG+etACMs7nqaw00bozMtItdcQ3vE2b4tXYne48JEKcblBIxNRMuCDUypD76ug3diF29JDjzScOYEuJDgQCBR0mKx8MJFPYICcdaNvkyarIsTQTX/ePeijFhJqb6NLFU1ASATuxr3cnLnilGg17YX4ped7ib57qcJ/xurMMHKifDnabCInyvdrRet05iXoaBoY4763ytlWYeS+t8ppGhhjXoKnieL2xfHU91gQdRbTlriJbT5XoNfIkSdfglEWDy4nTJhpMrvpa65gQaAVY3sLZqmeucEOCqubKGoxTYvWlEehFy9eLkyMw9ZT+54+Z8ou7uuOHbU5SNC6kBX+lb4BE8rsK/ibbSUxJ1+k743bmdP4Zza7llPuTGBgbBKxUMik3UlZ+zApoRoUUjGlJ1uh7yS6mCw0IUkYpVEs0g0S7TOJVCpEp5Kw2ZxNgzSNBDqRBsaxxeCHbLgefdwM7DI1u7vkCBKWYj+5i9bSXadEyy/qnKzf13HBCde/2ip/Ov/5QTUpIVqunR1BQ/8Y//lhNSd7x/CVS1iR4RG+um4zg5ZJfir4GXe0zEEscvPStgM0HXqXjvyH2Jz+PD8rD6SheC/zEwNY5tdD/pwC3mkUMeQTS7q0m4a2ThL0aq9oefFyEfDFCRGn28V93bFhvgreOVzDp9ZEtA3vckt0P9mLN1A15s/MiUKKnUm0KjOICVLjIxWTEqKioc9T87JNOtEoxEQonTQYe2lqN9JnsTE3PR5tVAYKcwsrte0oJSI2qkpJsp9kJGweAZMd3O5/nH78qRsWsKeml+vmRpEzI5uUGXk0lh+hVRj+rRAtuMBShafXtE6vcQFfG3nNiNTw9L4W1mWHoJKKME84cQMLkwOmNwYPjtpZmRnMcNEkBtM4rxwxkC8xMJ62AYM4mmf2t7AgMZL4jFhinW0QswC1TcaydB9Ke0YRT4awtPtpqgayKBF+j5nR/p6L13wIXRWw/Dff8Op48eLlXPLFCRG9IxNnuOl83bFuTTibT0rRpwYSs/8p5tpV+Iqq2OaYQ4jITNJkLU5ZPqszQnj5SCsKiZAgjZyeERs6tRQLoTSNTjDPVUKOdSsT9fPZPRpGvrKLI2Rz2/jLXOI8wGbNHejDV3Bd5G4iaz8kUqdmb7f2lFnDkAFcnZBdwFhnLcQmfyvE64KKuL6sVf7WRbFUd4587feumhnFuuwQHt/bjHnCiQgQCaC2c4QFiTpeKzTQPTzOf7xXw6TDyWVZoajkYorscTxfbePBrSe4dVEsj145g8SkdI8VisIXlUzMwIiN8UkHczPiUaYsJc+4GVPxO3QMjXtE68hjEDrjHKyOFy9ezjVfnBDxda4TWoWEPouN8o4hVmaEcuuiOP560p9yk5gAw072kMvWkDtZ4DzOY/wBgbGInTXdKOUSXhM+yOuDV6GVi6npNNM5PIFJpMcdvwyH086stidZMvAaRcJssiVtLHUe4GPm8elECgETLZizboCFv4DxQUbaqzAN9J1R02pTzaBMOtPzfshwDlfwy7mghOvrWuX/GZXtw7gBuQjWZofyw7kRNA2M8UlVNzmRvhQ2mwj3lVHTPUZoye/5aegJJhxuRmygkcFo2QeUvviTM875VnEbLx5u9uw2d0Oj/2KEC3/Gov43kOy63yNaBfeAUHK203JPtWcujxcvXr6zfHFCxBdrXlMYh610DI3jxk1b/xhVxmHig9Tki+tJMe+jzBFDjHycNMcJmmSx+LnGeZxHOW4Y4r9M9xI7foI6wmjuH0WAm5GJSVxuJx+1iRhNvIIqEpnhqGO+6R2WDLzBS+o7eEN1C0sCh2kZ1zBy4jMIiMe8+HfIdGHsPXCImmM7wS1kX5+cFw62EhGb5KlxWXrP8SqezQUlXP8XGvpG8ZHAysxQKtqHp2tebSYrZe3DzI3T4a+WIRMJKLXHkNbyMss4hgBYLChihflNtnToePZAIwDPHmjkuQOtLE8LJiPc99QTV84GZNGzCTYVQ3gepK8H/6gzxwR87lWG//kPyb148fK/4/QJERH+yulU4JeJl8vt5sDJPiJa3uESVQstfaO8/vZbJHe8wye2XBJE3dSLElg18THSlMuxiGX4uyYokfyQNGcDx8WxXD3xO0yWSWx2Fz5iISMTECkcIEPaQ9C8GxmR6shzVlBJEkXyedy7PIGg2CzmBtuRavRMlG7BWPkZC4OdrMkKpq2miFc7A3jhYCs3LYhhcZLekyY8z63wcIHVuP5/MQ5bUcnE7K7tQioS8dC6dJanhfL28Tae3tfCpelB7Bi7HFuDCu01RirahwB4qOM5dI4J7hBv45eJJtyGIp61r2MkZjnPHWjlcKOJuq4Rbl4Yw/fzomnstUw/cWnaPkHbWQzR86Gz2JMuTF/vuaHKt6G/3lPzOs+jsb148fJ/44sTIqbqWF9mVCsUCFiYHITBGkfA8Rc4ObaYwIlmLCEziekrYcvYIpaMFTMiDiKk9jV+Mnk3T8n/gg92xkUSfJ0T/JZneJBbcU66GAH+Ln+c2a4GNruf4wfmPdhcJrpF/mS6qmi2HiRJICJPY6RClEEo3Rg0M4lre5Mxx3zSR5qojVvP1h5/CuJ9yYn0xzhs/dZ4FV7UwjXVyVPcMsxti2NZnhZKY6+FjbOi8VNKeed4JzZUaBmFR8J5/IFOeh4OJkA8Qa9LznFnAssNh4jMWUGa37WUGcykhmqo7BwmK9x3WrTSi36BPDoPjUSH6MhfMBfci9Zu8kRWRx7z3Ez6eo9otR+FyDle0fLi5TvOl/3IaxWSL61zhfkq2FnTgyw0jyM9I6w2vUYlSai7j7NbvZbtkxGEOQbJETSyzTGHn/M6ShxYEaNw2FGLh9noPkiAw8zt/JLfiZ5hKUUcFhQQOdGIrWUHzYSyS3kZizXdbOx5naGPD9BVcD8SvR9Gq5VwrQOZJJ/Jrip2j8WxY1xHQbw/Ra2DqGRiNuZ9ezJAF1+q8P1NUPQccOoJ6DbVfi5tfPiMwY97avtYmhqE9mEjiNXgsGB7WEuAw8qgWEHYNc9whbyI+nFfKo7uwVL2Hmq5iIDOnfzO5z2OtpjI/91ulDIR3ZoMOPIY2spXcRbci8Pc6xGs9Cs8Na6uCo+IdVV4RGvqvRcvXi4aXC4XWw8U0eSKwOQ7g0skJzhii2NXvz/LHAdJFRlodIbzY9F20uRdGPHjN4K7qRHHEsw4VpGYS8SV7BXcxfcEh3nPsZA3g+4maOAYz4g38rzwGpbLTjJ31izk+njctlEON/ZR3WxAZutlyGym8/hWaruGcRjLyJEaKUgIJD1UzTulHZS1D9IxNE6pYeh8L9VFGHGFzzoV5eTfjLbqZZR1z9CWfMsZXT+50b48d6AVgFse6MT2sBaxExxiCLryaTjyGP551xBTuofdo0kU9Gyh0FjKClUT/xBficMFTuBX71Xyt2s3gb8CjjyGtfRNFP1VcMl9kH+z5z4C4j1pwqn0YGCS5z14Iy8vXi4Cxj/7E6FEEaaPQN/xMQnWKgx2DVdLPyNqsoskUSdPO9ZSRQKXuQ8xJpKyS7CQCMEAr/vcxB2jf8bPZmZAqCVKNkCnO5Df264lrb2WX8kuxyHTEKSREZgkZKzhEGOJGzimVbOwfytZVUfpUSaj8vWl165g/2QkK8WlrOi6jyf2/YlOSTRrM0M51mzCOGj9Vrj+XHzCNSUWRx6D1gM4jOV0pN6KfPYmTw3q81D+loUJADx3oJX1++bjDzhEIAN47ya48gVIX098RD7xRx5jf7ea9RTykOVH7LZkMjNSjcMJFUYL33/6MKF+afxNnYq0q4ST0hQeKkxi59QklEHDmTWtqdfzOBrbixcv545R3xRSK54hMHge7ZYyhkR+JAmaOE4Kc0S1vO1YyGFmIBUJuFL0V+bbjxHACE3qBPKEbfyWO/kL/02A0MwAvoQJTPxe8CSTbhEzMLBm4imydV2Mt5bSrM/EcaKQ2WIXPuJxnEIR0YMHGBoNw534Y645+SrBEx3UKfLQWBqwqiKICVRhHreT4u9mqKuFCL/087peF1+qEDziFZqNs72IYd90dItv/9Kun1sWJvCJ63r8sTKIAtnDZk/aEAf84/PW9/T1EJ7HokA7n4rnspvZAEglYv5jdRphGgnGETspXe8g7C6nUZpC6Fg9G1w7eHTHCc85Ui87W6DO82hsL168fAMMd3jm9Z2OdZig2Eyk836CT82b2CVKImxN7LBnUxt+LQ86b8KKp16mdY3yivBBZglOUO5OIHSsDllULn/ij6jldkRAuS2Kw2SwRFTJakkZNcSTIe4grnsbB+VLeMSQSrnfcmSj3QSNNTPk9MEiC8FvspPUmv8h1NFOsXw+zwX8kiFpCCviFJS2DaF0WxhorsBfd/6ntF+cwlX0HHSVYw2ehe9wDdqql4Ezu37A09Ku+Vy0Vgo3e1rdH+icrnkBnq7AzmL2WBNJd9SzTlYEQGHzED99qwzTmJ3rJbvZ5N7GE5OXca3lTnb6XcUay3ussG4/L3++Fy9ezhMytWfE0ZR4WYenRx7VqfMpUS0kUdjNickgjskKkFv76RBF8L5wKcGSMSLppIwEFksquU3wAW3OQKTHn0XDOAOTCj51pLFcVEmKrRmRCCwiMb+V/Bx/exc7WEhzVy/ZKjO1jkj6feJpHlfga+tG6PI8rItwYEbBZuWPiAsPo0saRXNdCcHD5ZQc2kNA3AwEcl/Pw/1pA3O/yoPxm+LiE66i56Y3/qqufxPxvHs8709r2AjzVUzvw3p1cQlBD/dw88IYnjvQekq8HjZPO1/83b6aTQMb+Uy3kQc0e7hLXwVA18gkCqmYhfI2nmUNrzuWI3LDVsll9GTcxgzqz+dKePHi5Vyj8IXAZI9YDbV5XgOTQeGLqWI7GfYaXAGJzFAPo7W2s6tPSyxdBAjHENqtiIMS+bXolxwllVRpB7/mJVaJy/hoIo8fuh5knyCfPoGGQPEovZNq7hM+RJBkgv6wS6h1R2K0a9H1HsLP3s3xETVhdGMTqpDaPe5CLkCNlUsH38BHJkLm40/7pAZDVxdzI2U09VowWydpaTcy2lkDMvXXejB+U1x8wtV53NPJN1Xryr/Z877z+BmHlbYNc/PCmOla1y0LE7h5YQy68qegYbfnoK4KKLiHkh47D2p3sPCKW3HNu4eY0XI0jAEwZHXwS+dtbHUUEMoAE24YGBlnxob7YMPz5+zP9uLFy7cEhS+og2G4gwPdIuqGBdCwm5ldb6CY82NGFv4GQ+ot3KvcRZy9kXZxGBKXFYEmlOzkOLQKMb9T/w9D+KKXWuh1ariPe7DgQ4GokkDRCCaRL0EyC2utHzIxNohlwklykA99Yj2WSRdR7e+hcw7QIwjGz9WHBBsgoE8YRp9PKusEBwk58iC+ojFEo70ow9JR+GjJEjbhNBlIEHbS6Aqnwyo9oxv7XCFwu93n7GJTzJw5011SUnLOr/tvoWE3HH0S5twJicuhYTf9u//M49YVzLn0e9QYh3njQC0Jgk7EgYl0TkixjAyTKOhkUBGDVaike9RBQZyWp67NZ9Tm+NZs6vPixcs54PP0YI/bl2e3HaZdGMEjkaWEJM6kWJrLI9tqcLrgz7kmDh74lD+OrUKvlrEsPRiDaQy5WMy6pgdYQiG9Ng160QgfOTxuFuvExRT5LOAPql9wi+l3LKeIjyby+LXwHhJC1AiFApSD9fzA9i4CkYMsSS++jk6EiJkImIF0uJFxRRjSkDjGDdX8UXwLCwJGWRwwhGXWT2gu3EZqlJ7A2Cw63EF0DlkJ91MQ4f/vmXghEAhK3W73zH923EXVVbilqJ14vQ950aeKi8VtJpp6x7gmP/JfO0nics/r0Sc9UVpHEVt9NuAOy+OZ/S30mK1IfLQofVU4exvwEfgSIhikwR3O38OLycxbyO1HtRS3mHm1sIUf6luhqg4W3PsN/MVevHj5VmEd5mT1cVSR6ai1ASjCBnFXlXCfYwZZ4gj21lZhNE9weXYIT7Qp2TW6imCNlO4RG1vLO8iK8GdD869ZQCEfTeRxH/fwJ8djrJMXMzYh5iNHHveZb+XXtufYz1z0KgWzqcE6AcHGPcyWG9jiWkKTK4illDEpmGQULSZdPmqsaPSZqPuqqLfm8rTqIdb4NpPW8Q49UXeRpFUgjQnFZJehGOhkwAXhgUFndGOfKy6qVGG83ofXCg0Ut5kA2FHVxUuHWonX+0wf8y8VGYNSICQLWg9ARD6ajEupauwgRmzCz0dKsl6NfXwUfz8tMZIhBoV+zEuPJnPGTAQH/sCfc4bJjfal8fA/0JY+BcHnt7XUixcv3zC7H/LUxG0WVJHp/KNuFHPJOywfegd5WArG3gG2FLXXj/EYAAAgAElEQVTTZbYxK9qX/XV97K7rIz1UhY9cgkIMg+MuuoetpNJIkXwB93MPAH/X/Qe7mY1ZruW+zz8rnojmJuFW2iUx/EH/J1aJjnG7eBsNE34scxyiXhjLZ+J8xE4Hg0I9n+muZmTmHTiESgxBi1B1HeJX/p+yenwbttl38aIxirqqIoKS5xGSsYhGVzgJwk4iFJNf68H4TXFRRVxTkdZrhQZqO80UtQ5SEKcjSa8BzjTF/Fo6S6D1IMQsgI4irspNZTB0lGfrZPj6uShuG2KJXkDkSB0TwbmMd/ZQW1PHLqWChbm3YN77Z+aNRbPGtwPm/OJUFOfFi5cLDuOwFVVAJtrPm8LC09ezrO41BIefoMT/asr6YUwUiH3SiVohZnDMjmXSSbJeRWaEH0VNg/irFegF0DtiY+jmEsz9o6Tub0YgFNDYO8qWyAcRCUX4GocZGXfyqWA2KpeIW4feI8RxFJ1kjCddV2AFdIwx7pSSRT3HZAWEKydIFhrYOngpG2fcRP3xA+RGCAgbLoHo+SQtuY5raqqoHfYnVeHL6LCV2MgwVPiCzYLW1/crPRi/KS4q4QKPeNV2milsNjE3Tsfa7PB/adDbNA27ofRlT0OHJoQKWzAhOx+l37WOuPD5dI9MEiGfYKCng8j0xTw4359tdVrKC/fwZHEmL+ljuGwsmlXKBgLTV3hFy4uXCxyVTEyj/2ISZoH2yGNYWw4TZjhGbcZtfGZMZmhsCLsbQrUyui02rJN2Ns2Pw4UAdesuNIEhfNipZdwJmxbGMWqoZPhkFRpFDi39Y6zODOZI4wD+PlLGbS70agljdhefCeeQ6axjvriKPvzot2tIEHdS6YhhnqiGl31uQB2VTZSjmYyuXWQHplErTiMrrY+A6gNnGIHPSF/P1NTAUzV5X0+jCV/twfhNccGnCrcUtU+nBsFT09pT14NULKCsfZj63pGvHvQ25Wu47acMHH7FEwoXvwROJ0yOMXHkWdBG8LrrUlJk/ZjGHCTqVUxaRxEEJiDyiwF1MGuSVKTkLUEqFRFqOsJ8aTPBOSuwtxZirtl5HlbFixcv54rp6cb+izEH5uJqPog1eCZVmoUMWydxCSBQJUalkBCglABCPiwz0m4a44TNn4Sujwm1tzE6aefQwX1MlrxO9bgflZ1mVmYE88ersonSKTnRPYpeIyNIqyBILSPfephcQQOHnBkEOAa5QryfNkE4PkzyoXM++8zBVHQM8nKjD/sVS5CNtJNg+hRl8ZMM594Jq//oeUA/8pgnzfkt4oKPuKbqWlM8trseBEJ+WBADwEuHWimI07EoWX92kTF8FkN7/shwUD4RLX+jv/EzfAar6FDnoPrkv7ElrSU2IZWGASt/qRSzKMsfpVRCVkQ+H5V3k+znAEsP+EYwamknlUZulO/n7/aVpAnX86OCWUiL/gZSoTfy8uLlAkarkBDRswdBRxHmkDlI2ouZrT3MPmU8S1MCKWkbRggEqOUEuF1YJhxY7U7kASm8NzLBDxWHqXTFEmat528DC6lz+5McoiFEq2R7lRHLhAO1QoxEKEQuFhDVu4+bZdvYod7IR/0hiISTzBGfxOYQsUV+FfUTfgC0D9lQS4VUTYZTEBuHuvFxXPPuoUO/DLnVjnZq5FJXxanxS98CLviIKy9ax3Vzo3it0MCrR9pAIOSeZQnkRXtqWwVxOiadri8f9JZ/M4aUW1B0HWXYISHQsI0uhwZxVwlNQctQX3Ifbt8oysdDuD7eitI1Rma4lruXJnPXvABKio9SatXzeOkEL5yUc0NwO/K5m+jWzcWx/8/sre1CMf9u6KmhrttM8Z534OBfzut6efHi5d+Puex9fI4/gTX/LvZF/4zB7NuJqX+O+6ObGJt0kRKqISPclwCVFLsTMiP9yI70x42AxIx8ejVprNS2YVQmc4JIfJUS1mSF0thv4e4tFXSbJ7g0VY9OLaW800ySvYkdjplIfUO5RFTB0671/H7yewTKHayd3EEY/QBo5CLAxfwEHQNjdlxLHkafv5HKDjNHmjzHkL4elv+G4jYTW4raz98insYFL1zgEa+cSF8mHS6WpQRNN2mM2hyszQ7nxvlxwNmWTwAzNtyHM2QGAks3Q0IdIusAFm0SEZfdD3Itjb0W0uIi6ZJFkx8qoarTTF23mbxQGRnZs3mldIi9dX18b34azkse4o2OAK6fG43FL5W4xlcAqEu4kfK975HS+oq3w9CLlwsMs9XOaEsRzoJ70c/eyGVZobQELeVk3I0MNR5Do5By/6oUfrU6lTVZoQRqZMiEQmqMZpKCNQy1VDJbZqDUlUSUrZ7ZPj2MTzqp6zSDG/xVEkzjDg429GGddCIXwR/5AQfEC0g2HyQ4MZcRaSC1xHFgIoHdrlyCGCLMV8aGnHB+vTaDw02DKCUCekcmMFvtZERoeONYO9urjICnxPJaoQGtQvStGGtyUWxAnlr0nEhfytqHuW5u1Bl7ub6Woufo3/UHBlw+xGGgVZxIiGySf6i+x4eu+SilYqyTDubEBfD9/CgsE3Ye+KCKEauDl2/Mp9tsnb72E582siBRx+NXz6Su20z53vfI6tjMkcl4rgntRr3onrNSho/uOEFGuIbVmWHTn22vMlLdOcL9q1L+ncvkxYuXb4CpSeun18/NVjuNfRY+ON7BsoxgFifp6Rga58DJPmQSAWUGMzMitQw0lbPQupeXR2ez3xzIcp2JH8gLeaw/h+MTwUT5q0nQq/i4qgubA2QisDshPlBJdqQfba0nuSGoEYsmgbKSYxxwzcBIIBG+MjQKKT5yEWsyQvFXSanqHOHaOVH0mj1Naocb+3hmfwtLUgLZWd3LkpQAwnx9WJgcRISfkn31vZzosnD74vh/21r9qxuQL/iIa0q0rpsbxY/nxU6nDU9v2PhKPvc1rJdnInbY2MN8tI4Byp0xFHRvZr3wEHq1jPbBcaRiAQdO9vHucQP13SMkh6iI8FNOR3uFzSZSQ9Tsqevn95/UkhqiZZ8znT2WGBZL6lDHF3xpnSsjXMMz+1umn3y2Vxl5Zn8LGeGaf/dSefHi5RsgzFdxVsfd0WYTSqmI2y5JwDhopajFxFtFBgRCAbGBGtbnhtFvmSS49wBH3en0yGNJC9ESk57PJ9ZkFgorEAtEWKyT9I/YCFLJEQnA5oRAtYQXb8gnXq8mJyOTPf3+1JceotEdjpFAsmlAMd7JfSuSUEslfFLbS5hggDsThxAKBNNZp9WZYSxJCWRXTS/hfnJ21XhEdUq0XjjYSkroP9k69A1xwUdc/ye3jPc3UUESHSeP06NO56mhPB51P454YoTmkEtZ6dfF2PLf01yyh6qyYsoC11LfY2FDbigPrc2cvtbp0Z5Q4GJPXT9hWjkhpkJ+od7NgH8OucL6L4244JRY5UT5UmYY5tZFsWdEYF68ePluUddt5sNSI+tzw7BYHXxa10OX2cbPoxuRBMbxmSmAhclBNJysoWvfcwjVoSyR1bK7R0ub3ZfxqMVMKMPI7HyNqPEq7nHcy6gDtHIR5gkny1J0bFqYwIkTtbQc+YA6Zzgpgk4kqcspah4g01bGSeVMHrlxDcVllaSOF5G39HvgFzV9j1O/Xf4+EkrahsiK0GAwTZAb5UupYZibFsSwOEn/b10Xr+XT53yZOOVF6wjzVWK22s8K38/wDtzwPDt3nCBjzdVsygzjs2cLecW4jJt89iLXJ6BZdz+Wys9YOrqNEt086rpGSA3VEBeomQ77P6vv49ZFceRF60hrM/HM/mYUEggeKOQu5U7Sr/w1dep8tu59j7X7H0MNZ4nX6swwilsHOdpsYk6czitaXrx8x0kN0UIuvFrYRsrQQdyCYKLC0pEExiGsfItlkbPQd/sQEROF4YSLg92dlAmlrHd9zCss5+UmITeJn2ed+GOenFjNKCAXwITdI1p7T5hgsIMbQlp4zjGDYVEgal00d8hrWHfFCn67VUTa2HFSbdGkBjVC/JeL1op0PUNjdmICfHi/1Ei4n5wjTSYK4nX/dtH6/+GCF66vQiUTn+Fq/FWuGVN1pGcPNHKi20KMfiav9gv5tek9tJVDyNuKeNl+Ce/2BpAT7Udz7yimsQkOnOyjfXCMWJ2SEK1HCJNKHyKl149947OZr+7i6YmVrCusYK3uE0KtTQwK/FH31JwSrn2PQkcR22c8SZlhmDlxOsoMw2yvMnrFy4uX7zhquQS3y02POJjviQ7jExvDZ6YAj2hVPAWpl0PHMXwvuZu+Xccx99cy6J7HD0QHSHW0kYGBJydW84ZgDbhhwg3RGhkPrsnEYi3D3tPC8+44fnXNHFZnhrG9ysjz+4Vcq2vn8TuuQNoZgrW9DEVkDlh6ATDLQxm1Ofisro+FQeMIO0tYOGcZEX5KGvtG2FbRw/rcMEoNw+yr7z1v4nXRCVepYYggjYwIv1Pt7y63m8beUS7LCv3S3d9Ts7luWxzL9/Oi+dMuLe9VtLDx+A6Mvnk81RTIdXMi+OXKNDYXtvDM/hY25oVzaXooQRoZB072kaBXU2oI5HLLmyQlq1n7o78T/MofSG1+ia3cwNoEPb7HnoL4z7sK9z0Kx56iNvp6ntnfMp0enEobAl7x8uLlO0xxiwmBUEDajLl8Vi9jQ83bXBqag7O91CNaI50QOYe9jRZkQ00QmoXBIOCErZMccTNljjhewSNaAEEqCU9dN4vOISu/XeLPW5U55CZFe34nNq9ndUgWfvPWUWFWM8/dx3jZ09iHu3GL5CjD0xmv24VBM5uo+BSuSxNS9ek+QmatJcJPybslBo42DXHHkjhmRgcwMjHJCwdbAc6LeF10wjUlJFOdMS63m501vaxI13+lZckXZ3PdlzpCW2s7h+xpJHQd5zfZyaxfmQbA9XNjASgzmLl7qWeTX4JeTY3RzFYWEh6vYK3lbfigmbWWErbG3cBr1gLWLi7wXOzYU9CyH/rqYPbtbLOu49a0U12FU6/VnSNe4fLi5TtKXbeZk90Wfjg3mtQQLe87Xewsb2KVo5DAkFgYN9Gvm0nPoa1MDstIWbyJS+bkUfriPSS0tlHliCZLYuBHk9t4hTUIgIfWpvHZiV5SQ7WU9ztYGjCIcUSL2RqE2y8d3+LnmJsHc2f+GLb/HGXHUcx5d9CkmU146xF65LHEjxxD2TuCq72auIL1FA+qsLWY2F3bx48KorgkNeSMMUwnuiznRbgu+OaML2Oq/hTiq+BYs4llafrpbpqv89vaUtROlruOtI536E6+njZlBs7WQsKa3yBmxV0QNfcrrzUV3S1MDiJi30/BUOg5/opnz/zCiyugpwqCM+FGrx2UFy8XIjtreojUKTy1LqCroYTOfS8gVAcx03KA3hm3s8eVj7j2HeYITxK16qcMVu9GfOwJXncu4KAjh2RHPbeJt/O0YzWvsAaFWMD9q1JwuwUIBG4OVzfz40QrqoBIYuUWVG17oeQl0EbAkAHm3gmL76djcJy+jkbCxWb0PkLorsTin069LIMRq53WgTFiAnzQfL7P9Zv0JPQ2Z3wNEX5KQnwVHGzoZ0FiIHkxujNqXF/1DxOv96FiRxHWjCtBncmg2cqW1kB+mno9MX0NZwnXlGhNRXehfgrEzy/C7hxAkrQMjCVQ9jqMm6CjyCNWfXWnXvc9CovvPxdL4sWLl3PIivTgU296qglt/Qcsvon62kpO6m/CWXeYJQVxhN70C+iphkEDyt5SPvD5HgeUaylqG+EYieCAZeoW3puAUbubR7bWkR2lwWqHK2fGMikyESsd5KfbB4iIu4IHg45NPxj/dnQVx584wENrM9BHJNBrbEJtPIYyLAt1fz0ajY5dzUIyw7UcbTaxPjfsnBrpfh0XpXB1DI1zonuEBYmBdA9b6Rgan655fZ01f160jrFLbuWvB1spcAxyonuEmxbEgCyRg5MOYj4/z1QLvskyiU7tqacVt5mYLHmDfOcALpsVglIhej6OXQ+C3Yo4Ms+TJpx9O+bZP8O1/w/4HXvKc2GveHnxckFSahjCfbKc0JjLCU2cyeDgEAd7xSj9/cnvaYTEmSDTgCoI+bVbqP2wgrLjRgRAgI+QT4Qb2GyZ5Or8MPbU9tA36sTmcDM3LgDJpIVIjRlVUDxz9UYCjv2UMUktPhEzGDNWI295nLyYZSSbh1Bps9GNHKNJM5sofQqjgkCGjn3EqtRLmVDKWZomp6xtCLVcQoTfv2fa8f+Fi064pqKgddlhRPgpz4qK/tkTRaJeQ0F8AOXtQ8yN87SETkVrf9pZj8vlIj1cwzP7e4jVKdEqpVxX1Er/iJ2X9SfYEXw7QWILOYceRxaWBXYrXfJYrANjJH0uWk/ta2J23E0slos8kdjuh6gXx1Pqs/BUe3/Nhx7jy+W/OQer5sWLl2+CII2Mf4hn4+6A2VITtSYpup79HBPmkJi13JPSa9oL8UsBqO60sG5GCBtyowj3U9DUb+FX71fxSXUveq2CaJ2Ixcl6yhoM5MWM0UwyOnkYPw5owiqpotYRzvODG4mzhXG7ZDtilwG5/q9g6UWZeilRn3cV9hCE34xVOM3dBIQl0DsyQU60H30jNq9wnQ/6RmzTIgWetOHC5KB/+R/EOOyJ1ubG6ShrHyatzURetI6Z0f70jlj5w656aoxmEvQqyjqG6R62MjhmR6+VsTXsXt4vNdI9PMEO3TECDMepFiRyx+R/opKJ2Zw1m95eC7Pj/Pmg1IjP3E3kLb6f+s9eQ3bsCXJnA1znEa3Ph9J58eLlu0uEn5LLc8J55XALj+1uINxfS3L4Im4XVdBQa2NQ1Y9/5irPHqvdD/FaQSaN/oun5wfmjB3mrwGf8auRDdgmXfxiRTJqmYQs7SjvVokp0Clo7LWQ3lmJouAO3i/TMMu8m151KipdBuCG4Izp+9Hi8Wz1bBcKJSEjCa1CgkYh+deG7J4jLjrhyo3yO+uzCD/lWaL1xeIpwLslBt4u7mSR3kZmoB9p4VHTI1NEthHsg338uCCaFw+1UtVpxuFy8Z/2x5kIyaVNGsf7n3Yxpgjmv+y/x7+/knJ3PMmCBta5P2Ag/mY6h6yE+ymY6e+Pj0w8Pam5rCeNO2ffRVLjC2Ct8gx3K7jnWzVmwIsXL/87IvyURAWoGBy3IxeLSEtJJ0YowrelhF55Mv6fbww2B2QiOvIXEgpg1HcVSXt/iLO3noOKGwj1VdAxaMV2/HXm+HRgz/geXRESzONOElLVmNZv4d29B2keOYFKnUrkWCXvhazkyh/e+6X3NGpznFHvP92A/NtQ57rohOtfJVKn4MNSI+R6drnXdZv5qKybjXnhxKpdHDh8kI2qMu4MnsnHlZMIBupJy8pDa9jLI6py7uxdg83pxuQ/g8uH3qIl4gpuFW7BYnURKhvl04k0DgjzULp2cp/sTRpF4fj63Ts9E+yLk5qT5l3nEa22Q57JpF7R8uLl3NFeDGr9Ge4SDBk8G3cj8/5Xp7zkT/vIidJy19JkTnSZkYgEFDYPcLyikjcWW7AHZqIw1sJQCvhFMRq7ChWgPf4E0s5CbL312O2TzE9Wcsuqmbz05CMkNb1DecZt+FhVrJIf46hQwtP7JpCPtzNUsZM1ySlcFzTAez1zGW4s4em3P+C2jVecdW+nt7xPca6nHH8dXuH6CqYsWT4sNdIcPkpVp5lfrUk5IwIr2VnOPMNfiZctQF5wC1LDIWa0v8ITk6twuEAuEfAOywkNlZPT9ipCkZhQBumxKTkgzCPfVUmquIdhgY6EoUPI/R8gcM9ddKkzaFQnIK0+zrrITBzH32Cooho/icMjWm2H4MAfYeHPz+MKefFyEaHWn6o1+UWdVXv635ATpeW90m5quyzMiQuksLEPa7+By/1O8FjrQqQjQfw4M2z6Oi4CadItITf8GIq2Q5Q5wulSp7Gu4xWG3y3nBncZL7rm0Flt5qeL4zk6OsHJgx+yYGY+FTVFxCelcF1QO2Rt5MpLM3j67Q/Qt2yFnoQz0oXfBbzC9TWkhmhpDh+luG2QvGh/UhUjYHWDwpfcpBha2jdwtGqcBdbPsDW5kHWX8Lx7LTududyzLJpwPyV/3dPA73rm8KK2hFBLFQMOFcHiUX7ieBedfJRtk3l87L6MRwRHCTMUIg/LIGT/n3ETyIyl/0WatQL76FsMO6XUL/gvkrIXgGMCat4HXbw38vLi5VzgF+URqaa9EJgE/fWnROxL+KpRJqd7of7xqhxMo8f4rN7E0KiN0NFa5gdMkDx3A/UtInxsThRbvs+wbzg2ZQIHRtxcatvBZMVbOF1uUhQ6Ji01tPjoiOs5SrssDr9RG0Xo+e/tdRhMEzwwM5+5SiPbRBFkuScha+O0SPUr46mVLeGKQcN3Trgu+LEm/wqlhiE6hsbP+KxjaJz3S9up6jRzZ9vdqI88yslhN/SfBOswHW/dQ37RnSijczEIQlF3HaJbk8VQ1Er+e0MmtyxMYHVmGD+aG8PdfocItNRS5YpELnYx6hATKBtlwK3moPZyau0hPDW2BI4+BZYuxuR6woQm0tpeg/LNSIIzccZfSvuEj+c/zoL7YOEvPV2FXrx4OTf4RXlEq7vS8/oVogWnvFCnpqlPdR6rZGfGCi/9eDbfV1egtTQhUOv5fpqSgdFJNiVb+XngUUaEvih7j9H+6XPkWQ+jOfw/CO0jjEZdgmjpg2TRRORYGc1WObqhUpKjwknOnkNDr4XZPt1ku+shJIt5vv08U6/mt8c9hhO/3VbFG8c6CUqYAamXfXNr9g3hjbg42waqY2icN4vbGbTYuL4gGr1sAbpjz3J4O7D657iev5HYwf2YI5f/P/bOO76pev//zzQ7bZOme6V7QQeFlkLZS0AQB4oL3F7Fda/jer93eO/Ve/VOr+vndeC4KjhBUEBQ9h6ldNC9R5q26UrSNE2zf39ECnVdvV6uink+HjzCCTkjH/I5r/Men/ebeYn+mDuMnLJGk9R/gj9PWQjpE0aPvcpvB4xsYIP/UjICBjF0daOR6nEJFIRj5ibrWhaFZHNQPBtUMdDfROiMm6FpL7QdhfhCuPpNIlsPEdlVDmETvBNGHe+ztnz4+C/zlZaSp8draUVN8L6qNF8qXqeTGRr05tEMwADZmdvt6Zqpj39cTf2QmtWK3bwxOI07j4Xy3Lit0NiEMCaJ7VGrCWvewMUD23Ae3IPAY6En/mKUhT+hs3I/8WI/OhxRVHkS6ReFk9X3EYf6pCyPm0hEyzZ2xl3DxQkzWLpcAxtf4+/H4EjDAC39w6ycGsvvluWc8zE9F/iEizMp8WeXZopRybkoJ8ob04p6GBEw49iLmDaVEmCqo1w+jZjYqXDiJXaHXscWcypXSk+w6PBTABQFzPL2/Oo4AdPv5Qo/CZS8gRM9FmUqqviJ0NdEbtdJkhSBTFL7Q287pF0ApevA2A5xhdBZ6q2g4bBAVO7YCfMtg8M+fPgYy5d2jZAZQbv3jHtQpRkb8/oCVHIxEUrZaLbw2Snl4Uopd60r5pTOzCUTCpAqI7n52Ivss2fRXF9NbkYq79XDSwYJeem/ZkZbDaFuPWZJNJ1zn6bPrCWy5yQfC2czYHfiCJ+ArfckOqeChcE1GFwKBDNu4PEyMcIoHUtz4lm6/EZ2vrSdj/osJIf6/2BFC3yuwlFOV86o1JnYV9eLRMSYRIxdTKLLL5IQcz3SkHjUl/4JU+Uuqv0L2OWZikOsRD13NUy/l47ao6w90kZKhD9c/hJMuQ1S5oKxFZFmOoKU+QyFTwSLHlTJKI1NqIdbGVSlQvMB6KkDPzFET4KJ13srargc0LQP2o96J0zbEe9r4HfXE8eHj/ONsy0l7cDwGRGz940VqdMxr0/bgQA8t7eRvXV6eOMy2PsXTFYH2ys72Vurx7Pvb0jfuXL02Hig2zRCTkwg105J5MBICu6EuayQnsBqc7GuUUyP0cyUKBEPC14k2N1Ln18E/nY9IZ/8FL+hbvYGLEFk0XNCNp3UBTdSHnoxOD1sN6ciHbeA2bPmsXpOEhUdgwD84ZCJ7aY4kkP9aekf5g9bTn0XQ/xf4VtZXAKB4O/AMsAONAE3eTwe43/jwv7XaA3eH2lWjIrKTiPP7GwEYEV+POuL23AffpNI2iBIAyYdqfWvUqGZSsVQIEszFYSEh3vXXcVNoMQez3XT4sd0XUYdD7fthcZdiAydOCs2MRQzlYCeMiwxF9AWt5zY4So49TqkXuB1R5SuxThuJYL8O/Br2o3MMYRYMxmzUImnfAuegp8wJAjn7BrxXyco7MOHjy/ns5aSSi7+Yq/GaZf9p4yLDuTlAy3EBGWTdPQ5qlsM7LZfwq8CthDdvo7OjFtQAS/uayIsUMxzq/JxuT1U6kwoDDUo+kvxDwohdNDERrMaszKfp21PENZcSUvMpdzafx2/tj/Fgq6PaHW7aBjKpV95MY4RF2/tqyA3KZ2GwWxCpW4Kw5xgNbI0J4alOTGjMa3T7sHT28AP0vL6tq7CncCvPB6PUyAQ/BX4FfB/3/6y/rd8UTHcJ3bU8szORo42DZBV8/9Y6bcfceblXkHpLMNZspahoGWoC39B1JHfE5JzAZPi5o+uuyoY2A4VJ2HZk96TGLUgU4GfBIXuGMMps7B0t+CMnY+o4zCJIgly3RGY8ysISYDE2RCWjv/BJ+lT5xLsstGSeTeqsGhs7SVIEy9AOxJEqmrsf+HXbZDpw4ePL8ZkdaAfHCFWLR9dV/l11i+dbu/xyIElXK82U9i+ludCiwlsracu+QaUc39Bl8lKhErC5rIuOgaGmZkegaOznNj2zbQHp1IvUnHCauMa2RFesSgYEekpEecRc8VzTPq4msfKr8Ahc5OlP0Vrwr3sqe3jyix/xvkPUVffTEzuJdy+ZDJYjd5EsrAMkAdR3GoaE9M6/Vrcajp3A3kO+VbC5fF4dpy1eQy44ttdznfDF5WBun9hBg9tPEVRywCrpfVI81fDBQ9D6yG6zTbK/XoY52qm1Bj8h10AACAASURBVCJGETWNiCNPk+Z+m4GARQz2WdGPbCDiwl+eqSk48z7ad71AWNde5HmrUNhMjEQpGOhsQCqJIqZtPyTPAY8L3G7vjy55LuK2I4TVbsMiDYWYXFrLthGWPAGPrpLU3ARU8uAx3+WLgsLnuhWBDx/nC5/tEnF2XOrrildpm4E1jVegEReRaqjGHp7NkZibCGrqo9NoZdjhJidWyUmtCdOIkzRjNXk5y6jsHGRLRxCa6Eiqhs38XLKDX5pXU+nK4Fc13fxympK17c1sMeTzkPRuhmr7WJwVRn5GJAdOlJGeNpEjOhfjT3cmDssAmxnkQWy+Z+bnrvWHaGmd5r8Z47oZ2P5fPN7/jLx49edKPh1r6kU7YKUgMZjVoj+yXn0TbLkXyt6lTZKKPGkqD3MPER3b6W4qZ43rYhLdDaweepaV5hfZKrmAOqPHW1MwOhd6qgnuPU6FfyGdIZMZkkfTbRqh2yYlyFCJNX62N83WNggn/wWDXXBqAzTuRORxIR/pI+D4U0jGLUKvzkeUsQiVdq83QeMznO3qiFDKfKLlw8fX5MtKHTX2DI2mtp/GZHWgM1rHvLe3Ts/JNiM/FX9AjKOZakEi4r4allveZl9tL9squrHZXVw2KZZJ8Wo6jCPooxcwKSeHk0MRpMZHc2FWFIGZixmQxvAL9UFmqnrYsu84pZue4kbryyySnWDI5iZKKSFXE4xg10M8bPsb6pAIZqWF8PKBFm+sTR5EkdHbreJ84982khQIBLuAyC/4p994PJ4PP/3Mb4B8YLnnSw4oEAhuA24DiIuLy2tr+/wN9/vC+uI2nt/bzB1zk0ZjXO/vPsofgz8m1V4Hs3/BB72RJFT/E2VfOR+Kl7DOnMc/FK+S5TpFoJ8Aa0gGWHqxT7uPPkks4w37IWMJnZ5gSsrLsfnHENp9gMK+DVhn/YaG4LmkDuxFdeIZSJoLJ17xXowyBtOchzE1HCei/k30kgTMV63HaneRKjN6g8af8b+ffmr0WVw+fPx3+Kwl9kX9+/bW6Xn5QAu/D9pGWuNr1KfcyP2dC7jK9g6X2zbztnAZ1Uk/ITVKiXbAwu6aHibEBlHeYSQ/Ts3lkzXoBqyoFGJ2VOnJDRwkWbuBfKWJih4HXYMO/LBygbOI90ULecS2kudl/2SOpwjJlFspGvcgv9pwiplhFrJVNpJTUnmr1EhMVDhWu4dfLhnndSHazN5Y/feQ/1ojSY/H85U1TQQCwQ3ARcD8LxOtT4+zBlgD3g7I/+683yVl7YOjogXeBA21oZxN/dfyiywLHH6KAtUEXIZKjgfO44BnJve4NpLobKRZnEaup56A/kpGAuOo79CTGmqAgp9g6tWiaP0Aefg8RvRtpAh7kCz4LZKsy0i1OhgKWoJK4ud1LcqDwdTGsDKehoAC4sK6cNW5UKv86bG7iFDJaDAFkRqhQXXWtX8dV4cvgcOHjy/ni+YHQIBM9JUPhDWdZm6dlUja8QqYeidpc3/JA3V6Xj14PZGdrUz3lJJVEI/fe6votySwNH42q8eZeEGdjvTk8yjaWzBOfZp3T7QzOTEIt0rDiN8cKqrfZshi5IB9Kh+4p/H3wGCud+9kbkA1wdZ26hRZZE+9gwJ1CNdmQEfRHvZEzOS42Ui+fxcbKy1cNy9nbNzrB86/tbi+cmeBYDHwBDDb4/H0ft398vPzPcXFxf/xeb9zPnoQWg9yUpjNTV2Xc7X0EFcNv8fJwNmY8ecq2wbEbhvgZiRmGqoL/g+THZxHn8eUdSNH7KlkqD30N5eROWkqsZFRY49fvwOOPgsiBc7mPTijJ+Nn7sJaeB+qKdeNikyAVPQ5sfk6ovR1nh59+Pix8lXzY9DqGM021AQrvElX0kCQB505wGmrpuhl6kQp/KEplRR3K1OHdpCRmspQxUfEOJppIQ799D9Q4DmF+Nj/43n3UsoiV1KYEsK7RR3ckiMkVbsRc2cdwx45HiEcVF3GyZFYNgl/QYStnRZBLKtdD/BMfh+esHEozY38vDSUskEVmdFKhLZBfjrBybTcbDB3jyZrfF/5uhbXtxWuRkAK9H/61jGPx7P63+33gxauT3thNckzcbYe56OAK4gaPMlAYCYeh5Wr3NvYxgwutX+ABBdCkQxHeBZWaTB+9iHcA+1YbzuMRq2go7uLoupWJk+ccCbGdlq0Cu/mpHQyqTtWouw+AbFT4KataA3D9AzavrA9yzfB50704ePL+aL5AXx+zmAZk723q6SeZEE7iRn51B3dgvTYM5RobsSadhHT9G+hLnuBobTLcGpLUA410ChKI4NWNsqW85JjKQqZkAXjwglz9cLJNwj2mHh+ZD5DKPjnuFPkBjmpau8hQb+LFiJIFfWgS13JOkMmi9XdHLbEUCocj9XuoqbLzIyUEF5YFuYV2CANqBO+24H9N3xd4fpWyRkejyfF4/FoPB5P7qd//q1o/aA5q4Hj+tB7qEu5mYsH30IQPYm28PnM82/hmPoiNCohQ6IwxNgZkYbgGeohsL8KpW4/4oQpaNQK3th+kJbeISZPnEDPoA2AgxUNnDiwhQ/9L2evZwLWojew92kZjJzMSGcFH7z6d94uaqe2a5C3jrdT1No/5vKKWvu/diDWl8Dhw8eX89n5AYxaXZpgb7GCtqZaTCNOr2j11oKhlVRnDTsarHQcfotWWyAdmT9hSufrJJ54hLD6d3GHZmAyW3Dm3YI+IJMUez3lrniesCzi9jlJLBgXzutH2hENdyNUx/KyawF1xKMjjJ/W5NDeWkdK/w5ed87nIuffKI24nNiGf3GH+Sn2maOQDzYwO8LKTNNmXgx4kYqmdt7be9wrWuZurzV4HuCrnPFN6CwbbeA4b3w4yu6jyJMKuFpVx82JffxLdj1ql4FCKpDPfYCBiOkoLC0Irf0IB1uwRhUwtMi7risxNpI9+w/Q2qEjL17NwYoG9uw/wMiUn6LMXkz1Ry+S2fwKO4Ov5deKP/CM6AamdL6GpnUTE+ODSInwZ+2RtlHxKmrtP1Ot42vw2bUqn82Y8uHjx8xn50eXyfq5bMP4mCjsXVXeHQIjaag8gb9nhNkFEwg4/GemFt/PKYMcS0QeE4aP4xlqJ6C3hMiceQSceo0oSw3VwlQyaOFGtqCQiJg/LoobpsXxaEkgf+yeQqUjDqlIgEwA7YSh7+rhlZEL+BvXc8WkKFqTV2GWxqKydRLjaOOkeBKa4r9zq3sD06fN4WcTnLxcI+MjrfiMwJ4H4uWrVfhNWPjI6F8b9RYmZ80kpm4NZF1FRkQgKxu3kdSzB/mCBxm2WhkiEIU0DLmtD6cigk5BNCFV78H0G5iZnQrAnv0H+PP7R4kUDHDT8qUolKGEK6XYHdU8OrgYScoSDlZ0oVEvIDRAyjJlB2FnlaIa7ZLcbvx8tY4v4duuVfHh43zmy+bHmCwoQKUOBdkE6DgBdgtqiZtyvYP0eDGDoZOJ7t3NNa0P4u+vRmLtxYkLp8eFddefCXD004SGF4TX80fXU9zJOv61U8TPTQsJlIDbD5xumKhR0qgfxOz0nnMFjwIwISaQ9EgVoSM6fqt8lCtVNVylX0emuxSNXy2DaZejyFrOldJA/FMsVHQMsjQnZszarh8yPovrP+TaKXGkLrwdpt8Hle/CydfIHfgE5ay7vbUJ/fyItLchs/XhDIxFONyDxlqLwDUyeoyZ2anExCUSRQ8NIyqe3NdFt2mYn751ktWG66gKuZCD9b243aBSiKkNX8rI4r+P7l+QEMKkuCCONPUzKS7oa4kWfHVbbh8+fux80fwIkInoMo1ds2WyOug0jYDdAiIpoWlTSC+Yz/6DB3gm8Ge0iNIIxIrH0gkeByJ1GjbkRDra6ELF37iZv8heRkMHPUINybZKRIDZ7hWtyfFBlGoHMdvHXt/jPMs43fsca+qlW5lDfHIG3aYRrHYHudThFzeZsowHvO5BeRBLc2K8qfDgFazvaSr8N8EnXF+Bzmj994sOJ62CyBxo2g+qOPA4ef6NdfTVHkZhqMEZqKE98y6MkljEhlpC+stHd/3waCXtbU3cHV7JCukhGnXd3P9uGaXaQVYGlvDc4O0strwPuMiOVuInEFDz/p8wv3EV4HUPlrQbmZYcQkm78XMxry8jJkj+OctKJRf7UuF9/Kj4sjjx/rrez82PKJWcoRHn5/tr2fUg8YfwcVD0Ks7W45RaI4kPdKKMycCF161lQ0TxpEd4RXU/vcIoUtHxouBRIi01dIbPo+XKPXQvfInUiDOFEE60nXHpRdOHEgsXZoZzkjTuEm1BU/cavR31jNNu4MLelxA6rLQoslEPVLDYsvmcjdv3AZ9wfQVfqxnc8TWgPe6tjtF9CnpqWGLdQmDnHgySaPrilqCofo/nHMuoj1gGHd5syoMVDZwsPkrSuHySpi7jRlUlq/w+QeqysFhwjGscGykhhTtFH7EmtYiKTjOXWDcypXMtDZLxozGt66bFc9OMJK6bFj8m5uXDh4+v5pvEib+warzKjRIrxE72ZuslzkBS9Bz54ibmRjqQte1FCDj9AhDiJHr3amblZxH121rsYjWBHhNWYRDXme9ia3kH109LYrXzTf6R2Tzm3BcKjnETH3FRpIGL0wPQZ6zkVedC7hB9xKTKvzBb9xxSoZAP1DfTu/Qlbxz+8FPee9N5yrdKh/9P+SGlw39l2njJOjjwOBTe6XUP7nwYitZA7GRMnQ0ctWmIE5p43z2XBelB+GdeSHxYAP1drbxRYWf+xGRyUhLoKVrPyZJSMvs/ptodT7pfB1s8UwmMSiPUrmPZ0AbsYVnI+6t41nkhh0Ou5pqCRFIi/ClICOEnrx+jvMPMsysneXuATYn7LofMh48fDKfFalJc0Jk4cfvrEJkFaQvPfLB+B3RXUhx3I8ZhB+mRgYiHdMgD1SBT0dgzxNCIg/7ybcw1b0bdV4nTqqdNnoPhqg/x33Qjqab9iEIyISQe6rdjEQchdRgol0/natNdXDk5hsdSWyh/5xH+6VzGDqaykGPcI92CZPYDdAljaWttJDg+k77OVlIbX2Gcux43fqxXXMO4S+4bLfTbu/efeLRFhF//+nc0sv8Z/5N0+B8DX5k2rjsJs37uFS1gfvlsimRTob8JYUwuaRIDjVYlO6zphExcSop+O/2HXuejJg9XXlDIDW/Ws+TJvbxT78dgXwddYg05wmYaXRGEYeJAr4xH++dRJ0gg2FBBQNxE1rkvokI3xPN76kdFa2dNP8M2OwUJIT7R8uHjG/BFceI6vwSsB572ihVA/Q6sB56m3BWHtHE74r5qmnuHcATGUNbjpq78KHE9u6nQmWhSTsGdOBeXzYg5MI3S+W8ybHcy7r7NiNKWQH8t1G/HlLyYmpUlWJIvJM96hG0BD1N64ggJ6yT807mMu0RbaM17n4dk7/D/bMt44BBU9LoZH+qHrq6U8IEisgUt9AijcCFELIRAmffepDUM84lsKbZlz3+HI3tu8QnXv+Er08aXPemNcX3KpSHtdBss7BJNw6M7yV5LAkMCBVf77ea9XUdp6Rui2BKBXRnNkM1JoFSAbtDBK02BCFURTHBUoHMGM1NYjVUcTIktnpvFH5Fob6ZWmIpNV86Dyp0AaE020n/zETtrvG6O6woTvvXaLh8+fkzojFb21unHxIn31ukxa+ZwKOwar3jteQzrgafZo76KjtBpxKVmMcW8A7mhllNaI0cP70d46h1E+goKxQ0UShrRV+5jY/BPcMlCuLD7RWalhXtPeO3b3iobmmncbbuXw409qK57BzTTSPV0skJ8kHTa2MFUJkyYBE17CEqdxgHBVNqHpVwcN0RCWCC5wweZ0beebmUWr0b+lo+UV3OR+T1atj3F8eb+MS2azld86fBfwRelxW4t72RifNCY7shawzBD9Qe5J2A/b2pm091ewVbXJcwVlTOkmc1FlLG3az/r3TN5uzuW+L4uWvus3DkvlX98Us8c9zHyBvfxgasQmdCF1i+GBZ7DTFDpmOY5xXuSFfxhYD6/k7zKMtt6LEo3fxtchM0FMfSyKkvMHRdmjro9wPskeXYczIcPH2Op1w/y8oEWbp2VyNz0CBI+LZJ766xEMmYtp25LOUnVu2hW5hORfxGp4YGo5NEg9SN01yvYAzJY7K7gX8PTmOWQsqD0T5hsHh73XEueJhjFUBmKriJvwezJt3hPetNWKH+XrC4trxw0oG8oYXVQOv+SXUC52c0VwoO43PsYqdqFR53KYFs5S6WJmCIKEdSsR2JuIFGsoCdoIpusOQREqVl4xUNUbfZHrT3OtlM6luTEnNeiBT7h+kq+KC12YnwQe6r1BMrEaNSK0SaUFzpaoeBWVloGuPhtNadccYzINLwwzo5+IBX5kJk4h5ZUsZzKXm/autXuIlAqZIK1iQ+cU4kUmvBPnYq5+SSb7FNZKdhNVfr1EH89gs01vGRbRqG0mmnDe4FFxNDLbL8yRAPBcOAJCmbdD3jXdv11Ww0Ol5uHlmWOpsmvL26jrH2Qx5ZnfxfD6cPH94ouo41bZyUSKBWjHRgmUCrm1lmJdBltzBWUEzBcSX1AHsnDlahtxSD3xrxMqgwM6iwC2o+SYDrGtSoXf9SuRGyKJNtVxf2ytUQ0dtA45TGSHbUohs9a8BvpnXv3VN1IrjSBDp2E1dqZON0CbpTtZr64Gr+RQUpt8WT0tlEnGsevlZ8w4leJuOEYb3ums/rieWxtVGDp6mNZvMcrUhffx+uHmpEIBDTozUSr5ee1ePmE6yv4ovTw8VEqAmVi9tf2jGYZzc4IJ0R9OwAPri+hyilAEySlyhTI2vJGjFHzmH9tPmq7nrk127nnGFT2htDYa8UNbGYGlwkPssk1k4aaeG5P05Cs/ZA7rffRXpWIp6KGkAAJVncUzw4v427RZm4RbMY/UEXboIT0no95ovIa7p/ltbSqOkw06gfpMdto6xuiICFkTKsWHz58MBoP1g4MjxbOzQ8OHo1pFUetRJl9IcUV25lx4GnkQK1yKoOtZeTQRG/WHEwHypio38BVDPGY+HZedf2a9JEaHKGZDBn0rJUt4uqC6WPXLkdmo0icwvzKTWwRTaF6JJ6neYL5VDLiEFMsycflMVPpEjHZrxKlNIWhrn285FyMSRTKG7poOgw9XDh3NgVhdjq6u9jfYuOGGUljHqbPZ3ehL8b1H6BRe2uVVepM3tpln/44HlxfwsaSLpZPiuLgLxdwZbqQF3UpnLL4Mz5KxZpyG3udE/jrkigEgPvT48Whx521gjricQMbdAGMZK4gHj1Wpxu7GyJUEvqHnXzIbN5xzeYG6T6Whei4O+QEa5xLeanTK0hFrf0s3LuUJyQvEKOW88SOBu5/txTZ1rt53/XT0VYtPnz4+OIYtqG1hENh15AxazlTkkLImLWcQ2HXYGgtQdJXTWTLB9iyrsYv+wqaZ/ydFjRcwXbWO+4kjXr6ZCnggV6TBU1SGg16MyfbDN4TGrXQdgQUwdSFzGe+6whvy/7ALFEVI4gpD5yDRRiIzS0kSmiizRHKQHcr1bYYQmQCYgou4cPuYEKTcpgWZofAKAb6+z/XwX12RvhoDdTzEZ9w/QdoDd51HFkxKu+6DsMwACVtJpZPiuLvKyYBcM+N11GYl0Nzr3fBcn5CMBua/Lh2m52zFyEcoIBD5mjmpYciBnotbsTR2RwUehtEuoFy3RCz09RMVpkJUqkoJ4MIYyn24HTipyzlsrAuyirKWXukDUFsPuN6d7BG9jTZnjqm1/yGxRxCnTLlfzhKPnx8vzk7hn26cG6D3kxFwi1kzFo+RggyZi2nOf12kvz6UE27gQaPhg7DMO+0BdLnp8aGgBh66COU1+xzcfXXMbvzKfa//xK1XYOEK6Xw1jUMPjOd4+/+lU3WCVyjX0mrOJlJNNLlUfOPkctRGWpRDbUzU1JHtyiYWOEAdc5osoQdzEoKYJ9eToxaxrsVZg6aQkDgR05m1ucsK41a8a07SHyf8a3j+oZ81gz/pmb5nL/uotVgQyYAZYAEgceFfshFiFzA8rx4LsiKZO2hVk62G1g9J4kNxR2c6jQDcH++hFVhjQQHBtJ/bB1aYRzjrcVoM1eTnL+Iol3vIclYSO5IKZS9hVN3nB6UhDLEcbKQZl9KweUPnOsh8uHjB8G3aah6vKWfTyq7sdqd/KzzQUL7j9PvkKEWO6glmXjq8XeCzhPItvzXuMP6Cs76bZSSSEfubyhtN5A2Uspl9u1UOSNJR8tmCsHmJlnaQxgmYp0dfOzKQ+8Xhtvl5nLREaoSb+AV90UUJAZR1GIcTSw5X/Ct4zpH9AzavpVZ3mexEyiByGAFeXFB/OuWQmKUEj503M6lNV5REQr9WD0nibwjd/CcfiXJIXLEflDf0IDBLsRa8jYhC+4n9/Y1SGbdT0z9G9RVnaRgwZXkjhSD20anwYgRfyIwI5EHExcVzau1Mv7+cc05GxsfPn5IfK70WXsRqpHOsaJlaIP2ojGfMXU306gfYlFWJHc5XiN0oBRReBYqsQuLTcB46qkYSeKweAoxYjM3ll+Os34bx0mjZO56Lrt0BddEtHOl6xPKoq7k6IzX2KG4iEs4wnRFC+0hM1E4TVS7YxCLhLRJUvkb1/O8cym2piPcOiuRny3I4NZZidR8+lD7Y8MnXN+QvHj1f2yWm6wObpuVjCYkkNlpoZRpjfxu0yleuqmA2PQppFuOMvzaFaSEB5C5fzXpxmM0iJNJCg/k1pkJ7LYkUlpVw6Gwa9CGzQBAm7icg7GrCR+uB3U8hKWD24nF7iEIC05xAFj7CPIbRp5USIfB+m+u0oePHymBEdC4yytW4H1t3MUje/t444i3DJNJEoqxbCsY23j7WDuhvUWYw/Mom/kcvdIkAqVOrE4/kmX9dAfl4gIkwLBLxC9G7mJHZRdYjUSbymhKupaPzEkUHlhFvr+eTsIZFKr4Y98sypzxZEu05Kjhqpg+8qQdvM4ydrjzmVv/FwDmpkdw59yU72asvmN8WYX/QzaXdvBxlZ675iazNCcGt9vN5vIutpR1MP66DdQ9vogZxmNkH5yNCgt7RBP4pfBX3JsaQka0ikMN/bwuWM5zs/LYX9tDoXEr9e5osmYtR61WeCda7Tao20GqsxGTKg2TJJpAWx+BukM8nPYszwc9yEendN4WB5/y0SkdFR2DZypI+/BxvmLUehcBn93Ww2r0tvpQx0PKAq94haVDbx2kLCDR4eKFfc2Ma3qV+MxCDpGL7sQWFk8sQBZYiFsgw1r9Mf4uA5WuBDJFbVhcTi4yvIgQsDhFKEROfud4iT9of8IDz1YSlfpbdrcMM6hvY75MzYTeg5xQzOY33M1v7U+zQFbJgCKZcFsDZZZxXC46xBJpAItc+6kU3kPWdzaA3w98wnWOOduPrjOOcNfcZGakhqMzWvnjZROIDVawtbyb8VE6TmU8yT0nFxLkNjMg8OcBz6+YlRhCsL+UVw+2cMfcFJZkRwOQGhFIVW8UhQPv01fvjy4ygZia16G/CRwWTBGTETqtEDGBvp5aHDIV4T2lZGcpeWGf9+lxaU4MH53S8cK+ZlbP8aXJ+/gRIA30NlMMy/CKl9V4ZhvOeC26yiFqAux5lOtjJ8OcBazdWcLqjr8jsIVxdZCJOJcNustQROcxvvE9nnQsxTrhBn6j/xmhveXghA6Bkhr1QjJc9cznFErbk/y8/z4i+g9RQDOOyGz8pv6Zrbse54LBPbwkbUdDC0f9F1Kc8wiZvVvJbXoVR1AiyY7jVI6/jz/rJnJrnf68im19U3yuwnPFn+PhlSVjKsz/susB5m+dNqbC/O2zU3nV+SsC9/+e61v+D4XHzIBdgdppYZ/gBlIiAvigVIfOMMSTO+qBM1mNEVlzKA67nLDaNzDufhpLVz3M+Bldi5+nn2B0mbdTpcgjWGDBbemna8GTLA3Sce9kKU3bnqHkySt4YV8z906WsjRI912Olg8f/xvkQWc6ARtax4oYeL0WvXVe0Tr6HHg8WPY9wbyhrXRHTkdrc7OCHYS4+zE0F2MKmUR/j5b1sitQz1zNX5OqUNr6cQIOwCgMpSDczZBLyAlnEhqpgVmCMtaIHmeO4CSXFmby5AkLDw5dh1UkI9nVgE6czOPSu5CIBBQpFyOMn0yyux2S5pK15I4fdWzrND7hOleEZ4L2MKq3LiE1IhDHq0txag8zpEofU42justEnTiTGYYNRPUf4IQwjw2eWXgAldNG5uHbaOo1U9lpYXx0AKb376Z150vMzghnSlIIWdMWYxh2kti3l122cbzbE0tLVTHWiTdxQj4TWfJUOiPnEeLuxbz/eXQeFfPbn+d6x3r2WROZG2llvqjC69/34ePHgDwIAiO9bsPAyLGi1bjL6y5MmAHpS6CrlOGoKYiPPs3Pu37KHCrpdKvRDXkwxM5ht3oFgpT5XBnayJUdf4J9fwZVHLIZP6c3ej7JaDF2NtJhkyMViVhnu5C5wjKq3BqmCBso3vQs9XoL25V/JAQTZmEwGpeWh+QbGRpx8fvYMiJMlZijpoKuGErW/ahjW6fxCde54pZtoJnuFa8n4gnqPc5AyBSs13wwRrRe2NuEY+EfEOF9L3BEz82yPXyouJhPnDmMH2mhpX+EBeNCmJwQSrNkHFM6X0fTshEATfHfSOg7gCFkErmCBioOf4w26Ur6g/OQSfw40tBPfdwKjAUPkGg9hWzXbxluOsAJVwae0HSkLXvZ7cz2ukh8+PgxYDWCuRt6G6D1sHcbwKwHlQa6Krzbk1Z5O5z31jPoEZNLCxZxKAa/cD625zDccBilpYXagCm0usIJ0+4ApQZt8gpq+u3EjdRSEziHJqs/tdIJNBHPfFExBncAx0Iu5WNXHqtEe9glvI1kew3d/lkcvPgQuwIuZVL3u9za8SvsB56gddztuC95znsth5/0tlP6keOLcZ1LbtkGj0XjclhwCf2xrfwA/eAISrkYlVxMvuMXgwAAIABJREFUWbuJRVkR6AasaH/Whuef00ijHZ0wjqPJD7Cvrpv+YRcSPyhIDCMtKhB39LVIYlTeH3DlRtAeYzj/NmqDlzHSUc1P+rax5jDUJU1DZB9kRU4Q8rBQPqldyiXhh1Boj3PclUpj4lXcEtZCXXwWj56wMeL/acLGp4FqHaH/8RoXHz6+t5wd05L4w8k3AOiMmo+/R4qq5QBMuIrn9jYSHyInN+ly+na8xnjqMAuCUDj6MCmnUKy6nXb9YX7etpanaxcSMP4OcjJzsO1/ksGSD0l21nFYcwN/6Z1BSLwEaUcR6c5ieiQaxkt6OG62st7vJ2QLf4fG3cmAUMngqm1E2Vy4lz/Kzo0ws+8Tjqf+jITJq1DJxWgTl2PvHyZZd3JMV4ofIz6L61zyyhKcDgtOoT9ClwXNpitGV+ebrA6W5kQRoZSjKvknPS9dQZS7k15JPDFuHUtqHuSK4fdJCpHj9sD+ej0jdrc37X7SKojJh84Seh1i3qwY4UCrFXVwMNL8Vcwb2kzu8fugt5Y0TTQatQJ11VrMzV7RmiBo4Fq/XbTJMuiv2E2co5mKjsHRSd05IkZg0tLcrhtt46I1DFNU3Uygrfs7HlQfPr4FNvOZmFZkNuRdD51lqBo2Yi16A1PGCrBbSZcN8MK+ZoY33scEezndygnYPC4qJHmkDh5mlXA3quwlbFVcRpafljq9mXcEi2kUpZFir6RNls5j+umsnpPE73IGuVGyk2xRI0n+I7zlWsRy524eEb9EoqAbhCJk2DBu/i2pEYEUJITgmf8Qv0pYjyPnavwEgtFCB5L8Vd52Sj9yfMJ1rnhlCWgPY4maxsjP2xCddht+GvMasjlH24En22qZMHyYIr+J1F32MUeZyGxnETMD2tjz4DyuKojhaKOBd4pavMcuWQe6YkaSFyIVwhWDbyCr2YhelkDJ3o2MG6mgTxRKvTuGaqMAjq9hbv+bvMql/Gb4Gg46UpB0HOOTwydZY8pnsvljSg9tG30S9VeFoB+REO1spbldR3WniSMVjeTIulAqz98yMj7Ob062GdB6QsakwmulyTQpsvHXHSEgMokGjwadW0WK6Rh/itxPePsWjipm8bYln9Lke4j2F9AfNRe0RTjbjnLYFEpt8s0UJoViP7qGeGslg/4JhJmq+ZOmiKU5MQzpqgmadgMD/uNJNB9nmrSWwOBwFnEcF26K1UspDruC3K73UB16DJPVwcCwg2iVnKON/dR1DZ73RXO/KT5X4bmipwo001Hdss27fcs2r5j1VKH61FUI3lYpHpGB4+JCxM4hOrY+TIxjiGOyKcwIdwLw2GW52J1ujjcbMR1fi6roKUwF99IQsZTUuJnIdzzELbZ3KN56ilxBIztEhSQsupepCRlsOqkjYuAIx0JW0iy8gIi6o/zVfi1H7KVMppJXhHMQOa3MCuwaDVSrgKS4GJrbQWKoo1rrT0HwCBFJ+WPXv/jw8QMiXCn9XLm2sqKDzB6pYn1fItP0HxCriKclqJCEmBwiKx5gs3AhvfYw3ClziZg2FWF/BrF9lTwjW43Y3MFtUfW0+IdjKXmHS63vUCHJxpL3G5KMR8mqeRGOK4m/4E7ammo5lPkHVH2vsKx1A9i919QVdwkfqR6g12yne9DG9PI97A+4kSONfVxVoGH9CS2//7CTRy7J9onWWfhqFX7HVHeZ2HRSx4LMCHo+/D0a4wnq/Ccx7dZ/jPmh6oxW3B4P4u0P4KcpoF1zCREqGX4CAQF1GzBtfwSpa4RmTzSlkx5jXoyHqLRJ6EbElLYZqe02Ua0bJDpIxpYK/ehxlViYp+7lqduWegPWZ6UGV3WaqKmuYLzChDMwlviU8WNL5Pjw8X1ky30Qkzc2DlSyDnQn0c54bLQlUU9DMbNH9qCcsoo3mv05tuM97vP/hKCpqyiq17FH6yROOEheQA873QUUXLCCpW2Ps0EfQYstgBkBXWx2FjKjYw2TPRVoA3Kwzfk9b9dDWKCI6TV/IjdohMrZa9hXpyc/IZil4QPY1i5HZOlnyD+O5zPf5pdLxrG3Ts/vNlXSM2QjTi3n1xeN54OSDnZU97A0O4KEkAAumRR73ouXr1bhDwCT1UFpm5HL8mJw1+8kxlyONmgyydZKine+N+azAVIRetMI/XP+QlP0xcglQvSmEQKkIvafasLP6aRZEIOGHgZPfUybUIO9q4rxQR4yopTcNjuFWemhfFLdQyx9KLGgxEKqoIOnfroSZEFnFmdajWgNw1Q2tjEpeARnYCwRfoYxMa+v4mSbYbRi/mm0huEzrR18+DiXxOR5k5eemgg7H/aK1uEnISYPTfHfWFpyC5U6E2mSfpRTVkFkNgEyMaTMZ61lCtVHP2Gv1oWaITxROWRrwvmJ530Of/Iuu8wa5nSs4ar+FxhUZTBHWkeep5IjrnRqY1cwLX8SsWopG0u66ExdiTkgEfRVjI9Wsm3nbvrW3YTQ0segXIPUouXy7qcBb/mma6bEE6KQ0GGw8tdtNeyo7uHGaXE8fuUkLpkUy/7ans/Nqx8rPuH6DhmyObloQjSmU9uRFj1HX/Zt5N7wNwYm3EZK7QsUffQqJqsDndGKSi7mjT3lvLPjEH4CKG0zEKGSseH53zKx7Q02ixbhXLGO6pRbWencROnWl6l1RYPNTF68msYeMxtLO3G7PJiRkyroIJJ+GjyxzPzrDq9gKWMgLIPBQQO1LVrmhAyQNC6fXV0ytneriHa2YjH1A7C3Ts9zexu/8HuddsmcnmSnA8vhSun/bGx9nN/ojNbPPUSdniujaezDvXD4Gfj4l97tlgM4jz5PqzyHrBgVJ2TT0Nkk0F5EiL+UZLGB2AABm4czuIATDCnTSStYjGr+fQQn53OnYBN92nqQK1EzSGTTexR2vEqjYiINMVcw3HiIV9Y8xdZTel4Le5ssYTuSvJUk6raQpN/Jo5ZHCBhq4LDyIq6XP4s2bgWpHe/Dlvsoau2npmuQK/JjEQv9aOkbJitGyf9dmAn8OHpsfROEDz/88P/8pGvWrHn4tttu+5+f93/JyTYDLo8HlVzM2lefpXvAiFQdRWPPENFBcj7ZvYPKY7soKCikYe86BOOXMXH+lbT3D5MzIY9umxia9zEYmk9ESBC2IQPGtnLeqXNR0mllZkoo2yu6iK1dywlJLrWaq+gYlpJbOI+OQRcacyntAROxBUazv66PjgEr1R1GTDYnViS4RAruzpdR0z1MiLOHd1pkXK0oBdz0+aeSpLASopBATy1BPcd5uTUcdbCayUFWistKeO1EH/OyNSSGBni/sNUIll6QqVDJxagDJOyv7cHqcFHSZvAFln0AXsHxeEAmFo6+Z7I66LfYUcq+vhva44EGvZl3itoYcboI9pfSoDcTpZJztLmP7X3hTA7ohf5mcAyBrhRnZxnDfgoC06aTaq8jsfafuErextVZRnrfLswjNtZ0pXCR6CRKu56w8HCWFebAoacQhyQAHuJtdfRGzyHIYyTKWEqfMJTumX/murk5yMtewW7QIYjKIV4tY2L7vwgS2hAM90DLYcJsLdRJcnhI9AAFicFcfs0tMNiFqekwTw3MZHleDFWdJmq7hhALBfQN2RH6echPCAG88fDoT5einH1/OY3WMDx6f/mh8sgjj3Q9/PDDa/7d53zCdY5weTzsr+1BHSBh2Gqh/8g6DukEFOaO49iRvRiOriM0ay4pSckk5i1Ak5KFTCzE/9MSUZEpudiiCkj160ApEWDuamBC8/OE+5l5szuOw0291HSZmB82QJb9FAP+yQQFqdlabWBBTjxT8/JxBiXw/KEOEkIUpAW56Nd3Umf0o1Z2LdfKT7DWtZhfFPpzckDKHwwPENq8CbQnUCbkIo3Jgc4y2Ho/YeZaQuffxfvHm6lvrOPjVrgz149p4xJBLKO2tZ3GqmJi41NALAO8k8zqcFGpMzEuSsn4aNVXD5iPHwWnBcdfKkImFo42c4xSyceI2b/j7LnCzkfo7elmQl4hJe0DvHyghdWW5wlq2QbjloK+CuxmRqSh2CbeSMiJp6H1INKI8biEMvy1e9DaA3l0YAHXhdRxwch29vsv4k1DBv6OXsbFhuH8+Pc4TDrKA2cxvmsT0qFWjCgJcfXRbXZxtKKG/aYYFkhr6DDYMGatJGBYh7p6LW7LAIEuA1pFFn/3rCIlKYlTWhMquYi0WSvYKFhEQZKaXdXdbK/o5s65yawqTKC118zO6h7gjHid5uz7i0ouHvVqZMaoftBx6K8rXL6swnPEadN+f20PqYl5lLaZiNNtYc/6dqQ95agLV7Fo/sLP7aeSi4lQyugwWImX2QmQKnn83Z2ExCYzP7iAy/SvIFCa+PngVazmfWZ7trNLuYKLF85HbWlmoNfMtkNtdMcF8WG/H0nh4YwL9lBcVMSKGQU8c0cqPB6DbEjHowP3s2noX7zhvg8kBhAoYKANNv8MJt8MJ16FQT1kX8rccCv6kH42aENxipUoYuOht5YGqz/HSyqZUjh9bJrxZ7pER6vlPovLx+gSkAa9mQilDP3gyJgSaN/0WBdmR1PRnU9S/cvs3ehm/XAej0lfJ6F1A0xcBTIVToEIt8eBYqQbRfXbIBDgcLkx9nYT5uyCcRcTUH+UP/q/RaSxjqb0W2n0LEKoH+QNrZDCWCMKkT9SRy8TzbuR2vsYQoFbrMCmKWRS2xYqbTM5FnorkzXjuKZzLVv2/RWRXznDYjUSXHSGFvKkeSG/iDqBMyGdmvi40WLX106JQ2e0svZIC7fPTuL22akATIoL5sV9DZxsNcLssd99zP3l0/H8MXk1fBbXOeRsq2NKzjh6errx7y7CGpHH5Suu+8J9TFYH7QPDRAfJGejrIbD7GD2SaHYW1+LUTEHhNDJhYAczPGUsFp3kNb8lhF/4W6ZnaAgQw86jxRwZCKDWFsZtlucpDHexu7YHrV88t1wwCSo3eSsGDLTiZ+tnvO5tcA4zQBCK/6uk3TCErG039qbDuId7EU2/B6b/lNKKU3zUKiQrPY3W/mEqu2zIRVBbU01hXg7pKWmj3+HsrtDjo1WjbsPTT4c+ftzIxEJcbg8dBivRQXLClbKvtd/Hld24je2EKMQglmGyOjhQ34NNHkHXkJNs3btMlHWT2b8Tcq4EmQqK1qDPvJm9kkUkDhYhsg8wLAqgU5ZK5HA9flETYOW7dJ7aQ8TgKdwx+aRd9zSaEAXlWiMOp5vUvt3s9r+QdKmJIGMNw+JgPFIlWmEcI3GzqbaFkCeop1aSS7sinUz5ALP7XkfmMSGVKdljzyDKXMlCwXHiTCUoMubwdpOUph4zKrmUGalhKGViLpkYO8aykomFTE8NY1luzBeOx/no1fi6FpcvOeMccrbVsXffHsT6ciyRBUh7yvlk944zHzzwBNTvGHWbpEYEoun8hLTGV2hUTuXC9CCW5qfQcXwLq9vmUe2OI1faRoNfHN0jSrZufZ/a1nZKqqqpGlax0rGJxca3KHalIj25hpG2U/hZOqhfey8cfgpCU+GnJ3HhNbldwFLXP3h4/WHWG8djQ4bQOYzTTwHx0yipqub1KjfXZ0u4f2Yk916QRk+fnuOnqoiKTyVVbjlT741v3yXax/mNyepAPzhCrFqOfnDka2WqAsSFyNlcbaalthiToY+dVV3Ut3aQ1PoOp+wxdAdmE957jPLgBXSmr4Tyd2H8pUQt/zPTbAewAcP44+cwoRmuQqQIgdZDsPYKws3V9ImiCOo6Ase9982bDc9ysWA/O4KvpaezA6epGxRhBDgGUAXHUBdQwP3FYVhn/IbtyQ/z0PhOVkqO4Kc9jg1/AnAix8mR7Ecw2VwEjbSBIoIn2pP4sKyLBZnh36oH3me9Gj+mjEPfOq5zxNlWR3XJIfqPrKM9ZhkrL1s6uu0/+VouGR8MffVQ8R7tGbcwHD+XjM7NcOyfMOsXmJIvwtrTRKS7l6vfqGGWbQ/XCPfTLU8myd3GdudkxM5BauUT2SWcSay9jbsE7zHisrOL6dgcLu6Vb0coV2IwW+md/AAFS2/G8FgGgY4uXIAQ6CSE+0bu4q+yVwh3dWMKSEVjbQZlBB/GPYgyezFz46TQW0tzn4Utx2vp8M8iKDiMy7MCyHDUgzIKIjK/66H38T3m7IczlVz8ue0xfEHTx9rWdvYXlaPxd1A75M+4AAvHmge4Q7yFEEcnzQH5yLQHGZLHEDrrZiKMFRiGbUjK38TlJ2bIT4nK2YM/dvATQUA0DLZCzBTMHhGV1gjGDx1mR8g1JEWFE1f1PKawAsS6ozSOKJkpa0QSnIR9oJGNjkK2Jz5EXGggBQnB5A5sQ1D0ElUZ96Bs38l4yxFUtl7wk+J026hxRNAgy+WXIzeyamosv1uWMzomQzYnMYOfdmk4u+C1oc1b/DeuYMzQnH1/Ob2Y+nyoruFbx/Udc7bV0dNWT8i0Vay8bCk9gzYWzV+I/+Rrqagop8wkBZcNU8aK/8/eWYfHdV1r/zfMJBoxSxZasmTLMkNsxxRwoEna4E0DbdI2t7eQ3uJtb7lpoEkDbRp2mG3HMaNsS5YssCVZrBkxDTN9f0xMtZMmt2n7pdH7PHrmmTNnzpzZW7PXXmu9613oGh9Ds+eH2Hf9DqrvgpIN6HCRKLCy8WSIKyJb+JJ0D3+KrOXV0j8iW3AX66V1zBAPsDywk2XenXxFvQvZ0nuYkqRxVeR9vBINPrEKfdgBGfP4QUcO5p/kogkM45AkIfuJDYvISDKT/EX+MxKCI7wr30Dad4/wPEtx2Ye4zP12tGmdQs8tmyz87xt1XF6Rym+vLmNDZQqbGofpn3LBP38PNI3PGJy+4DlG6lTOy+kLnn/yWXWFAHisFAiHSM/Mpc2pYoW4iQmHj3XZQhIDw0gM2cRnFiNVx6D1DlLbM0lz7Gpo38JI4hJ6lTNRBy2Y1OV4NGmgTYOgCwx5YOlBs/QeJpb8L1v015Jkb+aV4EK81d8gc2wbUrGQBfJOnvUu4Qb/d3g5sIi10hbWiRuoyozh0Ilu2lrqCS79by6+/AZ0V/+Bh0vfwSeQQtiHWKLi27FP8F3PTRi1Ur6xIuppnTLcapk4arS6dkSNFZxps3KBlkOf96jGdI7rH4RkveL0j7NsVhW52Tnn0FkLcnORpxTydL0FXVwS0qkO8DtRdW0mlFSBYu1PT4vebqo9yYmGg6xS96KdsYS+gjt4rm4MsuajEgOTnRhxkMIY9tTldJiHKXIcpF87m2LfMWJCU4TzV2KYbGQ8rGa5732mMBD/oy5q+yb5g2sl5ZNvofV6eVl2Bb/2X43T5+eYtBLLyCBK7zBxi7/Mbc8cRti9h8SEeK5YNAvsQ8SrxKTZDjNldZBYseZfOOLT+CxAK5ecxx6US0QXpsJL5CBVR41XOAiWPtrDyRzsnKTaYKfVJmeF+CgGeyeh2bcg1yVA29t0xK1AVLiW0MAxtksW45bEELKPMWxcRHpOETGeXmql83Bf+TTx0gC4x6D4clpTrmDvyXHSShbw9FQJWpmY1KJqfCNtJLvb8caX8a3IPQzbPAg1iZBUySLdKBXzluMebOGAqJrCWdXEa+TEa+TM3Pkl5E4TQomKYMBFqrOJZsNqBq1eeicczEw1YJpyY9TJCYQiaA1xoIyNGquAGwbqor3BLtBy6Oz15RTOXl8+q5imw38GkKJXIpcIeaXZTo7zGLHmHQgTC9FPNkW9l9gcsA1iOfQsyuI1lFz3c7plpSzIkCNT69jUNMwDXQkMitNZHzuK0j+GbPIECbbjvBZZzDWpVpJtzfQTy8vK6+kXZXDR5Iu0ahZhD8k52T/AgS4bfSMT9Hm1HJzxLTzqTFZoeni4RYxSIsKXVMFbI3Hct8tMy3iQlZlCfmw8zE5LHG90hpkvbEU33kBi1eWgPndn+GnV7Ezj3xD7fh9Vao/NOXOsYxuceBsy5rH1+Aj+UIh4gz5qtKxmdg2LeXjfANdlu5g7dyHSpHy29wlIjQzSP+UjdnAHo8krSRdN0q2qYK98GYycoHj0Laa0BVwkakRnaWVfqJQ8dz2igaMYnB2QsYD+xt08eczBtWuWsjAvnsJkLTVdUyR0vU65fRfy/OU4Blrpd4lxx5XTZoXMGCkrbG+BuZYZa75KUlIipkkPufX/Cy9cj9zVhzBtAT/NfpqI6TCLJW1ckTBAX8p6treOMTjlYmFePFZ34Ew5gEIfNVrDTdGwe9LMf90c/QswTc74DMDmCaCVS7hasp+0/tcxZV2FrvxymHUD1DwE+34HTS8x95rvsuHyq9EpJGSnp9Dh0bG2NIXsWBVL5R1cFtzKk6GLEResRhDyoyDAUqUZoUyLLXcDcQopc01PsmtSx1TiQgocB2nWzMfU08kV7pdY7d/G7mAZvQMj3Kw9hEORjloqxOEN8tB/rMBEKmmRAXKFY3yvUsgBaTXW2pdZ7NkR3RXG5YFj/Lzvp/6gzuZU8v2csMg0Pt9ILIFDD0eNFUQfDz0cPU6UiPFm/SDtfSZwjNDp11Pb2MqVudAZTsXslVKUpCO/fC4tTh1FE1sxp1yCaN6dOAuvRtX+Ku6G16mwbmUo/XLifWZEtn6OO1W8O5FCj1NM8tB7kD6fV7XX8xv7Sr4ieY8ixxEANHIJFwd2sWjsObbrv0hp06X83LGWe1Wb2bp0gBWzcnmtK8LmMQV0bIY9v6IoSce8zt8TPPoUEIw2kr11C3W9FraWP4o4bQG6iRPcu7aYygw97aMuGj5QwDntPVn6YfwkJJVFH0+FDadxDqbJGf8inFrExQ4zsu3fx5K+khf9i7i1VES59yj01cBIC8y5Baq/cs57zVNuBiwerG4/BcOv8+dWMc6RHr4ufYeDgQKWi+qxGEoovfrHtIeTqd+/nZndf8REDBfJuqlXLuT5sWwqEiKUSMfQjB7C4RMzKktEklTGY77VpMXIcHjDyCWwvW2SbMEYCYIJNHIJ5aJe5hg8lCVKkCWXRnfEulTIXnqeevyp7/n31uxM49NHfb+FBK3snGS+2eJmzO6L9n37R+OUsUqbC+YjMO9uyD9T29jeZ+LIoYMk5JSjPvowmQXlpOWWMiDNYE+vj9nu/US695CgkWKNLcMgjTAQu4BBQTyqqXac9Rt5aHQWaYUV3OZ7HovNyi5rMlclDqHSxbGv10tyrJoHPOv4yrJsrtaehJHjmEvvZG/7GJcM/Q5dVjW1MWv40hOHCYThoYITLNGY+M7kZUz0thBQxPPOjJ3QsQVicghO9TCS90U0l/3mguSTU88VUhF2TxCtQozHH4q+7h2KhglPhQdP5bg+JFz474iPS86YDhX+izDp8mP3BmhuqCVjyRcpX3wpcRopr7U4yJdPoRurhZlXg7kO1PGgTwPOrfOKANrsORRHuikzPcejgbU0iYuRJeaTNVXD7kk9JkUxNRYNztF+FqhGcStTKAi0EqtVEjd+FIc3SGmwFa9IikwiY2NoGS6xnuYBB4FgkAazg0vzZeh8Q/T59QiCHjQCB1cbetg2bsB2fDspc6+AzAXR0I/8rFqSJ5Yjt3QQyrnoTM3OwZ/A7l9A5U3/kHH9/hstTLm8FCefMaCvHu1n42EzFxWen+T+POMfqr5gNUdlMiRn1WidJQsGRMOEUz3QuxcyFsDsW865RBx2hiMx1AwFKdRHKOp/DiyDaFUKpJZO4uofQKhJxJ6ymGRVBF3JxUj6dtHlkBKTVcyAfi4+uYHtreMcDpfSaYUfqt6gML+Y+C88wMbRFF4ZS+Xryve5yvsGLP0OZMyja8xJcYqOhIrLIGkmKXol1TmxdAzb2WjSsd2WiWjyJPPnzefB29dBzlJofh2sfQg1KQiL12Gy+PHJ4zBNucmTW9H1b4OpfiaVmahkYqzuAMl6BVZ3AKNOTkO/FY2zB3VGxWkjZfZKMXkUGAU20F24luvfDdOhwv/PkaJXMOUMMHfpavJnRMMjVZmx3JY1iujkJlh6b9TTqvoy1P4Z+mvOrfOKUZJn1DBq89J8ZCd/CFzCDslSzCEDBy2xtKZdy0RfC0/X9OI4vo15si7sSfOJUQhwo2C2dSsysY/5gRomxXEkiH3EeM1k2GvxDZ1gYV4M7mCE76c28lB2AznSCfojCQgiERYFj/LOgIxj42BRpcPx18Fmptaq5JHdnZxoOAitmyAcJHjkUSRv3kqqQYFn870EjzwGbivUPQ2cJYz6KaE8Xcuju3t49Wg0xPLq0X4e3d1Debr2U/uMfxecrb5wpGfy06VTX4ARyHh79PgpdGyLelpZS6KPHWfVNtY9TU93Ow1jEaoyY9ghqGYoaTn07MD3/k8wHv0tztxLaVbMJmHwfVTJhWDIwJd5EWtav4Wu5tcsKUjgwf4v8JT0V9xgfYRfyh5HmDUfGp7C+xMdh7onuYl3WTK5EdvJPfCTGAAqdU7S5P5zvk6VUcRPlugoUtoQO4chroB7LqkG4MTz3yZoHwR9FjgHUTc9j7rpSTZt304S4+iOPw/9hyEm43SXh7/+DafHKthuT8dMPHCG7q5PyT2PCj+NaY/rX4rcBDXxmnNVAwyD+9HOXAsZ86MH9GlRj2usg0ldEUm6M2wiuUTEf750lKdGc9CnF/LbS3OwmNtosGuw+UUcUy8iduIod8m34J39FZ72LkUTk0ieZT8Bn52YkA0PSgbCBpRhJy1kk8IUc6S91Fr0fP2y+UTatxLT/ToHIrNwqDKp8h4iUTDGZEjDUUEp1XF+DFgYtji5r1VHmr+Hhe6dyPIWY9PmIerchdp2AkPbq+hG9uNDRVhtRFy8Hpsy/YxOXdBx7m78/4jiZD1KmZBHd/fQNGBlU9NwNAw0+/MRavmkOFt9YU3nj0kWWiG18swJR56AI49B0aUfeo0LknCCIqaCMjSOrtOMQOILGPTJouf27oyGCefdja34euxCA6r6R6OsutgcekbGce9/jIriGVRXlJPqaMTetJmQNhmhcxiFVEKPsox8xxHqE65CnrserrI3AAAgAElEQVQQnUJCmxWsw72UmDay6WgnIt8Y5cFOSqS9vO2tBlsPqYwhBK4JvUKlyEwkFECFiylJIsrFd0Mkwq+ffZNOa4RZ2UngsTLa08g9W0bos0UoVjs4YZNi8cPC9l8S0/EyhxVLGF/3J5IVYYId2xix+SgT9yEzH0RICPG8OyCxlEmX/7zfsEomRigQkBGn+twLU097XJ9VzLn5jNE6hYz5bFWsxubxnxPCaR220TLoYG6mlh9clE5GqJ8bLl2LPjGLGmci0slO5su7eTK4lkbZbP5jURZvOAp5bjIPgiAShTGI7eQwSGski1dCy5iUpdPljeVqyX448jjzRW087L6YOeJOXl0yzgzxAJ2RTJ4Mr0ecu5B3xKvYP6Gn60QD6wQH+aL80OkeR12xy7FefB9ihGA3IUZAJGEGB9LvYNQvpcc0GI3t4zp/N/5X+NWWNjY3D55zbHPzIL/a0nbeuVfPzqA8XU9t7xTl6fppo/UROFt9oVtWRGD//aeVIzjyRFRpJXXOR17jw0g4Kl1stKu21Xy6u/apc90DzVGjlbaMzlEHssJVMO9udu3dxebmQTpkpSgX3Ul2z4u0vPEr3AceIyZ7JgKriUj+GmQRH7L2l3lh0Eg4bS5jdh+1fZN87fmj3Gq6GKpu5zL/u4R9IcJikANXyGtYEDxOf1CHC1AB+CZR4WJcmMT9ha9Gv5BCjyy5kN3797Fx6x5Gexq5dZON4xYxhZlJ/PDLV3FJsp1tB2oZadmBuOIGFJf9jr0H9vGk+BpeFV6MUeYjRRVBI/QxYKii1pvM1uMjpHwIjT1FH9XyzDNqOD5oi3pknzOj9Ukw7XF9RuAPhXizfpA4jZR4jfx05+T/Wj2DhbkJ5Gm8xCZlodTFUt8/RdtYgJjYGOIyy9DkVPLCYTPxGimrPZupnNjC88HlZCmDiEMBxOEA20IV5IhGGYupQicHm9NNdaiBhOqrqTduoL3LhKtrH0MhA5tESzGH48mMVTCnIItdoyrShGPM107ySKeBTc5cVhUnofaN4D26EdlUMyFAQASPIhnJ3FsZJY60YD+xXW/BVHc0XHSK2NFfA507IaX89Pf3Tfbx1P5eFEol+UYtm5sHeW5XM5fkiclOPTf+/+rRfjY1DVOZaaDRZEUpE56T85pGFH+tKUlqBW1jPhKPP4bIdAha34IF98Dcj/6tnq3UHgpHonkdowadrQOs/RCTFe2uLVUjJ4A6bKVdM4+QIfvMuQoJxObQKinksT09VGbomTurnJaTbThadxETG0O6vRH18m8hz6yCgQbErlHUgVH+0i5EFZfJz945zqgzSFGiiknjAgym98kRDdMdSEQtcqEKBfCJhbzDMkrEEwgj3tOSZ5tWHeSqOWmnc33jbgFGtYhDDc3sGhRzZELG3EwtL9+5CK1aQ16CEqwmXhetZt0N/0lynIEem4D+9noUSQWoAlYUUiEqSwfCyTbeGUuisiQ/GmH5EC/WbHHT0G+hMElL56jjc6ntOa0O/2+GoiQdVMKb9YN0pzppHrCxoTIFnUKKWiZGq4jG5+0WNw19VrITlNy2PJ8D3RPESSRcNTuZHa1jVPnr6C+6jdiOVlxuNzvC87hIWMscOnhKeyeXJPiZ5x/G6jzGkfBcLhrp4TKtmh5hHc6ggjiph11fqeSrOzxsOT5O84CVDckBxFMuDgZKqVa0cH/DYb4N/Fb+HLLOF3AG5fhlMcREptBM1OPf+yMUVz7L6KAdlVCBunNHtGal5uFoLZjXFs3tARx4EMxHuOjyP6LwjPDQrmZqe6c42TvA18uCzC/LO2ecTuW0ToUHTz0Hpj2vv8KF1BdY/XXsbzQQa66lVVxEr2Id6856z+bmQVoG7Odp7J3d1SDVoIh60Y4hQBDtri3XR0snEKBNnY1RIj1z7lmL87qZ0U3IY3t6GGreTV7fQWKLlpM18Bo7ZcuQjYpZ2PQQLPk2cX4Xta/9mauC23htkxcRqVSmZSGXSsk9fh+ZkSEUSSVkDB9DGgSfWIiMMF8Uvoc7pEQJBAEZcMn2hbzLgdNK60uzZKSmaPjmaBbXjPyC5bFVXHfnw9Gb9FhJbvkTd0t6YOV3wWOldjTE4eEQq9N1COqfJqAS8ZLiVhZIa8npfJIN7t/x0nshiootUS92wT3njN9fSzYlGxT/FhJO/yhMe1yfIcRr5Njcfmr7pqhIN5xWlT47t7CjdQSxWMi9awtZmBdPikHBoZ5JdHIpAoGQ193lFCisLA/s5hfOS/hLZD3D4VgWitvoJQWzK0K1ey8xWiW9Pg09wXhyOx5HEA5RLunC64vQ2NrO6upy3u8L8JvAz7jO8xLhi3/Js6NZKGOSWRvezcmuXgrHXoMguORJOKq/A1ojsrE2VG4ThuxKVJIIPeJcVAop0hOvQSQc3eWnVUHVbVGjVfMQlFwJOUtJSzRiNTXT1D/JMqOLy1auOI9+v/GwmUvKE08bqVM5r0aTfZpV+Fc4rb5wFgNQ1/wUys53IKkM1UQzO7scTGiLTnu5j+3pYd3MRPKN55Jdzma7jtq9qMNWZPE5oE2OhoFFYnBbQJuETZZ0zrmnenMBUPc0+bFiXON9ZPe+SHfWtaypLuft5iFifSZM/X04cteTlmTkv2pEPDQ+C1tIxnzBCWooJYCUddY/sdbxLiczrmNwZIi0wCghAewMzCJJPIwCUBBgCCObL64hs/t5VBEnyf1vs0l+KZtr25BNtdHoTeSlNj+5MjvrHG/y5L6TVM1dDDt+Bq1v8oepOWxyzyDR38fGYxaun2NkvGUbPfYwh73pmBUz6NFX4/f7yXUcpDTcgdq8+4Je7Ckm4ykjdaoZ65jd95lXw/gk+Lge13Qd12cIp8KDM1N1pz2uoqRzyQxbj4+QHqs453jrsI0XDpm4rCKZ3W0j6Gt+SYcoh9e9VQiBMLBBfpg704YYmHRRI5nHmtl5yA4/hMc6jlQQYDBpBbnhfrJHd7ArWExH6pVczCGyJ7YzpJ/L4+n3cVlFMnW9U1w+9jB720ZI9ptxS/XkLr4Oo6MNt6keT85asu31EJMJi77JPrMfTcTNrJ5HYbIbhBKC5iM49EUYbG0w/+uw8BtAdLf/5s4aFsS7OTiuZMNF80/v0P8puIDoKx5rtAzgg3KFzyROMf5MR6D2cai6A9LngukIrgOP8iSXMVl4PQ39Vu5cmn3emP9N4VxLX3TsWl7HlrqIzphlZ85teB1nzxHU634ePbe/hsFtD7FvRIYlfQU94y7+U7eH/YbLebdlhOWGSd4SrkITdnD36E+oIx8PCmojBTRQwM28y1cEb/N+ZDbHlVV82/0IbrmMvf6ZFEpH+aH3Zt6Sfw+A5pt72Nw4hGW4lx9PfgtVcIzfVtbQ391K+6gTIgKKCgvRKcXENjzMraL38RpySQuaYcE3+PbwIt5oGGZ+ipBvz9exv6WTP7UrWFmRi8hnp7e1AWFCAU2TAl6LeZSiYFt0U3btC/+CSf5sYLqO698Mp4zWhsoUFubFE6eRnpPzOoULMRXjNXIuKjSSoleyMC+B/z6m54DdyCb5vWSF++lUV9HgSabHJWa50sTqyH7+JPkSYq8FhdtMUyiHLfG38pSljFL5CAs4Spa7iQx3O70JK7jV+00uKU9kVVES33qlkZ4RO/OCdWyTLGbcryAwUE/CyG58mcsYyr0WfclyZPnLQaFHKBTQ07Sf5IlDSFNn4XJMYXH5iHF2IUyexeCiXxCJwM62EZ7b1cyd5UKWVlWgCYzz7NGp0zmvc/Bxaoj+L4hEogu8VB299qkFX5ty7md91nBKE/DggzBjHWQthPgCyFmKVCJFMnyUp6dKqcqK4fYluee93d5ZQ4JGis4QB3yQ8/IO09pch0CuRusZjNYhWU0Ea5/EIdKRPiPaG05++EEiJVdC00bkATubvcXcf8TOOtVJ5qrHWOZ4l68Mr2GLNRWPPIk9jlS8gRAnLSHSBMPcKN5JQBlLucZBqf8oN4p28Xp4ITqtmvec+TRSwMbIatTzbuaLd/yAZouYjZaZjMVW82qfkiGbh8tnJdKjKCNmw2+w+KIdmrVuE+ZwLF7EHO2zUjxvFYW+JnT2NhyxpaiufIhVxUkMWJy8d9JBfdcQ+0flrKzI5ZaFOfRYwriQMWmZ4iZNLdWefXiTKlCMNYFQci5zcxqnMa1V+G+G+n4r1Tkxpz2peI2cOI00qo2WoP5E13q6po9wOExqoJ/rpXu4rlRFq3IOK6wvscS7i2OKefhEGspd+9jjL6JYOswxi5wxQQzxVdeQbXqVeKxYBHou9fyYeI2UOI2MR3Z1MeX0UueKIywzcEXwPYzhSUoFXbwqXEHZVffyzFtbeHxvF18c+jW2iX4iERF5/S9So12D1NKFqHsnhsAQ4vgZMNlJRCiiU1LI4RM9LNRNoEorZTCoZU5BJtmYOGj2IZDImXD6z4ScPjAwtrCcSZ8AbcT16RiYC4i+El9wXrjyU8E/yvh+GCRySK+OXluXEmUBApunEvmdaQZVWTE09Fuj7eZNb0DQfdrLVIlBXv9nGGqMMmIt/fz0/gfZYhaTKrSiEQdQ6xPYsfHXmOxQ6TuKeKCO4QPP0E4GwuEmEsvXwsEH2HTSzRFhObPdeym0HSCkNFITzKLFk0ia3Eeq1EWC/TiXs48DgllEJGpWh/ehFnqZH2xgV2QWHqGCtyILMIuzWRCqJSiR86ObLkN+6EGq0pXMMorRObvY7c4hbaKGOYE6SpdfjantKM1HdrMs0Y0mbz7HJ6N5wLkxTh6M34JhpAZHTCnisRb6pzzEFS5CIhbyXssQYwEF8XoNL96xgPp+K+MONwd6XdysOcoa+0scTbmJoaofkJtoiOa4po3XBTFtuP7N8GGe1Cc1WgAjNjcNJhvjCYsIOEepGHuHS4QHqfS30Bh/GQ+OzWStexOPeS7CnbuWdqeKL8t20ONVMd/0EOWCHkZ8WmIjNhKC/ZiMF7GleZT1ZYl0j7tRiqHeFUdlpJVycQ+HgwXY5Sk8ezzAoUkVZXFCFhudyBufQ+we4R3hCjJGd5BufhW5IIRk1pdoUlbRFM6luPtJ1EIvxtRc1Cn5bOlwo5GLyYmR4PN4cPhCSFV6shPUmCbdhCIRnCExEamG4Y4G4lRiZA7TJzYw9f0WQpHIOcQBs8VN11SQZO0HeaGzFvi/CVNt1NidfQ+WfhjvuLAqwj/bu/NYo4ZYl3KaAbi5bZLH9vRw59Jsbl+Si04h5rE9PaTrhKR3bTyj6DLWCiffA4mC9skAwsE6nhjMZMQjRj+6n0BEyvNvb8YelHCxuImIMIJ8vIWRkJYEZwfNhmXkrf0aO/v8zDI/w1X6Dkp9jdSG8wn7A8yJNBOR6rA5XRg8Jr4s3kIH6cgLLuINVymLhM2kBHqwShMZEKbSGMphd6AUXyiCAi9fFmzmvd4AmZk5SHb/D5qhg7wvXMLFSW4WT77EK85ZHA8ks69thPUZIeL9AxyxGagdiVCqsnKT80kSR/ciW/JNTlT+mJPDDgp7n6Kme5LvHpHj8IVJ08sYsvkYsDhRy0S8cNjMnUuzuVG4lSb9Cn44WE1hkpqyeSuiRmug7iNr4z6vmDZcnyOcVtI+y7C1Dtuo77eeZ9h+/d4JnqkxcdP8dB65fg6v2wrIHNpCjG+AoD6D9K9tYarxPd50FzOomcnUcC8lhTP40sWLmd91H+WBJnZ5S7iXu1CH7VwmqoXxTooWXcLdVTHctLyMWxfloDjwS5bQwI5QBZmiMer8GeR5T7BW2c4NG9ZjSliJPjKJuncHqfYG4h2NOKXJtGXeyK6U23m4TUPFwlXkJ2iQDdcTSanAKtCTlxrH8Mgok72NHHUYCCriTjOvTkkYxaikjLohM1aO1jv8sQzMaUO14zvgmiCUWMpbDQNMuf3kDbyNreYJtvnKKInjTOjrgwX+lCH5sHnoathNml4K5tpoga1CH6X8N78CWYsvbFD/md7dKaMYXxAdpw8+d3O7k4vLM6I5LVMt+fFKdDGxHLWoEOmS0Nb/EfloI/Tuh3lfpVeQhK37KF2CDG6+6jJebprE7g5SOrmFY8FsRCIxs/Q2DO5ebCEJ8ZExmlQL+ZHrGmp7J3m2W85aZRtF1r2IVfH8xvgr+m1uZgoGuSSyjdWhGpLEVjaLlpK88Evsa+nlB8o3meFtZFiQTGp4ABMJKCNuRsM6JtEzJU0hxpjI3KEX6R53khYZxOYOUJiZRKVjF5ZZd/Dn4WyGh0dZlOBEaizANGHF31dLRaqSomAHOeFeNgYW8rLkUloGHMxbvpYTQ3YEg7W84pnL1ZVJvHjHAgYsTt5oGObksJ07l+Zw4/xsKLqU9NJFSETQ0G9jdWlS1NOaNloXxLTh+hzhw2q8qnNizvPSHtzRydpSI99dE+1UvLzxm2imGhkgEYNvmPoT7TxumUNRnJgD43KU4ggaWy+ixELKzRs5GCjgmeAqVAIvW2WrMQSGmSPqRJi1gKzjj4JrjN+/c4hltrdpFedgCsaSGh5llqgHImEWz6sm0l+DOjEHSe4yAq1vo/IMYVNl82XlQ4xoZ/LWsSFump8RZQamV2PL24DJKSIt2I/PHyDOP0SLPwm1LpbF+dG2EKFwhFG7l/RYJTZPkBSFn/jA8AUNzIVwyuglyjyoah/CJ1JxPJROXNfrJB1/jEbNRcwqLyPV33/eAn/q2h82D7MztMRONdIWTkU0WIvCYYq2lS+7BrMsh64x54WZYxL56ZYen8i7+6RwjUc9uVNG8QOjOS9VSn5GavRYOAhdO8jPymThzFw8fj+W4ztReEaQ5S+lQ5JPR+1O0ouryGaQttZWrpo3gwdapOjCdtaLa1mmGybJ3YYVHRKCjBNLng7CCj3vDGlYLajlKtE+xDItQecgOnszx1OuJ9++h8TgBBGRiMPCmTzsv5REoYXvi1+gwF6DYe712OVJvDOVyFpRPa2CNIow4ZbGsnx2IQFdNgbfIJmOevoN89GkFZJpq4OMBdTGrKep08Qc9QgHbfHk5uSwtU/AygQLtxZCMHEmv3JdwtFgLl1jLn50WTHtQzYebI/h3UA1OqWYry7PIytOfTrnNe4M8PtrKs4Z4rI0Q9RoTeMjMc0q/JzhQxmHH8WE2/97qH8W0ubwTPJ/o6v/Ixf7tzKsnknv4vv4Q52H1mEHGcoABaIhsnNyOHTsBO2RVBJUYnTuPkRaI0L7KP64PNZyiPWOl2jwZlAXfyl3F7kQHHyEl0OLWSs4jDkcy638jN23GAnVPYXWvBO5b5gBEsmRunlffxX3eS+jNEXHF6szqdQ5sUUUdNqE5Bk1mLrbiIyd4MhQiFBaNf5gGL1SwuGeSUqTdSyekYDHHyJR5qO+9iADkgzuWjvnXI/iIzyWU7U0Vfb3iW/8I6KMKkSDdRxJuRlV1Q3MjXH/TVbhh86DpZ+p5i3sbxuiWnwS49xrMKeuYW/7GCkxCnyBCKtL/sownbpvTWLU+H5cj2vf76PtQc5SWqdjG4wch8Xf/Dj/TufDagavNeo1xs+A9vewm1toCOWSH+miN5xE/IqvRXU3+w9jrnuL15omeC2wEIDfCB+hQtrNJDr0OLEJYlFHXNRTgC0s5YBwDrfwFp6sNfSnrMN44FvMo42wSE0k5MQdlLFbspj1uh5eDi6mbQq+oGqifMnlEJPD5kEZXYI0wgceoYRWHucaMgSjRArXcXtSH9mdTyHNrMbftgWPP4ikeD2ujgM86FnNskULuagsj82dLh7b08M9c2RcFD4S7XjgmeIV6wzURx+hSzoDd8HVvNM0HA0DymswHT/A93w38+XFWdEu4dP4u/BxWYXTkk//JihK0jEzVUdt3xQzU3Vn6PAfJXZqroPKG+GKx1ksOMam0FzaRIVowjbeN0vwBMIsmRGLLiaOCaGBYy3NDGFAotQxGlSSlZVJXHAMjTGVTruE14UrecB7CRXyfu5NrMN7+C+8HFrMuDCOo9JyisTD3MLrXPFcD1rzTlS+YTp8ifwp93F6jCupHnuJ/5K/TceoE+twF0TC+IdPkKcLo8OFfLyZlhOtSENuSmIiVOfE8qst7Rzrm+LNxkGue+Ig92ysZ9ef7mVbXTMSlYGfvtvM/PvrePbNzbD7l6fHq77fwsDIcHRBPgsRYL9yJf7EChSDhxhSF6OquoHOUQfmSOz5hkOhP4cK/6HzYMggJiaB+TSy05bC0fYe6hqOkRKjoL6tj2zp1LnXPdvYGjKjj2fP40fhb/S6+rjYeMREbd9k9IlMA34X7V4dbTufh8EGtGWX4qm4jSPi2WQJh8mX2wEYkGVwX7OM3kAsqySNbF7QSYF0iFG/GmNwikk0HFfO5ohqCbODTQwLDNyc0EkobSG/MJcyWv8uU9U/QSzRIAo5ASF/ktyAOfVSfEVXcbXvTZZqzNwa/h71aTdyW52RQVMX2vpH+Et4NfcKv82oLIsdzCHYuh1942NIF34NUucgFYBCKsYZV8EOwzV8Q7GVi2IsoNCzbmYK98yREWjfFg3llWygUT6bcOd2DKn5bHC9QrjpRS4tS+JGeQ0cvJ/0koV8eXEWbUOOTzS20/j7MB0q/DdB67CNvSfHqUg30DxgO0OT/6hcyZz/gBmrQaHHIA5SKOjjOeccXjXcjtni4fJZyUy5QsxNFjJl7qDHpycRCyK5hhX5Wu6plDMmiEUfsrCgOINBR4SAsYxYyzFSLYfp8cdzTFjCF9avZWZGHCKZhHmTm1kcqiOZIdp8iQzGL2BKnMQb40nMTlFTJR9EV/0lHtrZibWnnqVFqcgdJhhqwDU5RCBvNWYScQ6coMcGrpCQznEPciFEBALuc/6A7EAHC6SdjIoS+H19hJ+Efs8G/7uIRRIoWAcSOWGvlRMNh5HHp6NVazBb3LzZMIAvEGK5byfqjrfoV80k29dOhjEeQ97sc1qAfOJ56K+BppdRlaxH4hzgnZF4kr3t2EzHuTg9RHZBBUjk2DwBLEPdaMaOQUrFeeG781rHXAixOdFc2qGHo21DTrx5bq+rj0kU8QSD7N+5BaUEElMyaenqw3XgcVKlLpSOfga0pWy1Z5OVns7AlBfDRB3+wUa2uwt5vjWAUQU/qBLhO/ocdZrVBNxOxgVKsrRCfC4HJpeIw8ISFsv6cSpS0c+/AXVKAUN+NXeM/wLsAwhFcogEyMnOoXj+GrwjJ5HoEymyHuSO1VWEEkuZatzMrKEXeC9YSWfQiEggROwaIT9ewd0ZvdTJF1K67CpofBnyVyIqWItqqo3SS76KSm+MeqIZ8wDIjgySWzYfDBnU9k3ydL2FVXOKiY1LYPdkDBtcL6O3tZLQvxnx4m9CxfVkxamZkxXzf/nZTuOvMC359DnC2TVeRUk6coxq3qwfhMoPpKIU+jNip/q0870GSz/uwVbGNQWUSOqweRJRaFNZNvBHkgJJvHxAyoQqC1WigVnubczxbyOsuJ5+0QIuX24kTeGH8Xa+sqSE8cMvEDD10BZIpkzWR0p2BcNJcxFOuVHa+vFrjeS5h2jxpXOH+j5qv5iE8KUHGBFUYM+7FCrns2tTL35/iBDh6ELtc9DV28dR8SyuLUhEOxLkcLcAl83KXctn8vSOBnqHhwlKjNSRz13id3EHoeLkg2wUy6gSdxNBAggY721CZkhB7xwhIWcWta19dI86OTAQQCsXc43sIAnHH+V43rW8Jb+cm5Q1pB28nzRgScEV9I67EAoEpFwgJ/Vh8yDOM5PftwWqvoxZW07nRAIXe99ilyWDCvUYcUEZeG3YUNHf1Uau/TAUXXxh7+7jkjPyV0WZa717ozqQZ4cNNUZ44w6YsSZa3H2qYaHPCU0vQs5FEJNBVWYpzqICRrY/zJaaeOSOXjKLFqMd3oFZV4biyB9Yk2dlV6MDlVpFkbWFAXUVSwoSqOvLJtAziqF3C4diFtA2FqYodT5r112F7emrMQasDIpjsCeUUpqXydjEKM73vsvClT/hRvlL0HsckmfBqp9x7LXfMqvnVRzWLtyXPo4mcwaHXn+Q7Pd+xbB+L1cG+3hCfSVbJ2Ygk4DDF0ItVZMcMDOadx3XzS6Meqp5y89s2k6NR/6qc8fmrBYinqZ3uH1GHqK4Ul6sl7DhirtQbKqjdLiWNt18ZEmXUPTxZmManzI+lVChQCD4lkAgiAgEgrhP43rT+GQwTXrOUdEoStKxoTIF0+QHfa481miORJ8WfTwVbtr3e2h4Hrp20KWr5j1bFq6InO8KnkYXGKXOm8lM8/PkScbQ6uP4z5Q27lbvpkdWyM5BIUlGI6N2LzZU0QXh8BOo9/8vW0Oz+KP0P3g1tIi4nndQPL8Wx9b/ZVScjMg9SqsvlUzJBFc4XuKrOzysuvYevlyp49ETUl7a/D6Tpg5mKoaZNW8VB0bEHGlpZ+OQkfwYAYM2Nx0tR5CIhQQ1ybT2mvjuHCFShQabL8TTsuvZJShDDeQy8IHRgrBUy0DWBgJKI/1tR+nt7SFXNIRCo6f52GFS5H4ur0glYbwOijZQsu4urqhMZZ9yFbaqe2CwHq1cglIqQi278H6v0WRjZYnxnHlYWWKkt7cXqm5jiDhqWrpQZ5bTqlnEnPgg73nL2GZLYappC0NNO0idOogtdenf3fF2rGEz/r7D5/S6snkCjJg6ox7bjDVROa1tP4bWd8A6AMeehZRKiMmIkkdGWqgsL8epy6Vy5GUCAhla7xCDSSvBMUy/toqSgReZpRynZGIbr8kvxZ2+nN9tbeVkUy1Xqppg3l3Mi/WzIslL15iLB17bgSMkxSBxM0cxRHWogamBdmJ6NxNJn4fJr4uyFI0lsOpn0F+DMKGIwxQTco4xTDzP1vTw/Z6ZWJIXMcN3jD3uLI4rqtAphfgCIAAMcfHklFQy1t0UjTJ8jBznX2PJ3NmUTmxlqrsx+vtqfxT9+FGkmVUUhtrxH40qYHzaPeWm8bfxd5MzBAJBGvBnoACojEQiE3/rPdPkjEAR9ysAACAASURBVH8i/pqYcPZzcy3s/jnMuY3nfQsZbtjMbeJN6Od8iRNBI/e16ojve49bBG8TSJmNZuwYJ3Nv5W1/JVa3n423L8DmCXCgaxyNTELs+3chGT+GTChiYuHP2NLhYM3IA5QI+3GgQIqAF7yL6Y5fRrajget5l0e9axgu+yoPXjebja+/ynHTFOWpatKyZ/Bi7SBrI3s5PKFgSUkmM0pmsaepi/6gnovTwrRNhpHY+nhqII02uxiNDJy+aJ6qRnAHRrGDICASgT9pLsfLfkDEPozSZSZhopah7Kv5y2gOa/MUCMfbKUvTk+jthZIrTi9wp+SLjFo5o3bvGRmjC+BvSR81dvQRHmvl4IiM9TkRYg2xNNa8z5uOQtalBykR9GHRF5FctuLvUwXv2Ib/wB/oybuFpNmXoDPvPvO8ZDE6R1d0/vffT7D+GUKGTGQ+Kyz6FlRcj80TwGNuJnH/9zFry2gzTyKUa0m01GGVJpKrC9GlX8RMiRlt0zMgkrFZewWpw3s5IZ+B0WtmjrwH7Z27oO4v0P4etphi3h7WUOZt5HHxtXwtto68yV2EpFrw2zigXEX+bU8jtg+Q1PcWB7om2OPJY6m8C6lEgCllPX88FqAoWcvB7gm+FNvJt9TbIG0u1iMv8ISjmkfDVxIBFGIBtyR2kRPsJeeimyhXOxgSxDMsMFKZYfhkYznSEjXiPieceAPb7K/QmXcHeaOb0dU+gK3qHjqN6z7y/2IaHx//THLG/cB3iK4X0/j/DT7HuTtNhT763OeIhkiWfR9aXqGk81G+GHob75y7oOJ6iqtWsjQ/jv3S+TRG8km31iPNnsd9gwXU9EywuiRK7bV7AwxZPChlIn4s/gb79VeTLPNTefyXfGfsu8wU9hNGihI/h71ZLJC3c4/jF2hW3Yuu8lqu0xzjmMnGhj/uZ2ubnQ3KRuwDbWjH6pjt2svJUQfyvIX0edUM7nkKl9PO8mwlQy4ha7S9qC0niLUfZ57ByaK8eCLAk/yUBJmDoAhEgCsIgfEeik78Dr2jiz3HzTzjXchEyzbWGyeZX5KLvb+RI68/yIg8Cxuq6A7a0o9u/Nhp1XOjVv6Ri5NOITmtLm6ecp+r19e6iXKtA7vEyJX6NrKSEtBaWukYcZLqaUc22kRTKAOjr49New9x+zN1//c5P3A/0rRKkmZfEr2XuIWMaorJbP9TVJYpvoBH//Jnaoe9hBR6BOMdeOOKeNwxl1v+cgRzay1qjxmztgxl26sUGyXMF7eglUsodh2m260mWSNE658AghBysc7xFhNyAxuC21kib2dYUUzj2w8QrH+WseRFPDtVRIavm+2S5Yx5JYz7JQyQgsDvZIIEOm0ifvDHjZzoaOeOxmz+bEokN9TJDk8WTzvmkil3Up6uJ7fzz9wUfpXrw+/CvLsxz/pPWoQF3CV8m7tEr3NJaSK3JHazYOxlBoSJmPu6sdW/xPC+pzHKvGfG6PibUW/zbyGxFJLLwXQIiq9At/J70Tk2rmOs/G483TXTRutfgL/LcAkEgkuBwUgk0vQp3c80Pm1cKKd1NhMufxWkzaU8cAxlzgJ2+EowW9xANFfwjeQ2Vio7OeDLIdR/mDmuAyzKiUcWdHKsuZnRzb9kkbCJvAQN31tbxFjB9QymXEzQ1ocIP0LAL1BzPOV6lsjbKaaPAVkxN8b1gFRFxq3P8j+Xl+C1WvC6bWwSLGJZmpCeI5tRWNo5Jp3L/pOTJPm7aFDMozImQIK9nQWiE8QULMHklvI/MVu5f6WKnnEPvxI+zBJxOy7AK4plSJqGSgSC4Dgh2yiJcj9WQxGPDeawR7aUPOtBnnrqUYKDTWgNcWzcUcvjW4+i9g5D1w4OT0j5w66T/GV/TzQs6glgtrip77ecO6atm2Ck5Zz2Hsm+HnS970df/yD8tjRmiuSSxTB4DF9vDcKYNFTWNjpIJXXWSp4cyaLv8FusiB0/j/H4sVF1O/TsRte9CaNWjrPhdRLGDiKf9wEhymujUj1Od28Xfts4AoWOQNc+LLvvp0I+SG7PM6iH63C4PeyNzEbf/Q4Bl5sERyMm4kiyHaPryDsEO7dTF38lJowEgw4WBpuQiCEQBKVvjMLhNzkkm89T5iQMtjasactYHjPOpZLDDI7biGOMk6QQgxVlyInUYea2nSI6x91cFDfFIXc6lyTZuX5eBt89JGNX+ygdZHA5exkxzIL8VQh2/ZwcTz314jxuVNRQbXqcG30votDoiRs7zF5LDA2CMkps+0htf45Ht9Zx/wO/icouJZd/9DhC1OMaaoQl3waZ+pw57k6+lMDq+6aN1r8Af5OcIRAIdgAXqnz8PvDfwKoLvHah69wO3A6Qnp7+CW5xGv9QdGyL5kCylmAwH6GnXceu9mruWJJH0dRu5rteZWfSdbzdL6M5nM/XhS9jzNBwQlxAw0QilenlZLc+yrClk9wV30TYfYJQ/yFCESFioZhgOIg6MkXp4MuICWFHQ4s/Dd2+Vyha/zVILKWtrYsfrk7jpUYlz3T48I0IyAhoiJEESA4PsiouwHPmTHxiEZ1qLd/KHcSQmApyLZ3hVIKhCHd3vMTWeQtw7jjBkE+NNCJmV8JtWI1VlDX+kEpOEIm4eX8Qcr3N3Jgq4nlzEpYRKUuC22lTzWFhUSySzmb2NA2xow8WrLyCnUdO4ulvp2TxNeQZNRzoGmfI4jm/mPQDw2TzhRmNpJER7EXY/CK2qhvRQXTnDtG6OWUM2IdwGqtYnxXPy9J4xjoO8uhLb3PAkcDXSpbyBeMIeNPANHwOYeBjoWQDAIH99yM27CZ78hj9hXdgzFkfvZfJLqpiAuQPtfKebw6znT1EUPAV3kFiO4lcGwtDwxQZCzkkvZx9x8dYEjlJtygfjW8CT0TMYkkz2yQruX90GddKpXzB9QpKWQiRQMKozEiCfxCLyMAJ/TLSRg/jSypnQF1Emc7Hcsd2tJF+nvWuYCp9FTGmbdwg3oUzqKSVLC4SN7PZXcW1S4upTHZRX7cDqSsJjTyZ3IrL6Q+koqx/nJbnv4Owaxde4inRiohJm886UyMTDjtqnPgzbubdkx4E5XNYtiyekS0/J8F1gAWqUVhx7+lxWvGj50iKj+W5r609PYQ3/GELsvEm/rzABWXXROcvfsY5c5xqiLZl0Sok08brn4y/6XFFIpEVkUik5K//gB4gC2gSCAR9QCrQIBAILljeH4lEnohEIrMjkcjs+Pj4T/M7TOP/ilP1PfPuhuXfh3l3c5NgE4KeXTyyu5O8UBfvG67lv04W0xFKIT69kPcECxk9/DI9NsjPTCXYtQ+PWEPS8A4c7/2UwhP3ExcaJ4SADt08vETZdzK8BAUKYubewJIkH56BY5g2/hcAX12Wy/yKWYz3NnOn4C2U3jEmRAkIEZIZ6mX7oIzrK2JIj1ESmujmd10pmF0C6t98AJvHz1+cCznoMkLvPup0a+kMZPG78DU8YpnDK7VmXMZqfJlr6JcX8Yq1kFAI7uR17pRuJjPQy95wGUs1ZsZMnRQ46ygRDjJkc/L799soML/MgpkziFXJaR+2M2TxMDtRRJpg8tyx9HuwpSzEU/ssBZPbSe57C0XhSoZGx063tEeX9oHRGoTsJYiL1jHlF3PjmsXE6Q0str3JxeperimLgbQ5cHJrlExzFur7LVGP2Go+TbI57QF6rKe9NFvOeqbUucSP1iDLrMY47xo6Rx3YRnrA74KgF/3F32dn8t3sihQTgwuFSoPAPohTFg9BF+St4JIZOko1Lrb6y5CGXZwMpyAVhukWZFDnMvLf8fuZFTyMQhZCJFJAJEBKaACnSI0h+P/Ye+/Atus7//+hLVnLsmzLkrxXvFf23ouEkQAtUHYpR2lLx3X/rtdxvZbet9eD64CWUQqUDUnIggyynTiJEzuO472XJNuyZe39++NDTAL04O5b7rh+/fhH0cfSR4o+H32eeo336znBNcE9NJu30KGswCQPkDT/FlKUMKTI5YJoFtuGtPwLd/JcZBXLRY1sVtazJ1BBWKbhBqsXUot4YWIWc+SD3FKho75vklj+WpS5C9ENHqVbWcQ/xb6APyaGtj2I/eOkxJzUKhYjK9vKdVVm3mwY4dpDRvZ5c1mmGiCtdBmUbWFo0o/LH8acYsQ33Modv96Dyx/mln/bhW+4lRJd8D3RAkgrx1V0M47eZgpMWjKSEqZTw9PHeIb/Fv7LqcJ4PN4Uj8dT4/F4djwezwYGgZp4PG77iKfO8GnBdvHq9T2F61Cs+Brrkhyc7XVyW88GvnUxG7VczLe2zOe+axZjLl/JP/pvIXmigfniFrL04JscI6C2kOw4ScjtQI2fiynX8ojoLiIIY5bigDLuh4YXmKWLU0YvIu8wNG8XLrh9tdwTfxO9yM2JWDltIRPhcAhtyMlacT0by9L41UYTFUuv4+SYisdq7RzuD/M90xkeLmpnsv8SL3QrSLcfZjTvGmJlt/Jvge/zd/I9NIctnNWu4gnprfxDwg7Wyxp4c8zEZyNvMS5JYk98IZNjfeQPvEa3L4G5+kmKpaOsc72EUmfklnnZFBniXBxyUZ0qplppYzggu/pipTXht3US12egsZ0GfTp6/xCWzDw8wQgP72nh1LG3wefkWKyc4dZajtSdZfuQhl2nW9gxkYVKKmaxeycHT9ULouVohXhUEKP+0zDRhznYRefhFxkMSKH7CPaGPRxpdQj1m8sLy4HQhW0kTbUhNRVDfy36rl0U6GPEG1+B/jNQczu/d8/n9EgUu6YcHzLi3jFkCiXRkQu4Fn0bgNTz/0765u/zjOn77AlVsVTewoDEREJ4ksXKPlZygRp6GNZUckS5AhBchcMo2RmZS8rYOVa5toPbRv9kiF89+Sw3jH4eX839zJF0kBwVern+zEa2i1bhQ8M8ow9G23nogIdD/UGOOxLQFC/jS2VR1uUpOLrrRTQjJ3Eos7k21clD1nbcbidDMQNjESm9xmWsTehijeIi/+fmagrTNKSP7Ge+pJOU8jUweBoubkOjkNJhd/Ob+9aSYCnCN9zKlp8+T9jRToKliG9880fvida7ePSFpM67eTrCulzX9AQjn8hXdIYP56+2APnHP/7x14A//OhHP/J91GNnFiB/SshaCBL5tH3GwISPQ3Y1y5Yup7+/j+bxOHKphG+sK+TmUj1M9OJXmbEkRHD4RZTJhlAWriKEBPWl1/ArklG7u+nRLeCflV/jB75fkBbuxKUpRKNUCw0hUT+MdSFd/GX0GjX0nGBq6BJ9dW+ybaqYQ/EackQ2ssUjHIpXMSHSIVcnslDvhNQSqguyGWo/z0FXGhJLFXcWS8jreZ4L4lLcPj+n5EtYp2jihE1KukbK2uBefKEYRwIF3CvaScHEIbpiFi54jYzIs7jV0Eqpaowqfz1KsZ8BVTl1sVkk+9opldl5ObCUc7FsAoPNVKfrOFp3Bpc2l9yMdIabDiOXiLgwFuOtzgCpUi/WzheQKHUwXA/5a1FmzUGnlBEdacJ+6nVGC25CWbSKx067SevbwaTMxOMXxZj1Cm6dbSLN04p/uBlPKIqpZjO07ITkfNCZof5PaIdPoihZT13nGAmOc3SOh1kaP40pNAjGfEZ7m4l0vkPSiZ8iSSuD9f+M195F/NwzqH3DKPVpEHLRc+IVnm+Jc3dhgPtCzyMOBWmKW0kMOlCpNLhn3YzGdgZX1mqebfIh6j/OZ+Sn2B6cjSgSY5gUiiNtJAQHsSXM4sXAIjbGj6FKTGMyrkYbm2BvfAljEQWzAq1krb6XptOHaIpmUCPu4S2nCW8wwlrJOeJApbibC/JSDKIgt5cpmJSlsL1XjjcQYXa2nlNtNk61D7MwcIz5zh3s9xcgW/wlmoKpVPc8DmI5wXgcsSQBiyqMuGAVqUzxaIcBWt/kK/Jd/Dq8mY68u1hQkg8nHkGpSUKdUU6H3c31c/N58VQXqfExJiRGtn/vM3DmmavsWwB09jMoew6D9b36mFImQaecSRX+NfhvH7L7ox/96JGPI1owI1yfKq6wz+h0RihLhtrao7zZLSLfksyoO0CaMsDKpAlIKcJkzaJAF6HMfQLMVdC6B+lQHROJpejx4kisxDU5Tk5GFlVT+xk1zuVx8a2kzJpLqsQPU8MgEsGtL4CpFMY7GOxpp9Gjpz99I0HXGJE4tMWzkIuidGHlnmLIKKiCvlPsahzg+d5EZqdJ8I50YYkP4g7GcXo82AxzeGpyDq2+BO4qCLD2/p9zpKmbRa69zAudJMXXQW/Kal6aKuFG6VG6k1fjiUpYEq4jFvNzIFyDOTLE4sAxkmRhErMr8emz+OVFPbfIj7FofBu+oi38e52bVJ2cUouOS0de4wf7RpC4B9kqPooiQYtLmcZOVxZtZ49QXJAHGhPJk430a6v4TbMS68gBWlwSRlX5yKb6iahT+EX5MPliBwalDEJe/G4naTllgmNu8zaQSMHRAupkhmIG9GPn2ROqJtmSSalqEl/LPrqxQNiD6NRjSGUKpBojHq+QxpJp9MhHGmDxlyFrMXX19XxWdRqr/TDSoAv9nJuJusepj8/C7GvlQucASVse5ocnguxo9fCDlOOMpK7kyJiBkERBS/qNnHQbmQgrORQuI0mvJTM1kcTStag2/gRp3kraHVOMeYK8wkos7S/QFrMQkmixq2cx4IZ0DSxVtlOscnE+kEaSHJaWpFPvNnJt8jALyvIZj6j5yfpMfENN7B5UkO48ycV4FsG89bjGbOxrm2S+vBd1bJxj2i08E1jGnAQH6d5WXg/P49/qo/yDtYHKdffQkbyKp471EjIWCOI13ICyaDXRWJyHnj5Igm+ICYkRfXSCXS0TbK2xwukn37Nv6asV7heu/d/teP0pZmY6/AwfjytGQll0Mt46VsujjVI+s7SUf/1sDeFYlHfqW/AoU5hbnCdMWeg9BoXrITETbE14PVNoI07k+SuY7G9GlLOUSmMU56YnsJYtQ2Kw4uo+S+74EchZCkEXxKLCNI+B04ymzEU12oQ3EKZdlE1b2IRZ5EQZDyJTG4iqklkSPc1bY0n4mndzfU6cmwvjyJUqwm0HsPviTGWu5u6cSVq9Cpq8yYxJktnX6eeEJ51l0ZMkxsfxSY08J76e4lgHx5jLZ0T7yA+1MhkMopDIcFmWkuDtQyqOksQU7eo5yAMTXKtupmZ8N8qKLbzZHkJnSORot5egRM3RoTiVgTMkOFtQECQ9p5jnRtLp6OpCkVVFTVIclyaHh+uiZGVnE4vHaRoY4yHFbqL6TLb7Kngwx8HCcB14RiE4haz8OozxSeT9tTx3YQqbzEx+qJXx1PlEFVoGT7zKY/0ZlJeW0d7SRJK9lhMDXlQjZxl2x0mPOwjLtQyNDGPrasKQaiYSjqKuuZkbdwY56RBx1/ISUtytRKZsHPOlMzHSRer6b3MkaSuHej1skNQzJk1jW5+ctRWZ3LhpE0+eHGB+pgpRzjKaPAYU5hIGR6eQSOFzpgH2O/Qo5FJStUr69z9K12gQrbUQ3CMMxJO5RXqAdcZR3pYsZU2ah5Wu1wmoTER0WVTGLjEalnJRNYeDI0puXFbJwlgDq0sttHa0o0ovo3HQxUhASUO8kISwi4PDMm7SXMQTjhLJ2cjmu7+DXW7lyUtSshIljDnszJq3hhtvvgtSi1mQm0woGuFs7yRbN6yFvJW4/GEeeGI/4vEO4skFvPD3W9nfMYVvuJVdwxq2rlokiJV7GFp2wbz7BLPMGT4RZoRrho/PFfYZT10Isbi6hK+uKQJgQW4yzqicun4/W2vShXl25gpIKRQmMETDKHoPIym5DpZ/kzaPkpyRPWgqrkdnLQKlHknjnynoeBL5sq/Dhp8J6cnaR4Vaw/Jvk1yxAbfXi7znEN5QnCnU6PHiR05xtJUukZVAYj7K1jeo1PoooI8RWRbmof1M+EPUy+bSm7SUqD6Dr2iOYJWMsX3Uikyh4vuyFyj0NTKlnYXaP4ghOs4+0VK2VCaRObiLqbCcRv1qmgyrWTX6AiZ5kBFpFtG4BKvrPFoFlHrqUK74Jiz/Jj1uaG44wzpxHb1jbjrJwONxU64aJTI5wDGbhF+OVLGgIp+bFPV4jGX0hg0kaWQ8ur8Dj6OHZVYJe0a0rBx/hbJkEVpbHagNGGKTuIpvZmJ8DKW5EIXtHEmBLvpsoxwOFlMwdpDJ5gPsdOWxMs1LwDPJ2UguQ64AGyPHGPNGUAdGCUh1JEy00hwwMiFNRh10MKKrIH3J5zhdd5xLPUPkDr6GJTpID1ZSA93sCM3nef8C3r5oJ79yCWFdJp6+Bv7hwfvI1kYZ7mll6ZwqpnwhlsyrQa5Q8mbDMCUaFzdE3mY8fS0Jsz/L7vP9ZLQ/zfCkn/Xis/jGh9gZX8Ji0QXKRX0o/CNsVDWT6W8lReTm4JSZoFTDiDSDUskAE8Nd3JPSwpxr7gWxFMY6CCXl8+czdkSjbUxo82jzaBgKyFhscNEnzcKaX86ma64HbRpzso04RTp2TxXw/S9+ngW5Vw/zkUkkXFdtvWqB+M4TjSiN6fzxwQ102N3csayY/R1TjIyOc+eWzYJo9RwVBKts6//AF/T/HWaEa4aPzxXut+uzYEFR9lXeVQtykwXRAmEIqyrxPWv59reh9Aaovg38k3hFKg7ZtaT4OtAWLuXSiAv34d8irriRWuNWwWjxpU3CYp+UQlqzbqGz+Sw5DT8lx9fJSUpxiXT84YvrmWw/SX3AQm7gEu0DduaLLiA3zcKmyELhGabOFqQuWsoX772H5IkGLgx50YXH6fWrmUiq4TviZyka2c5U9RcwXvfPdF6sIzfYRKkuQLHai9/nRiaJYZJ4cSvSyY33oBcFsM35Fv8+OItVotOofTYC6QtRLP86xzocBIZb0Op1nO4aY2NwH3FnFxvNbtaY/Sgm2nnVW4NEk8Zjt1bikaew9/UneLlLymRUjX+8l8XR8+wZT+W4P4s0RYgtyno0lkKG+rqxZW0irEwh1ZyOLmgDYx56dw8oNJxxiEn3XqAnqGc8awPVJjm93W3EDHmY8irQe3uoCJ9nKiAiO3iJC9FMxmVppEcGOBMtZIWsmW3dcY4MxfmGaidmbzs/dV/DU+5F5GnC5EU7qRtXE9VZ6LR7Oe81ctiXzdMHztPdfJYReQYbF9ag1Cbyyq63efLkKDGpgl9fn0WfvABb8zGS5BHKfad5crISjVqHKdhKDqMkx8dYrOghGgsjQoItKEFlSMNYsIDqsZ0cdlt5Q7yeBHcXD6oOULbsJpAqIeyFlELONF3kaMswadnFTMVUDLqChJHjDYVZl+IkMaOMpLgTjTaR3S3j9I37+cXNlR96ql/2XTNo5ISjcWLxOGmpJh5YW06qVolaIcUTjHDX8hLuXFkppAdbdgmiNXDmvbThDJ8IM8I1w8fjL7jffpTx4nRtrGAtpJVO78dozkFqKeXFESsuX4gjbaOUrf0ceVXLp40WK507UUamcPm9bAstZk3Dl1AHHQxGdPySO7FhZMfZQX7xxRtpO70faTzKBskphqJG3p6wUOU/zUt2K/JYkGBaDbk6yDGosIwe4UlHIY2axTyUO0Ba63OMZl3LNvE62o6/wUue2WRoxWinuogF3ZzPuo/4rGuQdr9Dqe8kWpUC2/KfUyeqZk74NGkTdYQ0ViSufi6OhXm7ZRJjkgGlrZ5BeT6R4CSfkdaSEHLimPLza9868hVOov5J9js05BZV8XKXlPTxUwyPOvle+RTPjuXR4DFQKunjltR+RuWZVMbbmLAs4VhvgE5njOWGMcicD2OdULaVFGMysoET7AlU8bZsFSstEZ60F5KpiZIqciG3naNKaWNCmoo+PIg9ZiAikpCmVXIiVs5EWMS5aB5lw9vYktjN3JQ4x7zp1IYK6CSLEmMchWuIVCbQBUZoiGYTj0exe6Jooy6smTm8dslHLBZlXUUOP9rbRzzsYWl5DltXLiC/qJKJMRvejmM0RHMR6TM4OybhRKScBZImymTDhCNRwlINYzE126MrWJUyxUAsiSFVEUu9+0n1d7NW0cxZ02fQJiaiV4jBXAnaNJ4/5+S63BidHgUHOz3MzdRRlgzJwUG2j1kJq4zMyrTS3XKGJ06NsrYyk0KT7kNPW71KhkEj50irA5lETPOQa9pBG97XaHG5pjXvPiHS0qRcXfOa4a/OjHDN8PH4C+63V9pnfKgl/ViQRkeMXAY+YJeSolXi8oU43eukJtPAkgJh3V6KVkmyVs6z0U1U2t9EHR6lxvEyiqiPcdQcz/0Od1y3jtcuuBiLJ7DzVAuVdLBIchFLcgrjUSXGiJ1nAsvQiPyILOV8Pq0bjT6Jnu42TvjSSY8P0+0MUZUYJDG9gEfG5zHQ302LW8EDxQEW3PQNegNKnh/NJS8/n9krbkB5+t+JhYKEkovpKf0ys0ffoKL5V4QSUnlI/1sS1CpKep6jKMtEWJ7IqMhAtm0/On0qBMaRRMPU+dLR11zH7XPSOG8P8/pgIl32KRL0KQS8U2SHu3hzMJFTgQyW6Ya5WVrLXs8s5mVr0ebNg8aXODsuw4CLUnqQqpOgcz8tDbUcbh5kOKLgGlkj4ZAf40QjbakbuEHZgCweRicJ4IjpSXKeYziowyKfoDmUQVfcjL3odkb90D4lR6xLY7N5io5RN7vdBdysOktCZJIy/1nOUUSRZIBDsWoG48n4w8IEN6PBQFSiYkGugVfPDrH34jBdE1FWV+VRlZEk2Ly4Wom27+ewN5stlgm2rluFwx8lMtbNUlkbEeJoxWGCyHgx7dvccuud2Jwu5EOnOBc0M+oOs0LRSn0om76khfRHU9FklpKcIhgzLi/NYNAn4Y3aVuaXZLGq2MyKDBE+pRmFVs/J7gmQKtjT6uELC5JZP7voPzzl9SoZ/nCUi0Muis06Six/wSam46DQiHG5ppWYIYiWo/2qrsIZ/nrMCNcMHw+l/oORlUx5lefTX7Kkn1doJkUtIUVuegAAIABJREFU/YC1/Id5UoWiceJxyDAkcL5vgu2qG1g99gxSIAq4jbNJizt42ZbOlzfP4WxDIz8RP8lSSSOjltXUj8uIyzW4gmKOxysZII3NZSkUFhYRbnmLV33VzEmJMbskH/1kCy/0JTKVWIx5cD+BSJR1liDrr78DDFkMqYrQZpTiEKVS7qtD2rkfcWCcWDhIVn456lOPgt+JcsF99Gmr2DVmJj05kXnyfvriJk60OZhbms+mZBtKdz8veqpYpB5ma5UFdeEKEgvmc7LTQd9EgHmJHv6x2sdTHWpyRYP4RDp+sFBOH2mIp/r5w3Aux8NF9Iz5uVlylJ2+YowRG+buN+ibCJI2cQ5vNM7iBBtKvZF5wVoOhMroDqewUD1CYeACiQox2uHjvO6fQ7ZBQod2EcWRS2wPzuF1WwrtgUTykhWop3rYFa7GNeFkgaKbBTVVVI1upyGcQ4FkiOci6zjHexf9NQndxONxblhYzLc2lLD34jCTI92sSnayq1dM75iHrHAP5r4d7Bat4OXRLA6PiLlNfY45Whelw6/iispAqoF4BB1+xkNyOtxyksrWcsadiL7/IEsTepGkzyYn1MaJcTUT6cvRa/Xkp2oAYYH1i2fs3LG6ggdXFmLQyGmwx5iVmUKhKRGNQsLJrnGqctO4d031R57yAxM+zvVNUGzW0WF3/2WPNWvVByOrxIwZ0foEmRGuGf5qXI6UttUPTaf/tsy2UpIYn66N4bbRYI/QMhZk/0U7W2ZbWVKQQjQe4/kTfeSkqpnwhhic9HGmx8nXL21Fi58owtwxsX8co9hLuXqCnxyw8SXx68wXt/JSZCU/cV+PNiULv3OIs7FCkqRhLsUyuDQaodSxl0bFXOat3ES5RUtC917E6iQSR+vZOZqGGRtr0uO0ifMRW8v53Ttd/GDHRVqHJ/ll1Sic/A1HMu5nW5+cqmA9yo494J2ApV/DXfcnRINnkJbfwFsTFlKrN6A9/ENuiO9jlj4Go228bLeyO7YQjVrNvOh58E1y80uDDAaU3JQbRdZzkD/0GLFFE+mLp7FY1MBzQyb6x9y0i3KYlKfhdztRy0RMWpZRrffwuj2NvGgHmuAAI5I0qiVdyCRSop4xxoruQJ6Ygdbbz3nNMhIyy8lof5beqBGz1Ettyk00GzewrLIA0fB5DoZKsTLKjbpLhPJW8qfuRHriFu40DdDZ3cIIJvQiD3XRYt5iwVXHPRiO8JWsbqSaVF5tniS//Uk2qDvY6y0iIktg0BWmZvRNRqaC/Npewog7QqrJSnW+FfeR3xCIhlHK5PwseDPDuZ+h3H+K4lgnh4NFpBXPZ/DCCa4THSVqqsCfv5nMWTVUDL6M0+XjxvWrpn9QdTo8rMxVUJkYBqV+Ot0XiYI7EGJn4wjzcpI41zeJXiX9i2lCEETrSKuD5UWplFj002nDjzIIneG/h48rXH8VP64Z/vb5gCV9YvwD1vLmcC9HGztZVGCkxKxnYMLHkNPPljlWnJ4wMeI8V9vH99puxsQ4YyTxm/R/x0kSCfjxu52EOo7wXfFzzBO38bbxTl5lLcqYlz3DKg7HqlBIxFy/dgUb0gNEAx6ecxaxqveXWE78A3qRnxFNGeHW/eijTn4V+2dSpH6MpSu4Pn2KXYfr0KnExIGu8QC/f2UH9cq5fP9YhF9HbsQpNQjjkBL0nJVVcS6ay+Lwcb7R+XkeWGBE9vrdVHCJKUkSo4E4lFzLrthCtkiO8eZEJiz5Kj9/q53l4gasjHJ7mZKzkUIkkQBxmYqf3rORY/Eq1KEJrosdZYG4BU8wSi7DtPs0JAUHKApeJM1o4A+h9fgkyVToo8iUBqKRMKLUWeSv/yJr55bypfu/yPyaSt4cy0S04AGWKnopToqy05mFWilBVLqFyYiCPyt/wU2FIl6aLOadkQQUYqjQuLFoREyhZlakixFxKssTuqmh9apjPkQKvxvIJtCyl47TB1ieLubGrCD3lMsIR8WsULaREuzmhbF87J4oJo2EXfdXsaNhkD95F9GvncuFWV+htDCP1/p11Gfch1Kdwi0p3bQMu3nA1IpSbSAhfwlu82JcFfdgTErlzoRTggnmuyOtZg88S/q+B6engoAQudtcPh4/3M0DK3L58fXlPLAil8cPd7P7wtBfPI8dU8GraloZhgSWF6XimAr+tb8yM3yC/F/7cf1XmPHj+t/H5fRgRbqeC4Mubi6EwgzL1ZPn/ZMMOxy8MyynVD1F+yQsKs+fvkgcONeOKu5l9s4VBJUmBlf8mr0OPXK1kbtqN6KMjtIRTscsduKUmXgg/A2Sk5JQOC4QjUNZTho1sxdy8MhRckpr2NHsweYJ8XL2brJ6XmAgeTmtPh0EXayI1jKhK+FA2v14J4ZZU5GF0jtIo2IednEyb+zdTxUdNFDAbHE7uXIbd0uPIBVLIeylIXkTkYpbmVP3DfCMgEJHJDjFBQqJ565hX6SaDOkkp/umaPMmkECQ8xRiYQwtXp6/MYWU/Lnc/egOugN6IogIq82MesOIgWs5wvekL7JTuooz5jvY4H6Fmsl3aFeW0BlOIk/poShwHo1cjjFsExoV3MNQsgUWfhEM2dT3TWBxN2JueRb8Lug5TJf1elZ33sjXlG9wL3uZqPgCWVt/TPk/7sEdivNV/THuTG6jTTMf+VAdR4P5lPpP0xmxYJU6eT6yjk5lGWa9nBa7ME9gjbKda02jXL/xGug/Bb21vBOvRGmr5xHXclwxFdnYadItZVlagIPdPqoKMrG5QszJTqQoESJ+F5e8iSySt2NqfZ7i+WsIdNciq9iKrmg1LtSCDczgq+jrHoGKW2HWOug6DGeegEUPCW7NV/DwnhbK03VsqrBOb9t9YYimwSm+e03xJ/2VmOET4OP6cc0I1wwfyfst6d9///3UdY/T3jtITYKN0sr50waWnsGLdMTSSU5JpaP9EgNeKUU5GXTY3ay0BHHt+D668bOMSaxkhHppUZbzsP8GNiTZyI92k7LwFmZnGXnskoTXLnr4+U0VmPUqjrQ6qDjzLQqdhxgRpWGMO/HmrMU8ZwuDxvmMv/ggmriXvM3fBGUiyFU0/vGrDLrgadFmNsaPc7f6ONKia4EY9NUJYqXLgBsfhxdvhcAkyLQEEHNBUsZTlh/T2T/E53I83CvdR/v5k6zjEXR42X9HKiZjEqcv9WBMSUEjDnHjK+MMBpWIgGvKU3mo405CiMhijAsUkckwEsJoIl56zBuoirRg88WQBhz41DlkqoKCK7LtApir37uIv9v1tv6xBr4ve5bF0g7a42bSIuP8IbKRx7kRs1bKiDuCVi7i8+I3KdKGKM7NIatmNeis/PGR72MLqjhDMTdnetEt+TybKqzc/XQtI32d/LJ6FJs8h7UpExAKwKVtIJHzmKOY7ZN53C3dR2vEwluSFUSViczOMvD7O+fy8BsneKexh8WzK/jhdRU8W9vN44e7+becU1SELxDLWY566ZemzxuXP4wnGMHa9pxgO5I8S/j/zv0CrPzuR56nQ5N+NArpVSm/6X0mqv5vvwYz/DfwcYXrI21NZpihf9x/lUiVmPUwW9j+fuEamBAMFAuz07k4KCK5uwGTJRvP2CAdsXRyM61MBcJ0hQxYU1QUmXVYDCrqH/8CC0IXeDP5C2z3V3Kv+M+sjhzmh7IJxJZrIf0WDl4cpjug45JTzs9vqmBethGAjHA3HR41RpkFS3gQp6YQ811/Av8k6aOtKKrWoDnzWzj5ONTcxuChJ0n09vI0N9ERT+cfRR0cjZaxSm2EvFWgMUHTa+Afh/0/EkRLqoGwGyVQEz7JUPcPeSv3x9zQsZlQJEA9QudZLfcz9FwiTyhvoDGYzmOqryOOuXgrGGU9j+JGxTWd/0QyTvQECAJzuYgHKXqCeKVQNboTrAtIM2o5GljL3lAVP9fvAFWS4FLculsQLK1VaNVWaLlFdoyfhe/kXyK/pUgxwploHo9zIwAj7ghmrZRXHlzKw7tT2d/Zyu1D7SjzA+zd/nueDK7Fo0jDFYwiE+t4+d0I5pktVpwXGhkyrmVtWYUwNeXoL8EzykW3nNkhG5XqBhYtXMGtJ1JJDwwyGIDzAyIe2XmKaqUDKnN4oX6YNpuHzlEvP6ycYr6/G3JWCuui+mqnu/b0l+1B5t8PnQcEh25LNeStENKGV0b3kwNC6vCKbZq4l76uEbLyij7gQD3D3xYzNa4ZPpINZWkfEKgSs54NZVc72FxZ+J6fa2RReT61NimOwU488mRyM4WJBY6pIBvKzSwuSMETjJBhSCBPL+L1+EJecZWjTzTypHcpDdFc9PiRmgqYlaYnOT2Pru5OFpgl06LVVH+c8LkXyUtRYYhNMq4pxODpYui5+4Q3lVJENG8doeXfA3sTU7t+gNhxiV9FbuKwYjnPmV/jLAV4IzL+5bxEmJDQuldYp4YIBusguQhmrQfkRAAvMa7lJP/SvQZdJMBYRMH3+DJ6JQyQRJ50gluC25CI4ohik+giEQJKEXOLMnlY/jirw0doJw8/oAAgSiJBQoAaAAnMvgNufw312u8xGVXynPp2mHMPzL+fgete5Lfe5Ry80CHMfmx8mXlbvsxKzpIhcXImmEeJZIAHeH362Lzy4FKOtDr47qYSPrtuEQPSTF7ftZM6mwStPpGf3VjOikIDdb1TPPjkPg6eOsOz++pIqriG8rIKYSdTQ+DsYzBzE80hM0q5nEUaB0fGtXgkWuyKdHJFg9xbAmdOn6Ilaua7WxdTZtVxrm+SDdoeNvl3C2K74IvC7eknBfG6kuOPwlC9MKdxrA3664R66rs1L0AQrSu3+SfRuzvJspo/3IF6hr8pZroKZ/ir0enwUGrVT9e09HhJCg/jIJk8pRulWmi9tySq0KtkVy32fHmqjNcHjViivYTdTpaLz+GRGPAZq/D2neUdTxYN/lTKc9KxdzcgV+uxJBtoPXMQq2iMnOE92Cse4Gjxj1HHPJh7diANjIO9mahUyVBIg27wAPGAG3dEgk4W4oHPfZZS+Siltm2cDOVhDDsodx8H3ygUbgB7s9DZJkuAqls5vfBRVA2PoSOKlDgywBuGuTyHFFgXOYKKKLKYh1zpJNfLjqKKxHGJROjFUDV5mJJoF6eiRcgJkSQOIiGMFIghpD+8wIXFf8CamQNyDVGJggPdPl65FCSsTcNqSOCH2y+wo1vMynwNhYGLkD4XychZFjle4rHQBr7PFxHFwjwo3YkxNs5RajjWZuOr64rICHZR6T6J2znCblsSSxLHubVSx+NnfRSmJ+OfGkcy1sbefikJ5nxmF+WilEkAaDm+jcPxSkwGHRmhTiwZWSgkIvpHbDSrF/H3Nyzkm2sL0AbtxLRpHBwUc7zDQcPAFOXpOlIdJ/BkraJw3nrhhLlyXZTaKPxYOPcs1P5asNtZ/QNhjeDZp0CTBsa895ZpXDFj88p1hEptEtFYXHCgTlSRqvsPFtHP8Kljph1+hv92LgsSMD1JQ5Nehsma9ZETOXY0DGFOSSTqcbIgXEe2XkJ98vV4lWlolTL8QxfZsnwO6+ZXIlfr2XGqFXViEpmzqhCd/SPiyhuxXvMdDBo5L43nk23SY3C1QXIhyjO/Q961m2gohMhUjMHbg1mvxGYbxidOIDV/LuWTByiWjBANTtFiWCW856rbIOQDnYmjrXaOD4vQb/lXMhoeBQSxkUmhSjVOvh5uC71GdyyVXaLlXCOvRwqExXAyXEGy1ElSdAqnNIlTisUU0IFONIWCGDFAgrCeLYQGV+FNWAqqIehGb0imJjuJDvsUOxqGeavJRqfdzXdmR7lJ1wbpc2G4gYSeA/x+oppfxz8DwFlKMMds3JPSRpemhlOjCsY6znCNbzfEIzTqV1Lrs7BxUTVL5D3E/GO81jjBgkQXY6p8lpTn0jzkxheOkJ+q5WT3GL+8oKIkRcoc9zs4vDHqJNUYxW7kEhEVsxexo3GM8cFWVsytxsgEx/sCnB7wcc/ibP7PZ6rxer082RAgJFVTmWEQDnw8Jvww0FmE86P5Daj4LFR/TrhfuEGIrkYaoOb2q0+aK2ZsXl5H6PKH6Xf6sCQK7sRqhXRaeGf49DMjXDP8z+IdZThuJKbUCxeOd38hT01NMBZRfsC/aHWxidOXuogMNZCUaKDBpSExs5S8wmLa/AY2VmdRkSzDJU9FrkzAnJZKp92LSiZBO/czmEuXA0KdRCEX8+aolaIsE+okC66ukyRMduBJm4skMEk4uQR90E5cruL4qIZI1kLk/SeQhSZpl84iIXcuSTnV9Lec4phiKYU5OfTKc7F1NLDu3P0oiRBEyLOLgOxYL0W+c/xL5LNcJJ+fSx5HLokiTOaDdKmdhEiMCUkCSbEpMmSTJMWcqAkRAGQIoiUBIoRINZqRl26aji70KhlpehXHO8ewTwXYmDLBt82Ngjtv3krQpPDnd+q5GM1iXJJMWCRHE/cyKjLyZqiGJ+cME3KPkueqo3rhKii+FmtuMd5AmOcaXNjjiYwM9WPWiOiJJFGYn88/bC4jWSvn1TODNAxMsK/ZztpSE1vVTSRIxYxmb+Roj49h1SyK9CESQuN4hlsZiKXhUmdzsMtH/uh+NhfIWZAG8qRMys0aCux7GBoaombOAqFm1nlAGNp8edxYUg74xsDZK/jFqRIhfbawvf+MMNz5MlfM2MRtwxVT0jEepsCkJVUnzB3ssLtnxOt/ER9XuGaaM2b4ZEjMQH1FcVyvkgktz/4YBboPnnbbTzYx1N5A2LwQf04myZ5xOprr6bB72LywlPSSNFwwvb952cbpOtf7mZdtxKxXcba2jTnNz+KLqiClErVnELFCTVfVNyDSjdVxjpLEZUSO/hpV2E5tfBZzRcPodTB0bg9PueazYt01kBpgufMJStmBGj/jqLhZ/SLPBr9KWqSPWBTi0Tg7WM4h5dfRR4JMhpX8c/w+fib/HbJ4DK8UwhEFXmmUlPAgASCAGCUxAkCbein53lOoCSM9+wSUb5puWhiY8PH7Ix2Me4Kk6VQUjb3Ar5rLqc5O5cW3zzA7O5H6cDHzaCMtswipXsvwwDgnJtOxh9Vg8fPtyEnI3ArlNwGgB+5anEvLyBTv9LoolRlwxJNYaQlzoGeQ3ReS2FRh5XzfBO+0Oig0adlYZkHjqQD5fIzj4xjMOQyODPBMsBp9cIiVS9cT66tjd0sTCck53H7NcvQXnsHfncCAxw4li5idZWA2YTj0sFC7uu4RoVsShDFj8gQQy6D/JJjfdR8eOAs9hwWhvsyVMzZViaBMJNTTSIG59EPdiWfqXH9bzDRnzPCJcfnC8XGK5e19NubOW0h5frYwYcOvQmEuIV0TIVWj4HjHKA39Ex+72J6hDJFpVHMyaSsyRQLS4CRSCagkMTIUbjpMm3DN/Qo1ttcpibbSKK3gaPY3eUV5E1OnnqHWJmL94tmsnGUSLqxF16AJ2+jByvXKP7MizY8kvYoQQrZqXGJk/6pB0hhlQGriZ6L7qBK3MooBj0iGEuhRFSOLBgnHQIQKKTG8yJlCh8XbzlN5T+BVmQkQZLyvCRBE64fbL3Cqy8m1FRb+fP8C+tM3oRtv5I+v7USfIOHgoUPcZBqiNnEDXnkS4dZ91GTq+MrmedTea4LhBjAWQNtesDVNf0bHOxzYRh2USoY4MGYkp6CI+7Zu4qHKCM+9c4Ff7G2mrttJUZqWvnEfey8O49Lm0to3wlu2RK5fvYSCsjnEgh46lVW0xTM5GqtipagRje00XlsnLH4IlUpNTtO/Ijr2SyENGIvCuT8Jg4QvixYIacOBM8JIpcyFUPcHqHscOt4SRCut/L3HBt3viRYIMzJzKtGL/B84B2da4f/2mEkVzvCJopRJPlaxPNNqZmAqxoZyM3KJGF8wjFqt47511RgS5Ez6wuhUMnJTNB/rdYeH+znrVFGsdKLt3IHIkI163l1gnYey4Y+oVTJijhYmB1t5I76KsZI7SRo5xoBxEd0BHbNVI8y54SFhZ/2nQWfmicAaTg3HKTRKWTT4FOmuRh6V3Me2WT9nXnEWKQ2/wzbve1xKv40NklPYE0qJKJPYyRp0xWuZF2uk16ckOeoiIE7Ann0DcrcdXXyK09r16HJrOCOZQ3DljzkbFWbyOaaC7G4aodCk4TubSsgwJFCQl8d5p5R5U/sRB6dYIW7gkbG5hNVmImO9LKkq4jPaZkyqMKL2fWiKVkHII0Rwp58EmYrdQ0p+e6iLLQVyOkc9FKs9nHdpSdRpWF2Zz5n2Hl6+MMVtC7J4cGUh19R/nqHuZtriVqJaK0ptEomnfoHp4uNMln+etoFhGh0R7l1XTU2onoxwL2+7s5HnLSHF04nEN4pipB4mh6D1TaF2FfJAavH0Oj8meoWF1v4JIf03WC+kDXOXCynRq06sj56xOcP/PmZGPs3wqcDlD2OfCpBuEIrlLn/4Qx93eRQPwIQ3xOqSNBITpJzuFuo6s9K00/v7KAYmfLwzLGdReT4l7joUabNoTFrH1GAzWMph4ZfRO87Rop7PN0XfIn/zV/nCdSuJF6yms7uL1oybeVj5DQ612YUdak3UH3yZI+1j5JfWUB1upFA6ymOR9cjn3ModC3M4lrCW0aoHKXCeYKruebZHl3Db5tX0p6zmc7pzJDc/xe/sZZi+eohLiYvRMIW1dxua6BjRkq0svO17VKWISc6vYjSsYnlRKkdaHUSiMW6Zk8lPtlRcNaboG3fczE3XXsdSeTttkgLEeit6bxcycwk33PBZqPwspq5tpGUWgGsA8tdA4TqovAXa9tDe1syGUhM3zsngKwXjOEgi26jibK+T3R1eDg4rubbSwmfnZqFXyUguWsrW8G7SOl6iJDeTwkuPYm59BtIXUlWQRUVxKUq5jNBYL4SDpMQcbFBdwtV6HFz94LELTRhd+yC1HORqmHWNUOOa6HsvgjJkCfWu4QaIhcA6R/j3FZHiDDPMRFwzfGJcuQD0o4rllkQVU4HwVQNQtSopx9vHqcjQk5+q/djF9um2/GAXjLaiWPxFxPkrGY3pSe3eDlkLYPad7Gzzsr7MxMpZJg612Xm92cO8ylJMugTWl5l48mgPSRoZOelWnr/g5V5dHWsMowSDfi7Ecxk2byBtoh5RNEROdi5NkQzMyVrOTyq51OvgsMfKt5el0HLuMJfcOupzv0CGxUJufhEJl7YhigeJSbVE5n8JnSxOYlo25vQcWkbcJKllaBSyaesNRFDfNzk9MR1bE/2n32TfVBYF4XZ6XFECSSU0O8VAjDllxUKzw3iX0NxgfnctljEPUosp8p5mtkWFbvQcpprNyJOz2H/JgU4l4+2Ldr60Ko8lBakYNQqUMgkuy2KcTidlgy+T2PMW6v536M29g8lF38WSqGJjuYUc2Tih1n1Yl9wG1tlouveRMbJPMIU0VwrjolQGcHYKQlr9OUgwgtsOphIhYvJPQuc7MFAH2UsFk9LEDGh8WWid15g+obN1hk8DHzfimhn5NMMnxn92BE993wSpOsV0ZDE06cflD+EPxZidZfjI53+AS7sgKevq2oitCZx9ULL5qof+7lAnxRatUNN6l0NtdlqG3Ty4Ml+ICup+z5BPxKvOfCxZBQRa3kJkyMFgP4Gv6CYWLl5Bw+ljLA+8w9+3zWK/00RlghNVwEZBQSFfz7MjEcfRn39SeA9pJURGGonLdcgKVwujnGru4NKkiD/V9lITrGdBwjCvKG9kzBvirkXZwkJwWxP9h57mt865DMiyCAw18VByPXvFK4mlFvH2RTs35cf5x6IRSJkFo22CUFxZT+o9DiONgqBkLwHghzuaONk1zsI8Iz++vnz6h4dJp8Q+FRDqi8+uBUcLweQimjZuu/pvo+dBa3rvdQ4/LIxsEslgshcyFoLfCZEQTPbA4q9B2Zb33tPlhouJXjCVgj7jvQYM18CHHrcZ/raYGfk0w/84HyYu02N9PoTL4nTl89+/j//o+R/gwy5yaeVXC9m7PLgyH7habFfOEqIxlz9MuOMM/oCC152ZXJ8+Rc6cDN6QbKSlvQOn5RoMZ/9Mq7eH5cp+/uSdz7mAhlTxJFL/KH5VGv+02gQBFWz/EvjGYfFDkLUI6a5vCBMpRjtgygaALu8maoL1VA0+x1D53zHmDZGslqO9vITA2ccJzVo21Mzm94c6kVrKSV9UyefsXTw+EmduogeL4xxsfkDwHxOlEKl7k6z51wmiMtEniJm5UrjVZ7B7QMq5vkkW5hk51zfJ7gtDbKqwYtIpGZzwk25Qof/z9eC4RDC5GPFYOwUtj6LPW4xx8AKXuJcCU/V7x8bWBEEPlG6F2t8KzRZiqZCuHG4Aa7Vwe6VwXU4XZl5hr5JSJGz/C8dthv83mRGuGT6VvD9aG5r0E4vHEYtE02L2caKv2f+0j3KrhmfuXTS97e6na2ka8lD/g3UfeLzm3XTkdAu/P0xfZwv5YSfH9etYVFVIjt4DnQfYWr2G07lFdNq9pEjsOFuO8KyhhmdcGjITgkj8g4yrcuj1yfn7Qz7+daUOEpKEZgStCc4+DZt/JYw8GqiDJV+D448gGejkOl8n58v/jr3BUpbkJVGVZcAxFRSi0ZLN3FoivN+Vs0xcGnHxcv0QFekr0brGWJQeZ+W8u8GQJYzhGlawsnidkJIDoa50OQLTZ9B05DVe787igTUL2VRhZfeFIR4/3I0vFCEnWUu6QQUHf0Jk5CxSVTKu+d9GYT+N/uxj0PwqCdc9cnXbua1JSO1d7gQUSYShuZcjrJRZ7/39St5v2gjCZ3XljMIZZmBGuGb4lPJ+AYnF49P1L+BjD1Att2o43D7B3U/X8sy9i7j76VoOt0+wotDwoY+/soX/chpslspDQvp6bphOtRkhfw0PPLYbRc48Hl2pgMkRfmOoQTHaSHJEh8OnZkFxFa/dtYoHnz/NGxdHAfjX21+D1l3CTMTc5UIEUniFgA6ewdxzBHvqAg5FK5iXLdjI5JnACbrkAAAJqUlEQVQ0H4hIL1Ni1tOV7uF0r5MleclUZRVwqNVBQXScDrub5UWpWN9Nv9J/+uq0oSGLY7Fq7q32seTd4bqbKqz4QhGOdzhZV2pBr5IRmGxkpOhedMUrSK3/HWTMB1UyKDRQuA79u58dIKT0rmxfF8sE0RK/+/fL2519M1HUDP8lZmpcM3xqeX+NxaRXYncFrq6rfIy04WWx0iskuIJRVhQarorAPowBp286RZaRlMBbF21kGlWUhNum6zh3P13LSHsDP0g9SsCygC82FZAb7WOL5Bj1+rU88e17p/f34POnaRiYova2BKElPWOusGZp3n3TC41p3wcnf4PdUIW3/QTiJV8he8ENH2kj836vtC2zrbj9ES4OuSiz6pmf++ELtf8jhib9dDk85KSop2uOLn+YDocb87l/w+qsg5zlsOr/+0/ve4YZ/hIzNa4Z/tejV8muqrFkGBIgzns1l49Z63rm3kVU/vAtXMEoeoXkI0Xr/S38OpWMTKOKbfVDSAsSKLQfoF03n4LURJZNDXPWIeNVRyJhoKhyHknabLRn6/n9kQ7+bnkBAL+7fZ6QEjz8MMy+R0iZmSsFEXPbwTUMnW/Dwi9zPlRBUWoN2W1PQ1ICJYXrPmAjczmVOjTpmxY1a2ICOpWMP9X2kqyWs6wwlQ67G8vlz+4/gTVRdVWUm2FIYCoQZqJhD6Xj54RocaBOENvCD6ZcZ5jhk2RGuGb41PJ+AUHEBwTl40Zcl0XLFYxOpw3/0mtemaLUqWTT97fMtvJq/RB39u8kENzDbcvuJ8eUw/I38lnKeZYoO9l8624AJrQF1PdOwvIrdu5oF0TL7xQaJLIWCaLVthu0FmEieuE6NgBwAyQlgO0iFK6jxKy/Ktq6nErtd3qnRavD7iZFpyBZLcdiSGB+rhGLQXWV+PxnuGxrf6TV8f+3d3exVd91HMffHwYZJVRXsnVTKNXIyCRVo5BuBB1uVK2IM154gdli4o0XakAlPmxXXpvoiJr4dLNEfMp8CkuWPSRGjWYM3AplDBkhBtoNynD2wTqU7OvF//xHz0NbTq3n9//3fF437Tk9OeebX5p++vv9f7/vn1tv7mRi+FHee/GndNy5JwurygwRcHhZS3mp0AqpNkBm3uurp2tV3c9nM/OaVu01rkbhNd8W/oNDo1w59EMGX36IjrdtY//UXZw/fYzPrzzIt1/9KNPvuo/9u+dZ6ciby862Vb3JMZq5dHp6bIqxiVfpW3f19jLnXpnm+Og43Z0rZ71ONpdDZy5xfHScgUs/oXdTf3VInXo8C9c7v9j0+5rV8lKhldrU5StVobRMYvtt3SyTgGtvoDo8OlUVUnl4DY9ONXz9XFv4T7w0zrGRcfr7dvLC08P0nPw9d/1niJ6OKboG72f6zHs4ePQCcGTu8OrqzUIrP0e1gNDK66rart6xgs29XXUhD3Bp8jJ9a5tvh5Tf0bpv7Rv54/J7WXZTN1V7/2o3l5i1gIPLCqk2QJo9E5ZrtOV9vmtcjeQbID5x62tsnBjm1M6v89SBvWxdcZIbunth44fYf3svcIRnz47P/WYNzlEtdMbVaOm0dokv31nY7FJhbQD+L8uOZovJvQqtfZ14pL4H3vnh7PkaZy/9i49vXsvGjmnYMMDGf/yZu1ePMv2mO+CfF+HQ9wHYv3sLf/jKjtk/M18m3DCQdazYMHC1X18TZi6V9qxZ9XpA5b0ce7qy546PjmevWUDQ5P0jZ/ZI3H5bN2MTl5t+L7PF5OCy9rWmNzsIm4dXfnB2Tf3sZ7DvlmxzxPp+OPUY/OlBrt/+Bd78mYfhffvgxG+y23DMZ/JC3TkqNgxcPRx8jWqXUmcunUL1Et8LFyY598p0U+8PWSeT2sDr6Vq1oOtkZovJS4XWvvLDr0d/ni3ZvThUf9+nRkYOZwdqb680is6/jhy++v1s1vfXP9fV2/RS4VxLp17is6XOuwrNhh/O7ri7fuvrdwgus9pmxZDNwMYmLrO5t6vp5sdmrXKtuwq9VGjt7fxwNtNav3XJ3PdpviW+/AxYfj0sv162+novwFg5+DfV2ldtM9i8+Sss6R56jfoxXmv7LLMicHBZ+6ptBttGzV8bnQEzKwsHl7WvJu7X1TJnn66+GSNkW+UnLzTe2LFAs50BMysDX+MyK5LOm6vPdeXnvjoX75b1850BMys6z7jMiiQ/17UIvQxnM9cZMM+6rAwcXGZFs0i9DGez0PZZZkXhpUKzoqntZdhkOyizpc7BZVYki9TL0Gwpc3CZFcki9TI0W8p8jcusSBapl6HZUuYZl5mZlYqDy8zMSsXBZWZmpeLgMjOzUnFwmZlZqTi4zMysVBxcZmZWKg4uMzMrFQeXmZmVioPLzMxKxcFlZmal4uAyM7NSUUS0/kOli0A73qfhRuDl1EUUiMejmsejnsek2lIfj96IuGm+FyUJrnYl6UhEbEldR1F4PKp5POp5TKp5PDJeKjQzs1JxcJmZWak4uFrrB6kLKBiPRzWPRz2PSTWPB77GZWZmJeMZl5mZlYqDKxFJ+ySFpBtT15KSpG9IOinpmKRfS7ohdU0pSBqU9FdJpyV9NXU9KUnqkfQ7Sc9Lek7SntQ1FYGk6yQ9K+mR1LWk5uBKQFIP8AHgbOpaCuAJoC8i3gmcAr6WuJ6Wk3Qd8F3gw8AmYLekTWmrSuoK8KWIeDtwB/DZNh+P3B7g+dRFFIGDK41vAV8G2v4CY0Q8HhFXKg+fAtalrCeRfuB0RJyJiH8DPwM+lrimZCLipYh4pvL9JNkf67Vpq0pL0jrgI8CPUtdSBA6uFpN0DzAaEUdT11JAnwYeTV1EAmuBczMej9Dmf6hzkt4CvBs4lLaS5B4k+2f3tdSFFMHy1AUsRZKeBG5p8KMHgPuBD7a2orTmGo+I+G3lNQ+QLREdaGVtBaEGz7X9bFzSauCXwN6ImEhdTyqSdgFjEfEXSe9PXU8ROLj+DyJioNHzkt4BvBU4KgmyZbFnJPVHxPkWlthSs41HTtKngF3AjmjP8xkjQM+Mx+uAFxPVUgiSVpCF1oGI+FXqehLbBtwjaSewEniDpB9HxL2J60rG57gSkvQ3YEtELOWmmXOSNAh8E9geERdT15OCpOVkG1N2AKPAYeCTEfFc0sISUfZf3UPA3yNib+p6iqQy49oXEbtS15KSr3FZat8BOoEnJA1J+l7qglqtsjnlc8BjZBsRftGuoVWxDbgPuLvyOzFUmW2YAZ5xmZlZyXjGZWZmpeLgMjOzUnFwmZlZqTi4zMysVBxcZmZWKg4uMzMrFQeXmZmVioPLzMxK5b+Yf+5Q1HghygAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(7, 7))\n", + "plt.plot(chains[0, :, 0], chains[0, :, 1], 'x', alpha=0.25)\n", + "plt.plot(chains[1, :, 0], chains[1, :, 1], 'x', alpha=0.25)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can now get a good idea of what's going on: The parameters $k_1$ and $k_2$ form a ring in parameter space, along which model output is identical. Using sampling allowed us to spot this error in our model formulation." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note however, that the default adaptive method doesn't always do a great job of finding the _full_ circle, so that some experimentation with others methods might be required." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 9145f26aacdac12a3f56fc73efe802bdd69bc255 Mon Sep 17 00:00:00 2001 From: Michael Clerx Date: Tue, 12 Feb 2019 10:46:05 +0000 Subject: [PATCH 2/4] Added new notebook about optimising a loglikelihood --- .../optimisation-on-a-loglikelihood.ipynb | 291 ++++++++++++++++++ ...-spotting-unidentifiable-parameters.ipynb} | 4 +- 2 files changed, 293 insertions(+), 2 deletions(-) create mode 100644 examples/optimisation-on-a-loglikelihood.ipynb rename examples/{optimisation-followed-by-mcmc.ipynb => optimisation-spotting-unidentifiable-parameters.ipynb} (99%) diff --git a/examples/optimisation-on-a-loglikelihood.ipynb b/examples/optimisation-on-a-loglikelihood.ipynb new file mode 100644 index 000000000..52770baab --- /dev/null +++ b/examples/optimisation-on-a-loglikelihood.ipynb @@ -0,0 +1,291 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Optimisation: Maximising a loglikelihood\n", + "\n", + "As well as minimising error functions, PINTS optimisation can be used to find the maximum of a loglikelihood (or of any [pints.LogPDF object](https://pints.readthedocs.io/en/latest/log_pdfs.html#pints.LogPDF)).\n", + "\n", + "Following on from the [first example](optimisation-first-example.ipynb), we can define an inference problem using the [logistic model](https://pints.readthedocs.io/en/latest/toy/logistic_model.html#module-pints.toy):" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8W9X5+PHPkS3vvbedOM5wdmKyw0gIDRsKtEDZs0CBUlpKyxd+LV1AaSkUSglQNmGWJmwyIAlkkD2deK94721rnN8fkh2b2IkTLMuWnvfrpZelu/RcbriPzrjnKK01Qggh3JfB2QEIIYRwLkkEQgjh5iQRCCGEm5NEIIQQbk4SgRBCuDlJBEII4eYkEQghhJuTRCCEEG5OEoEQQrg5T2cHMBARERE6JSXF2WEIIcSIsn379mqtdeTxthsRiSAlJYVt27Y5OwwhhBhRlFKFA9lOqoaEEMLNSSIQQgg3J4lACCHcnCQCIYRwc5IIhBDCzUkiEEIINyeJQAgh3JwkAiGES6tu7uDjPWXODmNYk0QghHBpr24q5I43d1Df2unsUIYtSQRCCJeWW9kMQGl9u5MjGb4kEQghXFpulS0RlDe2OTmS4UsSgRDCZVmsmvzqFgDKGqRE0B9JBEIIl/DqpgLueGNHr2Wl9W10mK0AlEnVUL8kEQghXMKKXaV8vLeMpnZT97KuaiEYXiWCw/VtbMypdnYY3SQRCCFGPJPFyr7DDQDsL23sXp5bZasWSgn3c0obgcWqMVusRy1/YlUW17707bDpySSJQAgx4h0qb+quAupKCAB5Vc0E+xqZGBfslKqhX7yzi5tfPXoulV3F9Zgsmk/3lQ95TH2RRCCEGPF2l9QD4Gv0YG+PRJBb1UxqpD+xwT6UNbSjtR6ymMwWK2syK/kmp4Z2k6V7eVO7qbvKauWu0iGL51gkEQjhIg6WN2K1Dt2NbjjZVVRPuL8X88dEsLekZ4mghdGRAcQE+9BmstDYZh6ymPaXNtLcYaazR7UVwN7DDWgN05NC2JxfQ0Wj89suJBEI4QLWHqxg6T82DJuqhqG2u6SeqYkhTEkIJq+6haZ2E03tJiqbOkiNDCA22BeA0objtxNkljVyyp9Ws72w9nvFtDmvpvv9tsK67vd77InqgXMmoDXDYvgLSQRCjHBmi5W/fHIQgG3f8+Y1EjV3mMmubGZqQgiT44MB26/xPHtDcWqkP7EhPgCUH6fnkMli5Vfv7aaqqYMN2d+vV8+mvBrGRAWQEu7H9h6JYHdxPUlhfmSkhJEeG8TK3c6vHpJEIMQI9972ErIrmwnw9uz+tfl9VDV1UDkMqisGam+JraplamIwk+yJYG9JQ3c9/OjIAGKDbYngeF1In1uXy77DjfgYDb16H50os8XK1vxa5owOY2ZyGDsK67rbJ/aUNDAlwRbnBdPi2FVcT1FN60l/12CQRCDECNbaaeaJ1VlMTwrhsowE9pc29Nld8UTctXwnt76+fZAidLyuhuKpCSFEBnoTG+zD3sMN5FW14GlQJIf7ERngjUFB2TGqhg6VN/HkmmzOmxLLWekxHPgeiWBfaSMtnRbmjo4gIyWUmpZO8qtbqGrq4HB9G1MTQgA4f2ocAB/ucW6pwKGJQClVoJTaq5TapZTaZl8WppRapZTKtv8NdWQMQriy/3ydT0VjB789ZwLTEkNoN1nJqmg+/o79aOkws7Wgln2HG3r1dBnOdhfXkxzuR6i/FwCT4oPZd9hWIkgK88PoYcDTw0B0kE+/JQKzvUooyMfI7y+YyMS4IA7Xt1HXcnL9/Dfl2toHZo8OY2ay7Ra3vbCOPV1JK9GWCOJDfMlIDmXlrtI+ezR936Q+UENRIjhDaz1Na51h/3w/sEZrnQassX8WQpyg2pZO/r0uj7PSozklJYwp9l+ZXTebk/FtQS1mq8Zk0RwsbxqsUE9KWUMbK3Yd5s+fZHL1i1t4dVNBn9vtLq7v/oUNMCXe1mC8p6SB0ZEB3ctjgn36bSPYkFPNnpIGHjo/nfAAbybG2apuDpSdXKlgc14NaVEBRAR4MyYygCAfT7YX1rG7pAGDgknxQd3bXjwjnkMVTWzO692+s7WgltMf/4qD5SdfMhkoT4d/w9EuBE63v38F+Ar4tRPiEGJE+3RfGc0dZu4+Mw2wPT0b5OPJ7pIGLp91csfcmFONQYFVw96SeqYlhhx/Jwd4Z2sxD67YR4fZipeHgWA/I5vzapiXGsGYqCM398rGdkob2rt/YQNMste/H65v47wpsd3L44J9yeznpro5rwajh+Ks9BgA0uNsN+r9pQ3MHxMBVitYzWA1gdVif28B3eO91Qzaislsoq5gFxdNiISy3RisFi6LKacyt4C2QCMXh7Xjd3gTaCtoK5eFmNnsd4BvPs1j7pI00Fa0trD2s4PM72wn2X/GoP/3/S7lyAcslFL5QB2ggee01suUUvVa65Ae29RprY+qHlJK3QLcApCUlDSzsLDQYXEKMRLd+PJWsiqbWP+rM1BKAXDVC1uoa+3k47sWntQxz3lyA0G+nmRXNLNofBR/vWzqYIZ8XG2dFh5csY/3tpcwLzWcB84Zz9hwTxob6rnq2bVMiTLyyPmpKFMbmNrYnV/KaxsOctfCeJKCDGBqp7Wthde/zsKbThaOCmR0qBHMHRwqraGyrpEFowJRFhNYOsH+t6yuCU9tJtLPYFtmtdDW0Y4RC55YsN3CnOSOrRA59qR2VUpt71Eb0y9Hlwjma61LlVJRwCql1MGB7qi1XgYsA8jIyHDPp2SE6Edbp4Wvc6q5YlZSdxIAmJIQzLL1ebSbLPgYPU7omLUtnRwoa+TeJWPxMXoMSg8kAExtWJur+XrPQebEGvDqbIC2Omivh7Z6OprrqK2poqWxlvaWem4xt/D/gkwEVLejXmgGbSUc+BSgEnjxyKGnAlONwOYjy/xQXO3pRbs24l/jD00+4OlNhBnatAWL2RdPow94B4GHF2blybcV1YyOCSEyMQI8jGDwZH1mDbXtVq6YMxoMRjB4gMGzx8vD9lIeR9YpD744WMUHu8p57NKpBPr5gDKQWdHCXz7LwoqBa+ePZkl6LChl21cZaDFZuPm1nUyKD+XXZ0/gjuU7MVsV/756Jp4hSYNzHY7BoYlAa11q/1uplPoAmAVUKKVitdZlSqlYbJdWCHECNuZW02G2snhCVK/lUxJCMFs1B8oamZF0Yv0wuho4542JwGSxsj6ritZOM35efdwmrFZoqYTGUmgqs78qoLkCmiuhpcr+qgZTCwbg1D6+U3v40GjxodXqS4vyx+ATRGj8aALDI8A7ALwDwcsfjP5YjX789csSSlsN3LV0Cu/vreOL7EYmJEbzz2vmgaeP7eVh5O7XtvPFgQp23rcEL3sj8uY9Zdzx5g4+O28h42OO1NFvzq7m7l1beGXJLBgb2b18v2cWT6/N5qIFS/H1GnhSfW3rFiojOwicceSMU0ZZ2PjZ55itml9PXQD26qsu/kDGvHCeWpuD2uPDZzXRPPuTGXjGxTIUHJYIlFL+gEFr3WR/fxbwMLASuBZ4xP53haNiEMJVrTlYib+XB7NHhfdaPjXRdoPZU1zPjKRQzBYrf1uVxflT4rrrvfuzMbcafy8PpiQEU9fcQbiup2jnGsZ710JdAdQXQn0xNBTbEoDV9J0jKPCPhIAo29/wVNtfv3DezWxjdYGJVs9g/nnDIkLCosA3lLvfy+Tz/eW8dP0pnJIShtGj//4rBuCcqAYueOZrVrxvwdcYyk1nzODmU0eDj7HXthdMi0NDd08isDUWg+1Zgp6J4Nv8GgyK7t49XSbGBWHVkFk+8KRqsljZVlDHjzISei339fJgYlwQmWVNjIsJ7HPf6+aP4vkN+Ty3Po+piSEsnRQzoO8cDI4sEUQDH9iLrZ7Am1rrz5RSW4F3lFI3AkXAZQ6MQQiXo7VmbWYlp46NxMuz940zJsiHyEDv7mqdp9Zk8+xXuTS2mfjTxZOPPpjFBLV5UHmAMZmf82JgOcbn/8Simly2+rTY62MAFATFQUgSJM6C4AQIirctC4y1vfwjwePoW4rZYuXPX65mVII/u4rreWqvkYfOj2VHUR0rd5dy56IxzEuNGNC5T04I5sFz0ymtb+PW01KJDPTuc7vzpsRx3pS4Xsu6Hyr7ziikW/JrmRQfTIB379gndjcYDzwR7Cmpp81kYW5q+FHrrp8/ipzK5qOuWZcwfy+umJXEf77J5/6l43tV+TmawxKB1joPWxXed5fXAIsd9b1CuLr9pY2UN7azaHzUUeuUUkxNCGZXST2bcmv455c5KGXrw057I5TthvI9UL7X9qo61P3L/lqtaDHEQkA6huR5PL7NTEBsGj+9eIntxu/Z9033u7TWvW5i2wrrqGs18aeFo1l3qIrXNxdyw4IU/vjRASIDvfnpaakndP43LBh1Qtt3iQq0PVRW3uOhsnaThZ3F9Vw7N/mo7eNDfAn2NXKg9EhbyZa8GsbFBBLi53XU9nCkem3WqKMTwUXT448b469+MI4z06P6TCSO5Izuo0KI72FNZiVKwRl9JAKwtROszSznn8s/4K6gbM4MKMK3ahf6kTJUV++XgBiImQxjFkNUOquqw7hzVTMf/PRMJsTafgkfqtpGblUzPw233ajf3VbMptwaHr9sKgZD379Wv8mp5qevb+f92+YxNtpWBfLF/gq8PA2cNjaSaYkhfLDrMNf851vyqlp47JIp+HsPzW3I08NAVGDvh8r2lDTQabb2eeNWSjExLqh7qInl3xbxm//uZVx0IG/dMqdXtVOXTXk1jI8JJKyPdQPh6+Ux4NLRYJJEIMQIs/ZgBdMSQ4gI6PEL3Wqx/dov+Jqf5K7hOu8tBJnbwAydKpz1OgnjlMtInrwQYqfa6vF7+OTtXfj7K8ZFH6m/nhIfzKoDFTS2m6hoaOeBD/bRabFy+vgoLpjau9qly6oDFTS1m/nDRwd49QbbwwxfHChn4ZgI/L098ff25Nq5yTy/IZ/02CAumZnQ53EcJSa4dyL4Nr8GpeCUlL6rfibGBfHKpkI+21fOAx/sZVpiCAfKGrn2pW9546bZBPZom+gwW9heWMcVsxzfy2ewSSIQYgSpbGxnd0kDv/rBOFuDbfYqyF0LeV/ZumMCIWFj+J9hAdGTTmPBGefS4ZvAzQ+v4u6gNH6ednR/9H2HG/hoTyk/nJ7Q65f+FPtDWruL6/nr54cI8PEkzN+Lv31xiLMnxfTZsLutsBYvDwMbsqv56lAVUUHelNS1ceeiMd3b3H76GPKrW/jZojQ8+ilZOEpciA+HejwxvSW/lnHR/Vf1TIwLptNs5Y43dzAxLpg3bprNptwafvr6dm58eRuv3DCru0fR7uIG2k1W5owe2mqdwSCJQIgh9udPMqlobOfJy6ef2I5a886HH3OP54fcuD8b1u2zLQ+Mg/HnQeoZkLIQj8BoLrbq7pt6IDAuOrDXUMhdWjvN3LV8J+H+3tx/9vhe67qGdH7wf/soqGnl6Sun4+flwQ0vb+PtrcVcNad3vXpTu4kDpY3celoqn+8r5w8fH+DsSTEYFJw5Ibp7u1B/L1649pQTO/dBEhPky1eHqtBaY7ZqthfWcdkxSiVdDcbxIb7857pT8Pf25Mz0aP7+42nc/dZOfv/hfh65ZApgax9QCub0Uc003EkiEGII1bV08vLGAjrNVn69dDxxIb7H3kFrW5XPvvdp2f0BP2spxuppwOA3G878HaT9AKIm2B5O6uG7dfgzkkP5cFcp1h4JAuDhDw+QX9PCGzfNPqrOO8zfi4RQXwpqWjl3ciznTYlDa01GcihPrcnmkhkJvfrX7yyqx6phXmo4M5NCuenVbTy3Lo+M5DDCAwbW0OxocSE+tHZa+PFzm+mwWGnttPTZPtBlTFQA/3fuBH4wMaZXD6ULpsaxp7ieF7/J5+q5yUyMC2ZzXg3psUEE+xn7Pd5wJcNQCzGE3t9RQqd9kvWPjjX0cH0RrPsrPDMLlp2G3vwvdjaH8UzgXVh+cQhu+AwW3APR6Uclgb7MTAqlyT6BS5dP9pbx1tZibjsttd8GylNSwgj39+LhCycCtgbUX589nsqmDl7eWNBr260FtRgUTE8KZfGEKBaMicBs1Zw1MbqPIzvH6eMimT8mHKXA12jgrPRoTh3bf+OsUoqbFo4mMczvqHV3Lk4jxNfIHz/KpN1kYXtR3YisFgIpEQgxZLTWvLmliBlJtqd/V+4u5ZZTe3SdNHfAwY9h52vo3C9RaNri5lC74C/86sAo9tUa+Pj6hRiDjr4pHU/PoZDHxQRS39rJAx/sZWpCMPcs6X8cm4cvnEibydLrF/0pKWEsGh/Fs1/lcM3c5O5eP1sLapkYd6Q//u8uSOfB/+3vt2HZGcZEBfLGTXMG5VjBvkbuWTKWh1bs56+fH6LTbGXuCE0EUiIQYohsyqshr7qFn8xO5oKpcew73EheVTM0HIa1f4QnJsJ710N1NttTbmZ++5NMyLuL+auT2Vhq5bFLp/b5y3QgksP9CPf36m4n+NsXWTS2m3nkkinHfJo30MdIVKDPUct/tmgMje1m3tteAkCn2crOonoyevS+GRMVyPJb5hAVdPT+ruLKWUmMiQrgxa/zMSg4ZVSYs0M6KVIiEGKIvLmliGBfI+dOiaW+1cSKTz/G9PZLULPWNiTx2KVwyk20JZ7KrX9dx+gUf+6bk4yv0YOEUL/jDhFxLEoppieFsqOojn2HG3hjSyHXzE3pfmbgRM1ICmVaYggvfZPP1XOS2VfaQIfZyqyUkXkjPFmeHgYeOHcC17+0lYlxwQT7jrz2AZBEIMSQqG7u4PP95Vw1OwmfonXEfP0EH3qtp7naDz33dtSsmyA0BYB3NhZQ09LJv6+eySmDeGOdmRzK6swK7ntvD6F+XsesEhqIGxeM4s7lO/nyUCU59raHDDdLBABnjIvi5oWjuiezGYkkEQi3Z7ZY2XO44YRH6zwR720rZrbew32lf4Md2yAwlh3j7uXa3RNYPuksJoXabiImi5Vl6/PISA4d1CQAR9oJDpQ18tglU773r9elk2KIDfbhP9/k42v0ZFSEf79j/7i6B85Nd3YI34u0EQi3t3xrMT/810byq1sccnxrwSbmrb+K173+gm9rOZz7d7h7N6MuuJ82gz8f7j7Se+ijPaUcrm/jttNPbPydgZiSEIzRQzE1MYRLB+GJXqOHgWvmpvBNTg1f51SRkSzTj49UUiIQbu+L/eUAHCxrZFSE/+AduOoQrP49hkMfE6ND2DX1QaZdcGf34G2hnrbujC9vLAAFtywczbNf5TIuOpAzxvU9jtD34WP04D/XnUJqZEC/YwWdqCtmJfLkmizaTdYR21AqpEQg3Fxju4nNebYRI7Mqmo+z9QC11cOn98O/5kLBBj6MuInz1VOMP/+eo0bw/ONFk1k6KYZl6/OY+8hasiqaue301EG7UX/XwrTI4z/EdgJC/Ly4ZIatdDHYVVli6EiJQLi19VlVmCwaT4Miu7Lp+Dsci9UKu16H1b+D1lqYeR11c+7j3n/s5srZSX1OHRkT7MOTl0/njjPG8OTqbGpaOnpNuD4S3Ld0PAvTIga3NCWGlCQC4dbWZFYS6mdkamJId8+XY2lsN7E2s5KNudXcvHA0aV2jdVYehI9+DkWb6IibhffVH0DsVN7fkEenxcrlsxKPedyx0YE885MZg3FKQy7Y18jSSSMreYneJBEIt2W2WFl7sJLFE6KIDPRmY04NZosVzz4esMqraubPn2Syzl6CANvgab9ZkgobHocNf0d7B/CQvo2Pys7gFUsyk7Xmra3FTEsM6TU1ohDDjbQRCLe1rbCOhjYTSyZEkxYVSKfFSlFta69trFbNKxsLOOepDWwtqOP6+aN4/7Z5pMcG0VywE55fBOsehYkXUfDjr3itYyHNnRaufH4Lz67LJaeymSuOUxoQwtmkRCDc1uoDFXh5GFg4NpJce7VQdmUzoyMDANs0hje/uo0N2dWcPi6SRy+ZQnSQD1gt3GlcwZkVL6H9w1CXL4fx57Bn12EAll2dwZ8+yeSxzw7h7+Vx1Ny5Qgw3UiIQbklrzerMCuamhhPg7UlqlO3m37Od4IsDFWzIrubB89J56bpTbEmg4TC8cgFnVz7P55aZVF3zFYw/B4ADpY14eRhYkBbBO7fOZWFaBLecmjpkUzEKcbLkX6hwS7lVLRTUtHKjfSL0AG9P4kN8ya440nNofVYVwb5GrpuXYpuM/eAnsOJ2MHeSu+BxfrY6lpfqjETZR1neX9rI2JgAjB4Gwvy9eO3G2c44NSFOmJQIhFt6d3sxAIt7zJw1Jiqge7x+rTXrs6pYmBaBh7bAFw/CW1dAcCLcup7IBdcBigNljd3b7y9tYGLsyB1vRrgvKREIt1Na38bL3xRw8fT4Xg9XpUUFsDmvBotVk1XRRGVTB0uSDfDaRVCwATJuhKV/AU9vgoCkMD8OlNoSQVlDO3WtJibGS+8gMfJIIhBu5/EvDqGBe8/qPfpmWnQAHWYrh+vaWJdVxWSVx3mb7oX2OrjoWZh2Za/t02ODuksE++0JYeL3GCpaCGeRqiHhVvaXNvDBzsNcPz+FhNDek7yMibI9HJZd2UTHrvd41/thPDw84cYvjkoCAOlxQeRXt9DcYWZ/aQNKIc8LiBHJ4YlAKeWhlNqplPrI/nmUUmqLUipbKfW2UsrreMcQYrA88ulBQnyN3H76mKPWjYkKADS+Gx/n7ro/Ux0wDm7+EmKn9nmsrl//B8sa2V9qG7BOegiJkWgoSgR3A5k9Pj8KPKG1TgPqgBuHIAYhWJ9VxYbsau5clNbnWPzBRs0zfs8zr3gZ71sWUnz+2xAQ2e/xumYMO1DWyIHSxhE9MYlwbw5NBEqpBOBc4AX7ZwUsAt6zb/IKcJEjYxCiy/92HSbM34ur5iQfvbKjCd78Eedav+Lvpkv5P+5gRmrMMY8XE+RDqJ+Rb3KqOVzfJu0DYsRydDn2H8B9gH1kLsKBeq212f65BIh3cAxCALAlr5Y5o8Pw8vzO75+mCnjjUqjYz4qk3/JU1iQWp0Xg7Xn0aKE9KaVIjwti7cFKQBqKxcjlsBKBUuo8oFJrvb3n4j421f3sf4tSaptSaltVVZVDYhTuo7i2lcP1bcwZHd57RX0RvLQUanLgyrdpnng5AKeN679KqKf02KDuQeikakiMVI4sEcwHLlBKnQP4AEHYSgghSilPe6kgASjta2et9TJgGUBGRkafyUKIgeqafKZXIqjOgVcvtFULXf0/SJrNwppWZiaHsnTisauFunS1E8QG+xDmL/0exMjksBKB1vo3WusErXUKcDmwVmv9E+BL4FL7ZtcCKxwVgxBdNufVEubvRZp9TCHK99lKAuZ2uO4jSLINB5EU7sf7t80jKshnQMdNtz9JLNVCYiRzxnMEvwZ+oZTKwdZm8KITYhBuZnNeDbNHhdnGDCrfB6+cDwYjXP8pxE456eOmRvoTGejN3NSIQYxWiKE1JJ2etdZfAV/Z3+cBs4bie4WAI+0Dt5w6+kgS8PSxlQTCU7/XsT09DGy47wy8+pjMRoiRQv71CpfX1T5wWnDFoCaBLj5GD4dNNi/EUJBEIFze5rxapvtVkfzJTwY9CQjhCiQRCJdXkJPJi4Y/orSGa1ZIEhDiO2RgFOHSDhfn87f2h/D3aodrPoXIscffSQg3IyUC4bra6vF/50dEqnrKzn8dYiY7OyIhhiVJBMI1mdrhrSsJaM7jF4b7SJp8mrMjEmLYkqoh4XqsFnj/Rij8hsf9f0Vb+KnSq0eIY5ASgXAtWsOn98HBjzAt+RPP181gSryMASTEsUgiEK5l09Ow9QWYdyd7E3+CxaqZnCCJQIhjkUQgXMeBFfDFg5B+IZz5MHtLGgCYIolAiGOSRCBcQ8k2+O8tkHAKXPwcGAzsPdxARIAXMQMcQE4IdyWJQIwom/NqWH2ggtZO85GF9cWw/HIIjIErloPRF4C9JQ1Mjg+2DTQnhOiX9BoSI0aH2cKNL2+lpdOCl6eBOaPD+fnCOGasuQLMHXDdx+BvGwW0tdNMdmUTP5g0sHkFhHBnkgjEiLE5r5aWTgv3LhlLfZuJlTtLaHr7IbRlP+rKdyByXPe2B0obsWqkx5AQAyCJQIwYazIr8DEauPnU0fgYPbiw/mWm5GyifM5DxKQt6bXt3sO2hmLpMSTE8UkbgRiWzBZrr89aa9ZkVrJgTAQ+Rg84sJIpOc/xruU0XrKefdT+e0saiAr0JloaioU4LkkEYtgpqmllzl/W8OLX+d3LDlU0cbi+jcUToqHyIPzvNoifyRej7uOjPeVYrb2ntd5zuEG6jQoxQJIIxLBisWrueWcX1c2d/GN1Fg2tJgDWZFYCsDjFG966Eox+8OPXOXtaCofr29hZXNd9jJYOM7lVzUyOD3HKOQgx0kgiEMPKv9flsr2wjttOT6W5w8xz63MBWJ1ZwZS4QKJW3wX1hfCjVyEojiXp0Xh7Gli5q7T7GPtLG9EaJifIhPJCDIQkAjFs7DvcwBOrsjh3Siz3/WAc50+J46VvCjhY3siu4nruD/gYsj6DpY9A8lwAAn2MLBofxcd7y7rbFfaU1AMwSXoMCTEgkgjEsGC2WLnn7V2E+Xvxp4smoZTiniVj6bRYufnVbcxXe5lb9BxM/hGcclOvfS+YGkd1cydrDlby4tf5LFufR3yIL1GB0lAsxEBI91ExLGRXNpNd2cxjl04hxM8LgFER/lw2M4H1W3fytM/TEDUBzv8HfOdJ4TPGRxHg7cmtr20HYNaoMO4/e/yQn4MQI5UkAjEs5FY1AzD5O9U5d52ezOV7rsfHYEH96DXw8j9qXx+jB3cuGsPeww3csGAUM5JChyRmIVyFJAIxLORWtqCUrRTQU9zWR4hTObRd8BJEjOl3/1tPkwnphThZ0kYghoXcqmYSQn1tD4t1yfwQNv8LZv8U32k/dF5wQrg4SQRiWMitaiY1MuDIgtp8+N8dEDcDljzsvMCEcAMOSwRKKR+l1LdKqd1Kqf1Kqd/bl49SSm1RSmUrpd5WSnk5KgYxMlitmryqliOJwNwB711ve3/ZS+Dp7bzghHADJ5QIlFIGpdRAn9LpABZpracC04DY3Tj0AAAfZklEQVSlSqk5wKPAE1rrNKAOuPFEYhCup6yxnTaT5UgiWP17KN0JFz0DoSlOjU0Id3DcRKCUelMpFaSU8gcOAIeUUr863n7aptn+0Wh/aWAR8J59+SvARScVuXAZuZW2fyapkf5w6DPY/AzMugUmnO/kyIRwDwMpEaRrrRux3bA/AZKAqwdycKWUh1JqF1AJrAJygXqtddf0UiVAfD/73qKU2qaU2lZVVTWQrxMjVFfX0TTfRttgcjGTYckfnByVEO5jIInAqJQyYksEK7TWJmy/7I9La23RWk8DEoBZwIS+Nutn32Va6wytdUZkZORAvk6MULlVzYT6GAj97HZb+8ClL4FRngoWYqgMJBE8BxQA/sB6pVQy0HgiX6K1rge+AuYAIUqprucXEoDS/vYT7iG3soX7/D9CFW6Ec/8GEWnODkkIt3LcRKC1fkprHa+1Psde718InHG8/ZRSkUqpEPt7X+BMIBP4ErjUvtm1wIqTjl64BP+Kbfy45U3bOELTrnB2OEK4nYE0FkcrpV5USn1q/5yO7QZ+PLHAl0qpPcBWYJXW+iPg18AvlFI5QDjw4klHL0a8xvpqfmd+giafOFtpQAgx5AYyxMTLwEvAA/bPWcDbHOcGrrXeA0zvY3ketvYC4cK01lQ2dRx7qkitsay4m2jq2DH/LWb7yPwBQjjDQNoIIrTW7wBWAHuPH4tDoxIj3gsb8lnw6FpK69v632jXm4Tmf8QT5kuJmjB/6IITQvQykETQopQKx967x/5QWINDoxIjWlunhefW52KyaNYcrOy1rqKxndte305B1h745FcUBs3gRS4gMdTXSdEKIQaSCH4BrARSlVLfAK8Cdzo0KjGivbW1iOrmTgK8PVmbWdFr3dtbi1m1r4S2t27A6mHkmZD7SAoPxNNDhr0SwlmO20agtd6hlDoNGAco4JD9WQIhjtJptrJsfR6npIQyOT6E17cU0tppxs/LE601K3eX8v8CVzLBlM2T/g+ytdaXcdEBxz+wEMJhBtJr6BrgSmAmMAO4wr5MiKP8d0cJZQ3t/GxRGosnRNFptrIxpwaAQxVNhFVt5SrT++QmXMwThyeQX91CatTRk80IIYbOQMrjp/R4LQR+B1zgwJjECGW2WHl2XS6T44M5NS2CU1LCCPD27G4nWLU9i394/QtrSAqpVz/N1XOSARgTJSUCIZxpIFVDvdoDlFLBwGsOi0iMWJ/tL6ewppV/XzUTpRRenoqFaRGsPViB1TqJCTt+R7Sqw+PSd8E7gIfOT2dqYghLJ8Y6O3Qh3NrJtNC1AjIGgDjK5rwaAn08OSs9unvZovFRVDR2sGXFs5xp2cCBsXdAwkwAjB4GLp2ZgK+XR3+HFEIMgeOWCJRSH3JkYDgDkA6848igxMiUVdHM2OhADAbVvez0cVEkqCom7X6YbdZxpF3wf06MUAjRl4E8Wfx4j/dmoFBrXeKgeMQIpbUmu6KJpZNiei2P9PfkuYBl0AnvJv4fjwbIqKJCDDcDaSNYNxSBiJGturmTulYTaVGBvVd8/QQTTfu5x3Qbp2XMdE5wQohj6jcRKKWa6HuuAIVtAjIZGEZ0y65oAmBsdI9EcHgHfPUX2sddSHjA1UeVFoQQw0O/iUBrHdjfOiG+61B3IrB3Be1sgf/eDAEx+Fz0JP/nG+rE6IQQxzKQNgIAlFJRQHcFr9a6yCERiREpq6KZYF8jkYHetgWf/xZqcuHaD0GSgBDD2kCeLL5AKZUN5APrsM1W9qmD4xIjTHZFE+OiA1FKwcGPYfvLMP8uGLXQ2aEJIY5jIM8R/AHbFJNZWutRwGLgG4dGJYYti1Wzs6iOzLIjs5VqrcmqaCItOgCaKmDlnRAzBc6QrqJCjAQDqRoyaa1rlFIGpZRBa/2lUupRh0cmhpWsiib+/VUuX2VVUdvSSbCvkW8fWIy3pweVTR00tpsZG+UP/7vN1j5wyQvg6eXssIUQAzCQEkG9UioA2AC8oZR6EtvzBMKN/Pr9PXxxoIJT0yK4/fRUGtpMrDtUBdiSBMDCuv9C7hr4wZ8gcpwzwxVCnIB+E4FS6mml1HzgQmzDSvwc+AzIBc4fmvDEcNDUbmJPSQPXzUvhH5dP554lYwnz92Ll7lLA1lA8ThUxaudjMHYpZNzo5IiFECfiWFVD2dieKo7FNkfxcq31K0MSlRhWthbUYrFq5qWGA7Yxgs6dHMu724tp7jCTV1rN097/QvkEwwVPg1LHOaIQYjjpt0SgtX5Saz0XOA2oBV5SSmUqpR5USo0dsgiF023KrcHLw8CM5CPdQC+cFke7ycqqA+XMzX+KNIrgomchINKJkQohTsZx2wi01oVa60e11tOxTVDzQyDT4ZGJYWNTXg3Tk0LwMR4ZJXRGUijxIb7kb/qA89pWsjHiMkg704lRCiFO1kCeIzAqpc5XSr2B7fmBLOASh0cmhoX61k72lzYyLzWi13KDQXH5BG+uqXiMTGsi+dPvc1KEQojv61hjDS0BrgDOBb4F3gJu0Vq3DFFsYhjYkl+L1jDX3j7QzWrl+qpH8KCdy03/x59iw/s+gBBi2DtWY/FvgTeBX2qta4coHjHMbMqtwcdoYGpicO8Vm58hoGQ9//C9nZyOhN6DzQkhRpRjNRafobV+/mSTgFIqUSn1pb2Beb9S6m778jCl1CqlVLb9rwxE4yAtHWauemFLr6eAT9TmvBoyksPw9uwxi1jpLlj9e5hwPgln3s6ZE6II9ZeHx4QYqU5mqsqBMgP3aq0nYBui4g6lVDpwP7BGa50GrLF/Fg6QWdbI1znVvPXtyY0PWNPcwcHypt7VQh1N8N4N4B8J5z/FpRmJvHDtKYMUsRDCGRyWCLTWZVrrHfb3Tdh6GsVje0Ct63mEV4CLHBWDuyuuawVg1YEKtO5raolj25xnKwz2SgQf/xLq8m1DSPiFDUqcQgjncmSJoJtSKgWYDmwBorXWZWBLFkDUUMTgjkpq2wAobWjnwElUD23Kq8bfy4PJ8fb2gV3LYc9bcNr9kDJ/MEMVQjiRwxOBfZyi94Gfa60HfDdSSt2ilNqmlNpWVVXluABdWHFdKwHenigFqw9UnvD+3+TUMGtUGEYPA1Rnw8f3QvICOPWXDohWCOEsDk0ESikjtiTwhtb6v/bFFUqpWPv6WKDPO5TWepnWOkNrnREZKU+rnoySujbSogOYnhjCqszyE9q3uLaV/OoWFqZFgqkN3r0ePL3hkufB4HH8AwghRgyHJQKllAJeBDK11n/vsWolcK39/bXACkfF4O5K6tpIDPVjSXoM+w43UtbQNuB912XZSmGnjo2Ez+6Hir1w8XMQFOeocIUQTuLIEsF84GpgkVJql/11DvAIsMQ+69kS+2cxyCxWTWl9GwmhvixJtzXDrM4cePXQ+qwq4kN8SS3/xD7b2M9h7FkOilYI4UwDnrP4RGmtvwb6G4ZysaO+V9iUN7ZjtmoSw/xIjQwgJdyPVQcquHpO8nH3NVmsbMyt4fpxJtRH90DiHFj04BBELYRwhiHpNSSGXnGtretoQqgvSimWpEezKbeapnbTcffdWVSPpaOZm8t/Dx5ecOl/wMNhvxmEEE4micBFldTZ2gMSQv0AOHNCNCaL5tbXtvP3VVl8ureMdpOlz33XH6rkz8aXCGzMhh8+D8HxQxa3EGLoSSJwUcW1rSgFcSE+AGSkhHHFrCQqGtt5em02t72xg2Xr8/rc13fva1zssQF1+v0ytLQQbkDK+y6qpK6N6ECf7jGCPAyKv/xwMgDtJguL/7aOvKrmo/ZryP2Wm5r/TUHYPFJOlaGlhXAHUiJwUSV1rSSG+fa5zsfoQXK4H4X2doRuLTUY37uGKkJoPPsZMMg/DyHcgfyf7qJK6tq62wf6khTm192gDIDFDO9dh7G9hvsMv2TimFFDEKUQYjiQROCCTBYrZQ1tJIb2XSIASAzzo7q5k5YOs23B6v8H+ev5q/FWglNn4WGQCeiFcBeSCFxQWX07Vs1xSwRgH6F073uw6WnMM2/m+aa5jI8JGqpQhRDDgCQCF1RiH346oZ82AjiSCOpyvoUVP4OkeRycdj9aw5iogCGJUwgxPEgicEFd8xAkHqNEkBzuRyR1TNlwG/hHwI9eJbemA5BEIIS7kUTggkrq2vAwKGKDffrdJtho4UWfJzCaGuGK5RAQSU5lMwYFKRH9JxAhhOuRROCCSuraiAnywdOjn8urNerDu5lCDs+F/xpibM8X5FQ2kxzu33t+YiGEy5NE4IKKa1tJOEaPIdY9BnveZmXY9fyvfUb34pzKZlIjpVpICHcjicAFldS1kRjWT/XO7rfhqz/D1CvYn3oLxXVtWK0as8VKQU2LtA8I4YYkEbiYDrOFiqb2vksEBd/Ayp9BykI4/ykSw/3pNFupbOqgsLYVk0VLIhDCDclYQy7mcF0bWvfRY6jqELx1JYQkw49fA0+v7i6kRbWt1LV2AtJjSAh3JInAxTy/IR+DgikJwUcWNpbCaz+0zS3wk3fBNxSgVyKoaGwHIDXSf8hjFkI4l1QNDUPtJgv19l/oJ2JDdhXLvy3i5oWjSYsOtC1sq4fXL4H2BrjqPQg7MoZQXIgvBmVLBLmVzcQE+RDoYxys0xBCjBCSCIahJ1ZncdEz35zQPk3tJu5/fy+jI/25Z8lY20JTm606qDobLn8dYqf22sfL00BssC/Fta3kVDVLtZAQbkoSwTC0/3AjBTWttHaaB7zPnz85SFlDG49fNhUfoweYO+Gda6FwI1z8bxh9ep/7JYX5UVjTQm6lJAIh3JUkgmGooKYFgOLatuNuq7Xm1U0FLP+2iJsWjmZGUihYLfDBLZD9OZz3d5h8ab/7J4X5se9wIy2dFlIlEQjhliQRDDOdZiul9bYEUPTdiWP62Pa3H+zloRX7WTQ+il8sGQtWK3x4F+z/AJb8ATJuOOYxksL96LRYARgjD5MJ4Zak19AwU1LXilXb3h8rEdS3dnLTK9vYVljH7aencu9Z4/BQwMf3ws7X4dRfwfy7jvt9PR88k6ohIdyTJIJhprDmyM2/+BiJ4Om1OewsruefV0zn/KlxoLUtCWx7EebfDWc8MKDv6+pCGuxrJCLA6/sFL4QYkaRqaJgptLcPRAV691siqG/t5M1vi7hgatyRJPDJL21JYN5dcObvQQ1shrGuRDAmKgA1wH2EEK5FEsEwU1DTir+XB9MSQ/pNBK9uKqS108Ktp422NQx/eDdsfcGWBJY8POAkABDqZyTUz8j4mMDBOgUhxAjjsKohpdR/gPOASq31JPuyMOBtIAUoAH6kta5zVAwjUWFNC8nh/iSH+7EuqwqrVWPoMX9wa6eZl77JZ/H4KMZH+sIHt8Led2HhvbDowRNKAgBKKZbfMoeowP7nLhBCuDZHlgheBpZ+Z9n9wBqtdRqwxv5Z9FBY20pKhB9JYX50mK1UNXf0Wv/O1mLqWk3cviDB9pzA3nfhzN/B4odOOAl0GR8TRJi/tA8I4a4clgi01uuB2u8svhB4xf7+FeAiR33/SGSxaoprW0kK8+/uzdOzeshksfL8hnxOTTQyc8NNcOhjOOdxWHCPs0IWQriAoW4jiNZalwHY/0b1t6FS6hal1Dal1LaqqqohC9CZSuvbMFk0KeF+RwaE69GL6NN95VjqS/hX5wNQvAUueRFm3eyscIUQLmLYNhZrrZdprTO01hmRkZHODmdIdP36Twr3Iz7UF6V6lwgyd23mfz6/w7+tDK56/5hPDAshxEANdSKoUErFAtj/Vg7x9w9rXUNLpNjnDY4N8ul+lkBnfc4d+bfj6wHqhk9h9GnODFUI4UKGOhGsBK61v78WWDHE3z+sFdW04uVpICbI1oMnMcyPopoW2PQMLL+cfGs0X572dvdk80IIMRgc2X10OXA6EKGUKgH+H/AI8I5S6kagCLjMUd8/EhXUtJAU5tfdXXR0iAdzDz4Gn6+lKGoxPyr6CZ9PnOjkKIUQrsZhiUBrfUU/qxY76jtHusKaVpK7xv6pK+Se4juJ0gcxzf8lj5QtJSykicSwPuYiFkKI72HYNha7G621LRGE+0POalh2GqHth7mx817yJv+cjfl1zEsNl2EghBCDThLBMFHV1IHJ1MEPa56zTS0ZGEvWhStZY53J5/vLaWgzMW9MuLPDFEK4IBl9dJgoKzjIu14PM6kgxzaHwA/+THSHASjj7a3FAMxLjXBukEIIlySJwNm0hh2vkP7Jb2hTULl0GVFzfgxAuKfGz8uDw/VtpEb6Ex0k4wEJIQafVA05U2MZvHEZfHg3pf7pnGN6lNBTjnSkUkp1P2EspQEhhKNIieB76jBb8PIwnFgjrtUKO16GVb8DSyfmHzzK3dvS8Qi1YPTonZsTw/w4WN7EvFRpHxBCOIaUCL6HsoY2pj+8itWZJ/CAdNUhePkc+OgeiJ2C/unX/Lp4LrsON3HPmWOP2jwl3A+lYM5oSQRCCMeQEsH3sHJXKa2dFrYV1LIkPfrYG7c3wrpHYcu/wTsQLvwXTLuSZ77M4f0dJdy9OI2LpscftdvNC0ezIC2SUBkmWgjhIJIIvoeVu0sByK5s7n8jqwV2vwWrfwctVTDjalj0EARE8v72Eh7/IouLp8fz8zPT+tw9KsiHKGkkFkI4kCSCk5Rb1cz+0kaMHorsyqaj1meVNxJX/TUB6/8IlfshPgOufAviZ9LaaeYP/93D8m+LmT0qjEcumSwPigkhnEYSwUn6cHcpSsFlGYks/7aI1k4zfl62/5ydeV9T98qvGKsOYApOwXjpSzDxYlCKXcX1/OLtXeTXtPDT01L5xZKxeHlKU40QwnkkEZwErTUrd5cyKyWMhWMieHNLEXlVLUwy74ev/oJX/npGE8zvzdfyafNSXgidT0xLJ3/97BDvbC8mNsiHN2+aw1zpCSSEGAYkEZyEA2WN5FW1cOOCUaRF+bHEsI3Y9x+D2l3gH8XWcb/k6t0TWXbDQr74714uX7YZBbSZLNy0YBR3Lk4jyMfo7NMQQghAEsFJWbm7lCBDBxebPsX3nRd53iuL+pZYOPuvMP0q3l6Rjb9/JQvTInjvtrnc+tp2wv29eODcdMZEBTg7fCGE6EUSwQmylh8gddsf2ez9JX6rWyFuOn/2vZfCmB/w3OzZAOwpqWdKQjBKKWKDfVn5swVOjloIIfoniWAg2hvgwArY8SqGkq1cpD0oTzibpLPvgYQMSt7YTlaZredQS4eZnMpmzp4U6+SghRBiYCQR9MfcYZsXYM87cOhTsHRA5Hg2jL6Huw+MY9UVP4QAbwDGRAXy2b5y2k0W9pc2YtUwNTHYyScghBADI4mgp85WyF1r+/V/6FPobAK/CJh5LUz5McTP5J/LNhMbZybcngQA0qICsGrIr25hT0k9AJPjQ5x1FkIIcUIkEdQXQfYqyPoc8teBuR18Q2HiRZB+IYw+HTxsPXxaOszsLKrjhgWjeh1ibHQgYHvCeHdJA3HBPkQGeiOEECOB+yWC1loo2gR56yB3DdTk2JaHpsDM62HsDyBlQffNv6ct+TWYLJqFYyJ7LU+J8MPDoMipaLI3FEtpQAgxcrh+ImgogeItULQFijZC+T5Ag6ev7YafcSOMWQwRY+E4wzxsyK7G29NARkpor+Xenh4kh/uxrbCOwppWfpSR6MATEkKIweXaieDNH0PWZ7b3Rj+Inwln/NaWAOJngueJVd98nV3NrFFh+Bg9jlqXFhXAFwcqAJgqJQIhxAji2olg4sWQuggSZ0H0pD6rewaqvKGd7MpmLstI6HN9WlQgn++3JYLJ8dJjSAgxcrh2Iph6+aAd6uucagAWfKd9oEtatO2J4ZRwP4L9ZPgIIcTIIcNe9mCxaiob2/tctyG7iogAL8bHBPa5vmvoCGkoFkKMNE5JBEqppUqpQ0qpHKXU/Y76nrKGNrYX1g14+3e2FTP3kbVsL6zttdxq1XyTU838MREYDH03KKdGBhAR4MWpY/suMQghxHA15IlAKeUBPAOcDaQDVyil0h3xXXcv38Uv392N1aoHtP2azAosVs0v391DW6ele/nG3BqqmztZMCai3319jB5sfeBMLplx9HSTQggxnDmjRDALyNFa52mtO4G3gAsd8UVXzk4iv7qFb3Krj7utyWJlU24NUxKCya9u4bHPDwKwt6SB217fTkq4H2dNjDnmMZRSMtOYEGLEcUYiiAeKe3wusS8bdGdPjiHc34vXNhUed9udRfW0dFq4/fRUrpuXwkvfFPDqpgKu/s8WgnyNvHHzHIJ9pRFYCOF6nJEI+vrJfFTdjVLqFqXUNqXUtqqqqpP6Im9PD358SiKrMys4XN92zG2/zq7CoGBuagT3LR1HSrgfD63Yj7engTdvnk18iO9JxSCEEMOdMxJBCdDz0dsEoPS7G2mtl2mtM7TWGZGRJ98Ae+XsJDSwfEvRMbfbkFPN1MQQgn2N+Hl58o/Lp7MwLYI3bppDcrj/SX+/EEIMd85IBFuBNKXUKKWUF3A5sNJRX5YQ6sfi8VG8tbWITrO1z20aWk3sLq5nYY/G4GmJIbx242yZUUwI4fKGPBForc3Az4DPgUzgHa31fkd+51Vzkqlu7uTTfWV9rt+UV41Vw4I06fophHA/TnmOQGv9idZ6rNY6VWv9J0d/36lpkSSH+/HcujxaOsxHrd+QXY2/lwfTk+RhMCGE+3GLJ4sNBsVvzh7PwfJGrvnPtzS2m3qt/zqnmjmjwzF6uMV/DiGE6MVt7nxLJ8Xy9JUz2F1cz0+e30JdSycARTWtFNa0sjCt/4fFhBDClbn2oHPfcc7kWHyMBn76+g4WPvYlwb5GTBZbA7K0Dwgh3JVbJQKAReOjefOm2by/4zCdZismi5W4EF9SI6WLqBDCPbldIgDISAkjIyXM2WEIIcSw4DZtBEIIIfomiUAIIdycJAIhhHBzkgiEEMLNSSIQQgg3J4lACCHcnCQCIYRwc5IIhBDCzSmtBzaxuzMppaqA48832bcI4PiTFrsWOWf3IOfs+r7v+SZrrY87fs6ISATfh1Jqm9Y6w9lxDCU5Z/cg5+z6hup8pWpICCHcnCQCIYRwc+6QCJY5OwAnkHN2D3LOrm9Iztfl2wiEEEIcmzuUCIQQQhyDSycCpdRSpdQhpVSOUup+Z8cz2JRSiUqpL5VSmUqp/Uqpu+3Lw5RSq5RS2fa/oc6OdbAppTyUUjuVUh/ZP49SSm2xn/PbSikvZ8c4mJRSIUqp95RSB+3Xe66rX2el1D32f9f7lFLLlVI+rnadlVL/UUpVKqX29VjW53VVNk/Z72d7lFIzBisOl00ESikP4BngbCAduEIple7cqAadGbhXaz0BmAPcYT/H+4E1Wus0YI39s6u5G8js8flR4An7OdcBNzolKsd5EvhMaz0emIrt3F32Oiul4oG7gAyt9STAA7gc17vOLwNLv7Osv+t6NpBmf90CPDtYQbhsIgBmATla6zytdSfwFnChk2MaVFrrMq31Dvv7Jmw3h3hs5/mKfbNXgIucE6FjKKUSgHOBF+yfFbAIeM++iUuds1IqCDgVeBFAa92pta7Hxa8zthkUfZVSnoAfUIaLXWet9Xqg9juL+7uuFwKvapvNQIhSKnYw4nDlRBAPFPf4XGJf5pKUUinAdGALEK21LgNbsgCinBeZQ/wDuA+w2j+HA/Vaa7P9s6td69FAFfCSvTrsBaWUPy58nbXWh4HHgSJsCaAB2I5rX+cu/V1Xh93TXDkRqD6WuWQXKaVUAPA+8HOtdaOz43EkpdR5QKXWenvPxX1s6krX2hOYATyrtZ4OtOBC1UB9sdeLXwiMAuIAf2xVI9/lStf5eBz279yVE0EJkNjjcwJQ6qRYHEYpZcSWBN7QWv/Xvriiq8ho/1vprPgcYD5wgVKqAFt13yJsJYQQexUCuN61LgFKtNZb7J/fw5YYXPk6nwnka62rtNYm4L/APFz7Onfp77o67J7myolgK5Bm72Xgha2haaWTYxpU9rrxF4FMrfXfe6xaCVxrf38tsGKoY3MUrfVvtNYJWusUbNd0rdb6J8CXwKX2zVztnMuBYqXUOPuixcABXPg6Y6sSmqOU8rP/O+86Z5e9zj30d11XAtfYew/NARq6qpC+N621y76Ac4AsIBd4wNnxOOD8FmArGu4Bdtlf52CrM18DZNv/hjk7Vged/+nAR/b3o4FvgRzgXcDb2fEN8rlOA7bZr/X/gFBXv87A74GDwD7gNcDb1a4zsBxbG4gJ2y/+G/u7rtiqhp6x38/2YutRNShxyJPFQgjh5ly5akgIIcQASCIQQgg3J4lACCHcnCQCIYRwc5IIhBDCzXkefxMh3IdSqqvrHkAMYME2vANAq9Z6nlMCE8KBpPuoEP1QSv0OaNZaP+7sWIRwJKkaEv+/vbtHiRiIwzD+PvbaeQLBQhAtVBAbBW9gKfYW6jlsvYbgBbazdcsFC8FbCGKzY5ERt1hBA2sW5vlByEwyxaQIL/ngP/ol4K3uj4FH4B54AW6Bc+AJmAAbddw68ACM63Y07BVI8xkEUj876dZE2E5ykWSzlHKQrjT2dR1zl652/n6Ss3pOWjp+I5D6GZda5wV4TTKqxydJTmr7NMlWVyonSbIGrJZu7QhpaRgEUj8fM+3pTH+a7/tqJclhKeX9Pycm/ZWvhqTFGSW5+uoAuwPORfqRQSAtzk2SvbrQ+HOSy6EnJM3j76OS1DifCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmN+wRTzuRJuhhg5AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pints\n", + "import pints.toy as toy\n", + "\n", + "# Create a model\n", + "model = toy.LogisticModel()\n", + "\n", + "# Set some parameters\n", + "real_parameters = [0.1, 50]\n", + "\n", + "# Create fake data\n", + "times = model.suggested_times()\n", + "values = model.simulate(real_parameters, times)\n", + "noisy_values = values + np.random.normal(0, 3, times.shape)\n", + "\n", + "# Create an inference problem\n", + "problem = pints.SingleOutputProblem(model, times, noisy_values)\n", + "\n", + "# Show the generated data\n", + "plt.figure()\n", + "plt.xlabel('Time')\n", + "plt.ylabel('Values')\n", + "plt.plot(times, noisy_values)\n", + "plt.plot(times, values)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As before, we can now define an error function an minimise it:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Obtained parameters:\n", + "[ 0.10335618 49.37330126]\n" + ] + } + ], + "source": [ + "score = pints.SumOfSquaresError(problem)\n", + "\n", + "boundaries = pints.RectangularBoundaries([0, 5], [1, 500])\n", + "\n", + "x0 = np.array([0.5, 200])\n", + "opt = pints.Optimisation(score, x0, method=pints.XNES)\n", + "opt.set_log_to_screen(False)\n", + "x1, f1 = opt.run()\n", + "print('Obtained parameters:')\n", + "print(x1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But we could also use a log likelihood instead!" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "loglikelihood = pints.UnknownNoiseLogLikelihood(problem)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "Starting point must have same dimension as function to optimise.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mopt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpints\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mOptimisation\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mloglikelihood\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpints\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mXNES\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mx2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mf2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mopt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/dev/pints/pints/_optimisers/__init__.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, function, x0, sigma0, boundaries, method)\u001b[0m\n\u001b[1;32m 299\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfunction\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mn_parameters\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 300\u001b[0m raise ValueError(\n\u001b[0;32m--> 301\u001b[0;31m \u001b[0;34m'Starting point must have same dimension as function to'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 302\u001b[0m ' optimise.')\n\u001b[1;32m 303\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Starting point must have same dimension as function to optimise." + ] + } + ], + "source": [ + "opt = pints.Optimisation(loglikelihood, x0, method=pints.XNES)\n", + "x2, f2 = opt.run()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Uh oh! What's happened here?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The likelihood function we used requires a `sigma` parameter, an extra parameter it adds to the inference problem that describes the estimated noise level in the data.\n", + "\n", + "This means the number of parameters in our loglikelihood has gone up by one from the problem's number of parameters:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2\n" + ] + } + ], + "source": [ + "print(model.n_parameters())" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2\n" + ] + } + ], + "source": [ + "print(problem.n_parameters())" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3\n" + ] + } + ], + "source": [ + "print(loglikelihood.n_parameters())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As a result, we need to update our initial point (and boundaries) with a guess for what sigma may be.\n", + "\n", + "In a realistic situtation, we could try to find a flat bit of signal to obtain a first estimate. In this example, we'll just start off by guessing `sigma=1`:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Obtained parameters:\n", + "[ 0.10335618 49.37330124 2.49241795]\n" + ] + } + ], + "source": [ + "y0 = np.array([0.5, 200, 1])\n", + "\n", + "boundaries_3d = pints.RectangularBoundaries([0, 5, 1e-3], [1, 500, 10])\n", + "\n", + "opt = pints.Optimisation(loglikelihood, y0, boundaries=boundaries_3d, method=pints.XNES)\n", + "opt.set_log_to_screen(False)\n", + "y1, g1 = opt.run()\n", + "print('Obtained parameters:')\n", + "print(y1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the noise has introduced a slight bias into the outcome, and the estimated sigma is slightly smaller than the true value of 3!\n", + "\n", + "As before, we can now plot a simulation with the obtained parameters, and see how it matches the data:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VGXawOHfO5NJ770TSEIJHSNNUFRQrOiia1vLWtf1cy27a92qW9StblXW3rBhwYKKoIJICzVAgBRIJ733mXm/P2YICSQkQCaTzDz3deWamTPnzDzHg+eZtyutNUIIIdyXwdkBCCGEcC5JBEII4eYkEQghhJuTRCCEEG5OEoEQQrg5SQRCCOHmJBEIIYSbk0QghBBuThKBEEK4OQ9nB9Af4eHhOikpydlhCCHEsLJly5ZKrXVEX/sNi0SQlJRERkaGs8MQQohhRSmV35/9pGpICCHcnCQCIYRwc5IIhBDCzUkiEEIINyeJQAgh3JwkAiGEcHOSCIQQws1JIhBCuLTKxjY+2Vnq7DCGNEkEQgiX9sr6fO56Yyu1ze3ODmXIkkQghHBpueWNAJTUtjo5kqFLEoEQwqXlVtgSwaH6FidHMnRJIhBCuCyLVXOgsgmA0jopEfRGEoEQwiW8sv4gd72+tdu2ktoW2sxWAEqlaqhXkgiEEC7hw+0lfJJZSkNrR+e2w9VCMLRKBMW1LXyXU+nsMDpJIhBCDHsdFiu7iusA2F1S37k9t8JWLZQU5uuUNgKLVWO2WI/Z/reV+7nxxU1DpieTJAIhxLC371BDZxXQ4YQAkFfRSJCPifGxQU6pGrr/7e3c9sqxa6lsL6ylw6JZsevQoMfUE0kEQohhb0dRLQA+JiOZXRJBbkUjyRF+xAR5U1rXitZ60GIyW6ysyipnXU4VrR2Wzu0NrR2dVVbLt5cMWjzHI4lACBex91A9Vuvg3eiGku0FtYT5eXJGSjiZRV1LBE2MivAnOsiblg4L9S3mQYtpd0k9jW1m2rtUWwFkFtehNUxNDGbDgSrK6p3fdiGJQAgXsHpvGQv/vnbIVDUMth1FtUxOCGZSfBB5lU00tHbQ0NpBeUMbyRH+xAT5AFBS13c7QVZpPaf//ku25FefUkwb8qo6n2fk13Q+32lPVI9eOA6tGRLTX0giEGKYM1us/PHTvQBknOLNazhqbDOTXd7I5PhgJsYFAbZf43n2huLkCD9igr0BONRHz6EOi5Wfv7uDioY21mafWq+e9XlVpET6kxTmy5YuiWBHYS2Job6kJ4WSFhPI8h3Orx6SRCDEMPfuliKyyxvx9/Lo/LV5Kioa2igfAtUV/ZVZZKtqmZwQxAR7Isgsquushx8V4U9MkC0R9NWF9NlvctlVXI+3ydCt99GJMlusbD5QzcxRoZw2IpSt+TWd7RM7i+qYFG+L89IpsWwvrKWgqvmkv2sgSCIQYhhrbjfzty/3MzUxmCvT49ldUtdjd8UT8ZOl27jjtS0DFKHjHW4onhwfTESAFzFB3mQW15FX0YSHQTEizJcIfy8MCkqPUzW071ADT6/K5uJJMZyXFs2eU0gEu0rqaWq3MGtUOOlJIVQ1tXOgsomKhjaKa1uYHB8MwCWTYwH4aKdzSwUOTQRKqYNKqUyl1HalVIZ9W6hSaqVSKtv+GOLIGIRwZS98e4Cy+jYeuXAcUxKCae2wsr+sse8De9HUZmbzwWp2Fdd16+kylO0orGVEmC8hfp4ATIgLYlexrUSQGOqLyWjAw2ggKtC71xKB2V4lFOht4reXjmd8bCDFtS3UNJ1cP//1ubb2gRmjQjlthO0WtyW/hp2Hk1aCLRHEBfuQPiKE5dtLeuzRdKpJvb8Go0RwttZ6itY63f76IWCV1joVWGV/LYQ4QdVN7TzzTR7npUVxelIok+y/Mg/fbE7GpoPVmK2aDotm76GGgQr1pJTWtfDh9mL+8GkW1z+/kVfWH+xxvx2FtZ2/sAEmxdkajHcW1TEqwr9ze3SQd69tBGtzKtlZVMevLkkjzN+L8bG2qps9pSdXKtiQV0VqpD/h/l6kRPgT6O3BlvwadhTVYVAwIS6wc9/Lp8Wxr6yBDXnd23c2H6xm3p+/Zu+hky+Z9JczqoYWAS/bn78MXOaEGIQY9lbsKqWxzcw981MB2+jZQG8PdpxCO8F3OZUYlO155ikklFP19uZC5v3pa+55czsvrTvI3kMNPP7xHnLKu5d2yutbKalr7fyFDTDBXv9eXNtCcoRf5/bYIJ9eew1tyKvCZFSclxYNQFqs7Ua9u+TE/1t2WKxsPljNrOQwAAwGxWkjQsiwlwhSIwPw9fTo3H/xtHjC/b34z9c5ndu01jyxYi/tZisjQv2O+Y6B5uhEoIEvlFJblFK327dFaa1LAeyPkT0dqJS6XSmVoZTKqKiocHCYQgw/q7PKSQj1IS3GdtNSSjEpPviUSgTrcqqYPjKUMD/PAWl4PlEt7RZ+9s4OHli2k9NGhPDJT+aw+7HzWXHPXHxMRn714a5uVSjbC23nOiUhqHPb4Z5DAMk9lAh6qoLZdKCayfHB+HgaAQj18yQmyPukGowzi+tobrcwc1RY57b0pFByyhvJOFjD5C6xAnibjNw6dyRrsys7r92XWeVsya/h3vmjO2NyJI++dzklZ2itS5RSkcBKpdTe/h6otV4CLAFIT093z1EyQvSipd3CtzmVXDM9EaVU5/ZJ8UEsWZNHa4cFb9OJ3UCqm9rZU1rPTxeMxttkHNBEYLVqPsksZUFa1DFx1TS1syGvig15VazeV05RTQs/OSeFe+aPxmgvnoT7e/HAwrH84oNdLN9RwqIpcQBsKajBaFCdVTmH940N8qakrpVRXUoEMUHeNLfbBpUF+Zo6tze3m8ksquP2M0d1i2t8bGD3RKA1aCtYLaAt9kfrMX87s3KJpopZYc1QWwDayqyQepJUKYZ2zZxgTyjPOvJ5aK5P6mC1dyEff7aC8QvH8MEnW7kwxML3o8OhIwJMPgN1KXrk0ESgtS6xP5Yrpd4HpgNlSqkYrXWpUioGKHdkDEK4ou9yK2kzWzl3XPcC9aT4YMxWzZ7SeqYlnlg/jMMNnLNTwumwWFmzv4LmdnO3aoyTtXpvOXcv3ca981O5d/7ozu3FtS0s/PsaGlrN+JoUsxN9eer8UcxK9ILKvdDRDB0t0NHCNQHNlIVnsvOjtaSXx7BxfynG0iqeCvXA++sNYG4HSxtY2vmr6RCVpkYmffsarDODpZ3L65uY4lmH54tPgtEKFjNYzai2Nr42NROxwwiZGqxm0Bb+096B1dKBfgyUtt/0++Em4CZv7D9jbaYBX3vZX3xr/+vCD3gboAh4Dv59+I0Xgbs2Q8RoHMlhiUAp5QcYtNYN9ufnAY8By4EbgSfsjx86KgYhXNWqveX4eRqZMTKs2/bD1Q47C2uZlhiC2WLlLyv3c8mk2M567958l1uJn6eRSfFB1DS1Y9Wwp6Se9KTQvgPS2nbTbq6GlmpoqbH/1UJrHWp7No95lBGytoX2El88LU3QVo9nVRVf6SZC/DswmpuhGHi/568wAj/tDBa+B2ACGoENXuDhBUZP8PBiojZQ7w2eDY1gNIHBhKdR0aI9afYIwifAD4weYPDgYFkLu+uaWZSaACZPMBhBGSmpbeezPRVcNjmB6CC/zu0YDPZH+2tlsP0ZjFg0PPbJXqaNCGPR1HjbdhQYjPx1ZTZFta08deVUPIwGUOrI+0rR0GblwWWZtFmsjAgP4JcXp6GUAQJj+/7vf4ocWSKIAt63F1s9gDe01p8ppTYDbyulbgEKgCsdGIMQLkdrzeqscs4cHYGnR/dmvuhAbyICvDqrdf6xKpv/fp1LfUsHv7984nE/97vcKmaMCsNkNHQOeMosqCA9qB4aDkF9CTSW2f/KbX9NFdBUCc2VYO59sNaZGGkx+VFj9aaqNJiYyAjqTJF81xpAUmwU4aPiwNMPTL5dHn1tjyYf8PABkzd4+PDW9gqKGyzcMHcs4cGBtht9l+oxsP3CPrqJtaG2heufWM0fpkzk2hmJndt/8+x6WqIsXPG9Od3296hp5omdX+EXO4HrZ4447n+7w7bnV/Ny+3pmzZgGE2K6vTfKWoy1vBGPyWN6PDYAiC5M5YV1B1i6aCYqOazH/RzBYYlAa50HTO5hexVwrqO+VwhXt7uknkP1rZwz9th+FkopJscHsb2olvW5VfzzqxyUotsUB92Y26GukKqCLObUrOTKUCu8/U8iawvZ4p1H2OpaWH3UMQYP8I8CvwjbX2Qa+IWBr+1PewejfMPAJxi8g9l0yMr3X9zBf647jW/2VfD+tmJW334WP1m6jULvFr6+eR549f9WdNX8lH7v21VkgG1Q2aEuPYdaOyxsK6zlxlnH3ujjgn0I8jGxp0vPoY15VYyJDiDY17PH7zhcvTZ95LE38cumxvUZ48/PH8P8tMjOHkeDxdGNxUKIAbYqqxyl4OweEgHY2gm+zCrnnje3MTLMjwVpUSxdu4umnHX41e6Hymyo3A9V2Z2NmWHA4yawFntBcCIEJ7A7YDa5bUH8cOEZEBjD5wWKtaUePHb1HAzGnhui1+VU8qPXtrDszkmMjgoA4LM1e/D0MHLW6AimJATz/vZibnhhE3kVTTy1eBJ+J5AEToWH0UBkQPdBZTuL6mg3W3u8cSulujUYL91UwMPvZTImKoA3b5/ZOYCtq/V5VYyNDiC0h/f6w8fTyOzk8JM69lRIIhBimFm9t4wpCcGE+3sd+6bWnB7SxPmGTUxsLeCGmDq8du3mYa9D8Jp9Hw8fCE+B2Gkw8fsQOoqnt1n4tNCTFY8sBvtNfseqbP6ycj+L086jrK6Vu1d9S7ullekTyrh0cs/11iv3lNHQaubxj/fwys3TAfhizyHmpoTj5+WBn5cHN84awf/WHiAtJpDFp8U74j9Rr6KDuieCTQeqUApOT+q5YX18bCAvr8/ns12HePT9TKYkBLOntJ4bX9zE67fOIMD7SO+jNrOFLfk1XDM9scfPGsokEQgxjJTXt7KjqI6fn2+vZ25vguKtULgRijZD8RZmNVUwyxOsyoihZTQdSWfwxE4T4yZNZ9GCcyEo0dbgaberuI5/5azje1Pju/3Sn2QfpLWjsJY/fb4Pf28PQv08+csX+7hgQjQm47HDkDLyq/E0GlibXcnX+yqIDPSiqKaFu885Up3z43kpHKhs4v/OSe3sHjpYYoO92ddlxPTGA9WMieq9qmd8bBDtZit3vbGV8bFBvH7rDNbnVvGj17Zwy0sZvHzz9M5+/jsK62jtsHYbPzBcSCIQYpD94dMsyupbefrqqSd87H9WZjLXsJOr67+D5zZByVZbd0eA8NGQsgDipmGNmYohejyYfDABX5esYXeDF4tCkrp9XnO7mZ8s3UaYnxcPXTC223uHB2b98oNdHKxq5l/XTsXX08jNL2Xw1uZCfnBUA2pDawd7Suq546xkPt91iMc/2cMFE6IxKJg/LqpzvxA/T5678fQTPveBEB3ow9f7KtBaY7ZqtuTXcOVxSiXj7T2t4oJ9eOGm0/Hz8mB+WhR/vWoK97y5jd9+tJsnFk8CbO0DSsHMHqqZhjpJBEIMopqmdl767iDtZisPLhxLbHAfA4W0hop9kP05FTtW8HBZBl6eHbDDw1a1M/tuSJwF8aeD75Funkf/Vp82IoSPtpdgtWoMXX6FP/bRHg5UNfH6rTOOqfMO9fMkPsSHg1XNXDQxhosnxaK1Jn1ECP9Ylc3iafHdRr1uK6jFqmF2chinJYZw6ysZPPtNHukjQgnrqRrLCWKDbYPKrnp2A20WK83tlh7bBw5LifTnFxeN4/zx0UQEHDmHSyfHsrOwlufXHeD6WSMYHxvEhrwq0mICuw1WGy5kGmohBtGyrUW02xdZ/7i3qYetFji4Dj57GP4xBf4zA1b+itqyIj73vQjzNe/Ag/lw60qY/xsYfX63JNCT0xJDaLAv4HLYp5mlvLm5kDvPSu61gfL0JNt0E48tGg/YGlAfvGAs5Q1tvPTdwW77bj5YjUHB1MQQzh0XyZyUcMxWzXnjo3r4ZOeYNyaCM1LCUAp8TAbOS4vizNG9N84qpbh17igSQn2Pee/uc1MJ9jHxu4+zaO2wsKWgZlhWC4GUCIQYNFpr3thYwLRE2+jf5TtKuP3M5MNv2ur5M9+FrOXQWIY2etEcdwa1abfxyz1xZNT48sltc/Ho4abUl65TIY+JDqC2uZ1H389kcnwQ9y3ofdTqY4vG09Jh6faL/vSkUM4ZG8l/v87hhlkjOnv9bD5YzfjYIPztr39zaRq//GB3rw3LzpASGcDrt84ckM8K8jFx34LR/OrD3fzp8320m63MGqaJQEoEQgyS9XlV5FU2cd2MEVw6OZZdxfUU5OyC1b+HpyfDC+fDttcgYQYr0/7I+Kb/Mn7/rZyxaiSrSz156orJPf4y7Y8RYb6E+Xl2jif4yxf7qW8188TiST02+h4W4G0iMsD7mO3/d04K9a1m3t1SBEC72cq2glrSu/S+SYkMYOntM4kMPPZ4V3Ht9ERSIv15/tsDGBScPrIfo7CHICkRCDFI3thYQJCPiYvGh9G6czljPf9B4mu7AAWjzoJ5D8O4S2hRPjz05GrGJ/nxg5kj8DEZiQ/x7XOKiONRSjE1MYStBTXsKq7j9Y353DAriXExJ/eZ0xJDmJIQzIvrDnD9zBHsKqmjzWxlen+mo3AhHkYDj140jh++uJnxsUEE+Qy/9gGQRCDEoKhsbCNj916eTszA+5934d1UzhhTJC8Yr+OHdz2CCjrSc+Xt7w5S1dTOM9efxukDeGM9bUQIX2aV8cC7Ownx9TxulVB/3DJnJHcv3cZX+8o71wno17xELubsMZHcNndktxlQhxtJBMLtmS1WdhbXnfBsnf1WsY/KZY/zjccKvErNkHoeTL+DL6uSeeyDPUxvDGCC/R7SYbGyZE0e6SNCBjQJwJF2gj2l9Ty1eNIp/3pdOCGamCBvXlh3AB+TByPD/br1rHEnj16U5uwQTom0EQi3t3RzId/7z3ccqGwa2A8u2QZvXof+9wySDn3OV34XwP9tgevegdT5LJwYh4dB8dGOI72HPt5ZQnFtC3fOSx7YWLCtVWAyKiYnBHPFAIzoNRkN3DAriXU5VXybU0H6CFl+fLiSEoFwe1/sPgTA3tJ6RoYPwLKAh3bBV3+AfZ+AdxBFE37MooyJ/HLRXAg/cgMO8fNk3pgIWzdMBbfPHcV/v85lTFQAZ4/peR6hU+FtMvLCTaeTHOHfbSzBqbhmegJPr9pPa4d12DaUCikRCDdX39rBhjzbjJH7yxr72LsPNQfh3ZvhmTPg4Ldw9i/g3l081XElZu9QLjhqWmKA3102kYUTolmyJo9ZT6xmf1kjd85LHrAb9dHmpkb0PYjtBAT7erJ4mi25DXRVlhg8UiIQbm3N/go6LBoPgyK7vKHvA3rSUgtr/wIbn7EtVDL3p7YRvz4hVDe18/muQ1w7I7HHpSOjg7x5+uqp3HV2Ck9/mU1VUxsXTzo2YQxlDywcy9zU8IEpTQmnkEQg3NqqrHJCfE1MTgju7PlyPPWtHazOKue73Epum5NEasly+PLXtpW5plzL7rE/ISgqkXgfW3//97YW0W6xcvX0hON+7uioAP593bQBOafBFuRjYmEPpR0xfEgiEG7LbLGyem85546LJCLAi+9yqjBbrLZlBI+SV9HIHz7N4ht7CWKcysfn4F3QmAkJM+H6p7BETeLq336Bh7GAl2+ezsS4IN7cXMiUhGDGRp/8GAAhHE0SgXBbGfk11LV0sGBcFE3tFtotVgqqmxkV4d+5j9WqeXVDPn9ckYWXh5FbZ8VyQ/tbRO58hqbmAFj0H5h8DRgMHChvpKHNjMmouPZ/G/nx2cnklDfy5OLjLxEphLNJY7FwW1/uKcPTaGDu6AhSI203/66TsrV2WLjxxU38evluZo4K46urfHjw4G3E7PwPW4IXcilPo6dc2zm3/277koZLrk8nOsibpz7bh5+nkYsnDZ25doToiSQC4Za01nyZVcas5DD8vTxItieCru0EX+wpY212Jb++MJUXE1YQ+uYl0NEKP3iPPaf/gYPNnpQ3tHXuv6ekHk+jgTmp4bx9xyzmpoZz+5nJg7YUoxAnS/6FCreUW9HEwapmbpkzEgB/Lw/ign3ILjvSc2jN/gomeZdzU9ZTqNLtMPV6WPhH8AogzVgN2G7+UfZJ1XaX1DM62h+T0UConyev3jJj8E9MiJMgJQLhlt7ZUgjAuV1WzkqJ9O+sGtJaE7D3bd5VD6Jq8+Gq12DRv8DLtiD72Bjb457S+s79d5fUMT5m+M43I9yXJALhdkpqW3hp3UEunxrXbXBVaqQ/OeWNWNqaqHvzDn5t+Re1oZPgzvUw7pJunxHobSIx1Jc9JbZEUFrXSk1zB+PjpHeQGH4kEQi38+cv9qGBn57XffbN1Ch/oiylWJbMJ3jfW/zTfBn6+g8gsOc+8mkxgZ0lgt32hDD+FKaKFsJZJBEIt7K7pI73txXzwzOSiA/pvsjLVPMOlnv+AtVQzBOhv+OT8FuICvbv5ZMgLTaQA5VNNLaZ2V1Sh1LIeAExLDk8ESiljEqpbUqpj+2vRyqlNiqlspVSbymlPPv6DCEGyhMr9hLsY+LH81KObNQaNjxD6hc3UqZDeGXCizxflsxZoyOO+1mHf/3vLa1nd4ltwjrpISSGo8EoEdwDZHV5/STwN611KlAD3DIIMQjBmv0VrM2u5O5zUo/MxW8xwyf3w2cPokYv5EdeT/BMpqbDovtMBIdXDNtTWs+ekvphvTCJcG8OTQRKqXjgIuA5+2sFnAO8a9/lZeAyR8YgxGEfbC8m1M+TH8wcYdvQ1ghvXgMZL8AZ98JVrxEXFUlFQxs+JiOnJR1/fv3oQG9CfE2sy6mkuLZF2gfEsOXoEsHfgQcAq/11GFCrtTbbXxcBcQ6OQQgANuZVM3NUKJ4eBmgog5cuhJwv4eK/wYLfgsFAin1g2ezkMLw8jp0ttCulFGmxgazeWw5IQ7EYvhyWCJRSFwPlWustXTf3sKvu5fjblVIZSqmMiooKh8Qo3EdhdTPFtS3MHBVmWzfghfOhMgeueQvSb+7cLzXKlgjOGnP8aqHD0mIC6bDY/glL1ZAYrhzZsnUGcKlS6kLAGwjEVkIIVkp52EsF8UBJTwdrrZcASwDS09N7TBZC9NfhxWfODK6E568DcyvcuBzi07vtNzclgtNGhLBwfHS/PvdwO0FMkDehftLvQQxPDisRaK0f1lrHa62TgKuB1Vrr64CvgCvsu90IfOioGIQ4bENeNXN8Cxix3P5P74crjkkCAIlhviy7czaR9mkj+pJmH0ks1UJiOHPGOIIHgfuVUjnY2gyed0IMws005KzjfzyO8gqEmz+DqLQB+dzkCD8iAryYlRw+IJ8nhDMorYd+rUt6errOyMhwdhhimCrb/Q2+b1+F9g0n8EefQVB83wedgNYOC55Gg8PWGRbiZCmltmitjy36HkVGvwjXVrCB0PeuplAHoRe/R+AAJwGgx7WIhRhOZIoJ4bqKt8BrV1BjDONHHo8xclSqsyMSYkiSRCBc06Fd8Or3wDeU29WvSB6VIlU3QvRCEoFwPZXZ8OplYPKlZNHbbK/zs40fEEL0SBKBcC11xfCKfdaSG5fzXbVtgNiMUaFODEqIoU0SgXAdLTXw2mJorYMfLIPwVDYfqCbY18ToyABnRyfEkCW9hoRr6GiBN66G6ly47l2ImQzAzuI6JsUHS/uAEMchJQIx/Fkt8O4tULgRvrcERp0F2Pr37y9rYFKczAEkxPFIiUAMf58/Cvs+gYVPwvjLOzfvKa3HYtVMjJdEIMTxSIlADG8bn4WN/4UZd8LMH3V7K7OoDoBJkgiEOC5JBGL42rcCPnsIxlwE5//+mLczi+sI9/ckup8TyAnhrqRqSAwrG/KqaGw1c0bgIXzevcXWKLz4f2A4dpqHzKI6JsYFYVsYTwjRG0kEYthoM1u45aXNeLdX86HXL/H18KZwzjNM9vQ7Zt/mdjPZ5Q2cP6F/6woI4c6kakgMGxvyqmlvb+OjyGeJMtRzDw9w34pD9DSD7p6Seqwa6TEkRD9IIhDDxqo9h/i950vE1m/HtPgZFp53AXkVTewprT9m38xiW0Ox9BgSom+SCMSQZLZYu73WWhOw61W+b1gNc38KExZz4YQYPAyK5TuOXe00s6iOyAAvoqShWIg+SSIQQ05BVTMz/7iK5789cGTbjq+4p+M5SiLmwNmPAhDi58nc1HA+3lGK1dq9esg2olhKA0L0hyQCMaRYrJr73t5OZWM7f/9yP3XNHdBwiPBPb6VEh+Nx5fPdeghdMjmW4toWthXWdG5rajOTW9HIxLhgZ5yCEMOOJAIxpDzzTS5b8mu4c14yjW1m/vf1Pnj7Roztjfw55FdERnbvBbQgLQovDwPLtx+pHtpdUo/WMDFeFpQXoj8kEYghY1dxHX9buZ+LJsXwwPljuGRSLOEb/gCFG/h5x22kTJx+zDEB3ibOGRvJJ5mlne0KO4tqAZggPYaE6BcZRyCGBLPFyn1vbSfUz5PfXzYBpRSPjswmat8nvOtxER+1zubjcVE9Hnvp5FhW7DrEqr3lFNW0sGRNHnHBPkQGSEOxEP0hiUAMCdnljWSXN/LUFZMI9vWEqlyiVt9PgU8aD9dcRVSgF+Nje67qOXtsJP5eHtzx6hYApo8M5aELxg5m+EIMa5IIxJCQW9EIwMS4INvaAm/fAEYTXte8glqSw4K0qF6nivA2Gbn7nBQyi+u4ec5IpiWGDGboQgx7kgjEkJBb3oRSMDLcDz67H8p2wXXLiEpM5dOfxBAV6HXc4+84K3mQIhXC9UgiEENCbkUj8SE+eO99H7a8BHPug9T5AKRE+js3OCFcnPQaEkNCbkUjs4Nr4aN7IGFG56AxIYTjOSwRKKW8lVKblFI7lFK7lVK/tW8fqZTaqJTKVkq9pZTydFQMYniwWjWFFbXcW/tHMJrgihdsj0KIQXFCiUApZVBK9XeUThtwjtZ6MjAFWKiUmgk8CfxNa50K1AC3nEgMwvWU1rdyj36dmOb9cNl/ISje2SEJ4Vb6TARKqTevfDhcAAAe1UlEQVSUUoFKKT9gD7BPKfXzvo7TNo32lyb7nwbOAd61b38ZuOykIhcuo3rbx9zisYJDY2+CMRc4Oxwh3E5/SgRpWut6bDfsT4FE4Pr+fLhSyqiU2g6UAyuBXKBWa22271IExPVy7O1KqQylVEZFRUV/vk4MRw2HSPnu5+yxjsBj4WPOjkYIt9SfRGBSSpmwJYIPtdYd2H7Z90lrbdFaTwHigenAuJ526+XYJVrrdK11ekRERH++Tgw3Viu8fwdGczOPGO4lLEjmBhLCGfqTCJ4FDgJ+wBql1Ajg2JVAjkNrXQt8DcwEgpVSh7utxgPHTiYv3MOGf0Pe17wc+CMMkWNkbWEhnKTPRKC1/ofWOk5rfaG93j8fOLuv45RSEUqpYPtzH2A+kAV8BVxh3+1G4MOTjl4MX6U74MvfwrhL+F/TXJIjZKyAEM7Sn8biKKXU80qpFfbXadhu4H2JAb5SSu0ENgMrtdYfAw8C9yulcoAw4PmTjl4MT+3NsOxW8Aun4by/UN7YTrIMGhPCafozsvgl4EXg8Aif/cBb9HED11rvBKb2sD0PW3uBcGFaa8ob2npeKvKLX0DlfrjhQ3IbbVNHSIlACOfpTxtBuNb6bcAKYO/xY3FoVGLYe27tAeY8uZqS2pbub+z7DDKeh9l3w6h55JTbehjLNBJCOE9/EkGTUioMe+8e+6CwOodGJYa1lnYLz67JpcOiWbW3/MgbjRVYPryLQs9kcibcC9imljAZFQkhPk6KVgjRn0RwP7AcSFZKrQNeAe52aFRiWHtzcwGVje34e3mwOqvMtlFrWH43uqWemxvu4NbXM6lr7iC3vJGkMD88jDLtlRDO0mcbgdZ6q1LqLGAMoIB99rEEQhyj3WxlyZo8Tk8KYWJcMK9tzKe53Yzvzldh/wqe9bqVdt/RlNS28H9Lt1JU08KYqABnhy2EW+szESilbjhq0zSlFFrrVxwUkxjG3ttaRGldK08snoSHQfHCugNs27aFM758hKa4ufw5dx6PLRqJh9HAw+9lAnDhxOg+PlUI4Uj96TV0epfn3sC5wFZsVURCdDJbrPz3m1wmxgVxZmo4HRZNkJci4Zt7wejJq1EPovLquWBiDOH+XuwpqefVDfnSUCyEk/Wnaqhbe4BSKgh41WERiWHrs92HyK9q5pkfnIZSCk8PxeNhX5BYvQfr4hdZ+pmZM1LCCfe3dRn91SVpTE4IZuH4GCdHLoR7O5kVypqB1IEORAx/G/KqCPD24Ly0KNuG4i1cXPMKH1hm09qSTn5VJnfNS+nc32Q0cMVpMuW0EM7WnzaCjzgyMZwBSAPedmRQYnjaX9bI6KgADAZlGz383h1ovyh+XXUT1k+zMBkV54+X9gAhhpr+lAj+3OW5GcjXWhc5KB4xTGmtyS5rYOEE+43+y99AVTbGGz5k5AoT2wtrOXdsJEG+svKYEENNf9oIvhmMQMTwVtnYTk1zB6mRAZC7GjY9CzPuhFHzOHdsNtsLa7lkcqyzwxRC9KDXRKCUaqDntQIUtgXIZPJ40Sm7rAGAtGALfPBjCB8D838NwFXTE6hr6ThSWhBCDCm9JgKttYzyEf22z54IpmQ+Dk0VcM1SMNmmjYgM8OYXF6c5MzwhxHH0u9eQUioS2zgCALTWBQ6JSAxL+8saucp7E977PoCzfwGxx0w8K4QYovqzHsGlSqls4ADwDbbVylY4OC4xzFSVHOCX6jmIS4c59zk7HCHECejPTF+PY1ticr/WeiS2kcXrHBqVGLIsVs22ghqySo+sVqqtFm6q/BOeygzfWwLGkxmeIoRwlv78H9uhta5SShmUUgat9VdKqScdHpkYUvaXNfDM17l8vb+C6qZ2gnxMbHr0XLw8jDSsfYbZ7GT9mEeZFZbs7FCFECeoP4mgVinlD6wFXldKlWMbTyDcyIPLdpJd1sj8cZHEBvvwn69z+WZfBedFNeC35jG+skzG67QfOjtMIcRJ6LVqSCn1L6XUGcAibNNK3At8BuQClwxOeGIoaGjtYGdRHTfNTuLvV0/lvgWjCfXz5OPtBfDebXQYvHig43ZGR0uPYiGGo+OVCLKxjSqOwbZG8VKt9cuDEpUYUjYfrMZi1cxODgNscwRdNDGG6K1/AcM23kl4HIs1qnMyOSHE8NJriUBr/bTWehZwFlANvKiUylJK/VIpNXrQIhROtz63Ck+jgWkjQjq3XRt7iB+p98lPWMR7baeRKlNJCzFs9dlrSGudr7V+Ums9FbgW+B6Q5fDIxJCxPq+KqYnBeJuMtg1tjYxd/zPKDBH8kR+SY59sTggxPPVnHIFJKXWJUup1bOMH9gOLHR6ZGBJqm9vZXVLP7OTwIxs/fxhVc5DVYx/js+xmGtrMjI6WRCDEcHW8xuIFSqkXgCLgduBTIFlrfZXW+oPBClA418YD1WgNs+ztA2R9BFtfgTn3ctqZF3XuN1qqhoQYto7XWPwI8AbwM6119SDFI4aY9blVeJsMTE4IgvpSWP4TiJkM8x5hrNFEaqQ/2eVSNSTEcHa8xuKztdb/O9kkoJRKUEp9ZW9g3q2Uuse+PVQptVIplW1/DOnrs8TJaWoz84PnNnYbBXyiNuRVkT4iFC+Dgg9/DB0t8L3nwMMTpRR3nJXM/HGRhPh5DmDkQojB1J8pJk6WGfip1noctikq7lJKpQEPAau01qnAKvtr4QBZpfV8m1PJm5tObn7AqsY29h5qsFULbXrWts7A+b+HiCOdxq44LZ7nbjx9oEIWQjiBwxKB1rpUa73V/rwBW0+jOGwD1A6PR3gZuMxRMbi7wppmAFbuKUPrnpaWOL4NebbC4Dkh5bDyVzD6Aki/eUBjFEI4nyNLBJ2UUknAVGAjEKW1LgVbsgAiByMGd1RU3QJASV0re06iemh9XiVhnmbGfnsf+ITCon+DUgMdphDCyRyeCOzzFC0D7tVa9/tupJS6XSmVoZTKqKiocFyALqywphl/Lw+Ugi/3lJ/w8etyqvhT4Nuoyr1w+TPgF+aAKIUQzubQRKCUMmFLAq9rrd+zby5TSsXY348BerxDaa2XaK3TtdbpERERjgzTZRXVtJAa5c/UhGBWZh06oWMLq5tJrf6acxo/htk/geSzHRSlEMLZHJYIlFIKeB7I0lr/tctby4Eb7c9vBD50VAzurqimhYQQXxakRbOruJ7SupZ+H7t5RyZPmv5Ha8REOOeXDoxSCOFsjiwRnAFcD5yjlNpu/7sQeAJYYF/1bIH9tRhgFqumpLaF+BAfFqTZmmG+zOpn9ZDFzKQN9+OlzHhd9RJ4SNdQIVyZw5aS0lp/C/TWsniuo75X2Byqb8Vs1SSE+pIc4U9SmC8r95Rx/cwRfR5r+eqPpLTt4s2EX3F1eMogRCuEcKZB6TUkBl9hta3raHyID0opFqRFsT63kobWjuMfmPc1hm//wtvmswiafu0gRCqEcDZJBC6qqMbWHhAf4gvA/HFRdFg0d7y6hb+u3M+KzFJaOyzdD2oog/dup9pnBI9Zb2J2SvjRHyuEcEGSCFxUYXUzSkFssDcA6UmhXDM9kbL6Vv61Ops7X9/KkjV5Rw6wWmDZLdBaz2+8fs6YhGiCfExOil4IMZgc1kYgnKuopoWoAG+8PGxrCBgNij9+byIArR0Wzv3LN+RVNB454Osn4OBaGi/4Bx9/EMK950qXXSHchZQIXFRRTTMJoT49vudtMjIizJd8ezsCOV/Cmj/BlB+w2nsBWsOZo6VaSAh3IYnARRXVtHS2D/QkMdTX1qBcWwjv3Q6R4+DCP7FmfwXBviYmxQcPYrRCCGeSROCCOixWSutaSAjpuUQAkBDqS0NjI5a3rgdzO3z/VfD0ZeOBKmaNCsNokDmFhHAXkghcUGltK1ZNnyWCX3u8grF0m20eofAUWtotFNW0MDY6cBCjFUI4mzQWu6Ai+/TT8b20EQBMqfyIBI/V5I29g1HjLgYgt6IRrSFFlp0Uwq1IicAFHV6HIKG3EkHRFuK/+yVrLRP4Kva2zs259l5EkgiEcC+SCFxQUU0LRoMiJsj72DfrS+HNayEgmkeM91JQ09b5Vk55IwYFSeG9VykJIVyPJAIXVFTTQnSgNx7Goy5vRyu89QNoa0Bds5TA0GgKDnchxZYIRoT5dY49EEK4B0kELqiwupn4o3sMaQ2f3A/FGXD5fyFqPImhvsckguQIqRYSwt1IInBBRTUtJIQeVb3z3T9g++tw1oOQtgiwjyWoacFq1ZgtVg5WNUn7gBBuSHoNuZg2s4WyhtbuJYKsj2DlryHtMjjroc7NCaG+tJutlDe00dRupsOiJREI4YYkEbiY4poWtO7SY6hkGyy7DeJOs40XMBwpBCbaSw0F1c3UNLcD0mNICHckicDF/G/tAQwKJsUHQV0RvHE1+IXDNUvB1L3doGsiKKtvBSA5wm/QYxZCOJe0EQxBrR0Wau2/0E/E2uwKlm4q4La5o0gNNMNri6GjGa59C/wjj9k/NtgHg7IlgtzyRqIDvQnwlqmnhXA3kgiGoL99uZ/L/r3uhI5paO3goWWZjIrw476zE2HptVCdB1e/DlHjezzG08NATJAPhdXN5FQ0SrWQEG5KEsEQtLu4noNVzTS3m/t9zB8+3UtpXQt/XjwB74/uhILv4LL/wsgzj3tcYqgv+VVN5JZLIhDCXUkiGIIOVjUBUFjd0ue+WmteWX+QpZsKuHXOSKZl/g72fAjn/Q4mXtHn8Ymhvuwqrqep3UKyJAIh3JIkgiGm3WylpNaWALoO9upt30fez+RXH+7mnLGRPODxJmx5EebcB7Pv7tf3JYb50m6xApAig8mEcEvSa2iIKappxqptz4+XCGqb27n15Qwy8mv48bxkfub7KYbVT0P6zXDur/v9fV0HnknVkBDuSRLBEJNfdeTmX3icRPCv1TlsK6zln9dM5ZLWj2DFb2HilXDhX0D1f1GZw11Ig3xMhPt7nnzgQohhS6qGhph8e/tAZIBXryWC2uZ23thUwKWTY7mk7RNY8QCMvdjWOGw4sUt6OBGkRPqjTiCBCCFchySCIeZgVTN+nkamJAT3mgheWZ9Pc7uFB8O/hU9/BmMugiteBOOJjwEI8TUR4mtibHTAqYYuhBimHJYIlFIvKKXKlVK7umwLVUqtVEpl2x9DHPX9w1V+VRMjwvwYEWZbXN56uMHArrndzIvrDvC72PVEr30URl8AV74EHidXraOUYuntM/npeWMGIHohxHDkyBLBS8DCo7Y9BKzSWqcCq+yvRRf51c0khfuSGOpLm9lKRWNbt/ff3lzIVW3L+EH1P2HMhfD9l086CRw2NjqQUD9pHxDCXTksEWit1wDVR21eBLxsf/4ycJmjvn84slg1hdXNJIb6dfbm6Vo91GG2wOrf85DpTZhwBXz/FfDwcla4QggXMdhtBFFa61IA++OxE+DYKaVuV0plKKUyKioqBi1AZyqpbaHDokkK8z0yIdzhXkRWC4Vv3M1NlncoHnUlfG/JSbUJCCHE0YZsY7HWeonWOl1rnR4REeHscAbF4V//iWG+xIX4oOwTwtHRCu/cxKi813lFXUrMdUvAIMtJCiEGxmAngjKlVAyA/bF8kL9/SDs8tUSSfd3gmEBvKivK4NXLIWs5fzX8kM2j78dw9FrEQghxCgb7jrIcuNH+/Ebgw0H+/iGtoKoZTw8D0YHeAJweWMOPc38ExRkcWvAf/tG8gNnJYU6OUgjhahzZfXQpsB4Yo5QqUkrdAjwBLFBKZQML7K+F3cGqJhJDfTEYFBxYwx+r78XPUgc3fMhKwxkAnJEc7uQohRCuxmFTTGitr+nlrXMd9Z3DXX5VMyNCfGDzc7DiQVq8E7ms5m6+iJnBujXbiQv2ISHUp+8PEkKIEyCVzUOE1pqyqhp+0vBX+OSnkHwOG85eSqGOoqC6mfV5VcxODpNpIIQQA04mnRsiqgr38br6JeOqC2Dew3DmA8QU1QG5fL77EHUtHcxOkfYBIcTAk0QwFGS+S/DyezEpC5lnLWHSvO8DRyaEe2tzIQCzpX1ACOEAUjXkTG2N8MFdsOwWav1HcVH7HwmceFHn22F+nvh6GimubSE5wo8oe28iIYQYSFIicJb89fDhj6H6AJz5c15uv5zSsnziQo40BiulSAz1Ze+hBikNCCEcRkoEp6jNbEFr3feOh3W0wOePwosXgNUMN31M+5mPsCanhvgQH0xHDRY7POeQjB8QQjiKJIJTUFrXwtTHVvJlVj8HSB9YA8/MgfX/gvQfwp3r0SPO4OH3MtlRVMd980cfc0hSmC9KwcxRkgiEEI4hVUOnYPn2EprbLWQcrGZBWlTvOzZVwRe/gB1vQEgSXP8BJJ8NwL9XZ7NsaxH3nJvKZVPjjjn0trmjmJMaQYhMEy2EcBBJBKdg+Y4SALLLG3vewdIBGS/AV3+A9iaY+zM482dgsrUDLNtSxJ+/2M/lU+O4d35qjx8RGehNpDQSCyEcSBLBScqtaGR3ST0moyK7vKH7m1pTlPExMRsex1i1D0bNg4VPQuRYwLbK2OMf72HppkJmjAzlicUTZaCYEMJpJBGcpI92lKAUXJmewNJNBTS3m/H19ICiDKwrf0N8/lqKVDSmi14kKv1ysN/otxfWcv9b2zlQ1cSPzkrm/gWj8fSQphohhPNIIjgJWmuW7yhhelIoc1PCeWNjASVZG0nJ+g/s/RiLdxiPddzAW3o+fp/78lJsPdFB3vzps328vaWQmEBv3rh1JrOkJ5AQYgiQRHAS9pTWk1fRxC1zRjKB/Txn+hMp728DryCY9wjvGC/mpU8O8srN03n4vUyuXrIBBbR0WLh1zkjuPjeVQG9ZXUwIMTRIIjgJH20vZKFxC9/P/Aemog34G/xZG38Hc697BHyC2frODsL8PJmbGs67d87ijle3EObnyaMXpZES6e/s8IUQohtJBCeiuRrr9je4bvO/SDCVQkMinPd7blyfTJRnBHN9ggHYWVTLpPgglFLEBPmw/P/mODlwIYTonSSCvmgNBRtg26uwaxkGcyvl1lRKTv8LMy68CYwexB/YQlapredQU5uZnPJGLpgQ49y4hRCinyQR9Kb6AGS+C9tfh5oD4OkPU65lqWU+D6+HLWfPB6PtP19KZACf7TpEa4eF3SX1WDVMTghy8gkIIUT/SCLoqiYfsj6CXcugZKttW9JcOOtBGHcJePnz/rPrGR9rJszfq/Ow1Eh/rBoOVDaxs6gWgIlxwc44AyGEOGHunQisVijdDtlfwN6P4VCmbXvMFFjwOIy/HIITOndvajOzraCGm+eM7PYxo6MCANsI4x1FdcQGeRMR4IUQQgwH7pcI6kttk7/lrobcVdBUAShInAnn/Q7GXAhhyT0euvFAFR0WzdyUiG7bk8J9MRoUOWUN9oZiKQ0IIYYP108EtQW2xt6C9XDwW6jcb9vuEwLJ50LqAtujf8TxPwdYm12Jl4eB9KSQbtu9PIyMCPMlI7+G/Kpmvp+e0MsnCCHE0OPaieCNq2D/Z7bnXoGQMAOmXg8jz4ToiWAwntDHfZtdyfSRoXibjj0uNdKfL/aUATBZSgRCiGHEtRPB+Mttv/YTZ0LU+BO+8Xd1qK6V7PJGrkyP7/H91MgAPt9tSwQT46THkBBi+HDtRDD56gH7qG9zKgGYk9JzFVJqlG3EcFKYL0G+Mn2EEGL4kGkvu7BYNeX1rT2+tza7gnB/T8ZGB/T4/uGpI6ShWAgx3DglESilFiql9imlcpRSDznqe0rrWtiSX9Pv/d/OKGTWE6vZkl/dbbvVqlmXU8kZKeEYDD2vG5Ac4U+4vydnju670VkIIYaSQU8ESikj8G/gAiANuEYpleaI77pn6XZ+9s4OrNb+LS6/KqsMi1Xzs3d20tJu6dz+XW4VlY3tzEkJ7/VYb5ORzY/OZ/G0Y5ebFEKIocwZJYLpQI7WOk9r3Q68CSxyxBddOyORA5VNrMut7HPfDouV9blVTIoP4kBlE099vheAzKI67nxtC0lhvpw3Pvq4n6GUkpXGhBDDjjMSQRxQ2OV1kX3bgLtgYjRhfp68uj6/z323FdTS1G7hx/OSuWl2Ei+uO8gr6w9y/QsbCfQx8fptMwnykUZgIYTrcUYi6Okn8zF1N0qp25VSGUqpjIqKipP6Ii8PI1ednsCXWWUU17Ycd99vsyswKJiVHM4DC8eQFObLrz7cjZeHgTdum0FcsM9JxSCEEEOdMxJBEdB16G08UHL0TlrrJVrrdK11ekTEyTfAXjsjEQ0s3Vhw3P3W5lQyOSGYIB8Tvp4e/P3qqcxNDef1W2cyIszvpL9fCCGGOmckgs1AqlJqpFLKE7gaWO6oL4sP8eXcsZG8ubmAdrO1x33qmjvYUVjL3C6NwVMSgnn1lhmyopgQwuUNeiLQWpuB/wM+B7KAt7XWux35nT+YOYLKxnZW7Crt8f31eZVYNcxJla6fQgj345RxBFrrT7XWo7XWyVrr3zv6+85MjWBEmC/PfpNHU5v5mPfXZlfi52lkaqIMBhNCuB+3GFlsMCgevmAsew/Vc8MLm6hv7ej2/rc5lcwcFYbJ6Bb/OYQQohu3ufMtnBDDv66dxo7CWq7730ZqmtoBKKhqJr+qmbmpvQ8WE0IIV+bak84d5cKJMXibDPzota3MfeorgnxMdFhsDcjSPiCEcFdulQgAzhkbxRu3zmDZ1mLazVY6LFZig31IjpAuokII9+R2iQAgPSmU9KRQZ4chhBBDgtu0EQghhOiZJAIhhHBzkgiEEMLNSSIQQgg3J4lACCHcnCQCIYRwc5IIhBDCzUkiEEIIN6e07t/C7s6klKoA+l5vsmfhQN+LFrsWOWf3IOfs+k71fEdorfucP2dYJIJToZTK0FqnOzuOwSTn7B7knF3fYJ2vVA0JIYSbk0QghBBuzh0SwRJnB+AEcs7uQc7Z9Q3K+bp8G4EQQojjc4cSgRBCiONw6USglFqolNqnlMpRSj3k7HgGmlIqQSn1lVIqSym1Wyl1j317qFJqpVIq2/4Y4uxYB5pSyqiU2qaU+tj+eqRSaqP9nN9SSnk6O8aBpJQKVkq9q5Taa7/es1z9Oiul7rP/u96llFqqlPJ2teuslHpBKVWulNrVZVuP11XZ/MN+P9uplJo2UHG4bCJQShmBfwMXAGnANUqpNOdGNeDMwE+11uOAmcBd9nN8CFiltU4FVtlfu5p7gKwur58E/mY/5xrgFqdE5ThPA59prccCk7Gdu8teZ6VUHPATIF1rPQEwAlfjetf5JWDhUdt6u64XAKn2v9uB/w5UEC6bCIDpQI7WOk9r3Q68CSxyckwDSmtdqrXean/egO3mEIftPF+27/YycJlzInQMpVQ8cBHwnP21As4B3rXv4lLnrJQKBM4EngfQWrdrrWtx8euMbQVFH6WUB+ALlOJi11lrvQaoPmpzb9d1EfCKttkABCulYgYiDldOBHFAYZfXRfZtLkkplQRMBTYCUVrrUrAlCyDSeZE5xN+BBwCr/XUYUKu1Nttfu9q1HgVUAC/aq8OeU0r54cLXWWtdDPwZKMCWAOqALbj2dT6st+vqsHuaKycC1cM2l+wipZTyB5YB92qt650djyMppS4GyrXWW7pu7mFXV7rWHsA04L9a66lAEy5UDdQTe734ImAkEAv4YasaOZorXee+OOzfuSsngiIgocvreKDESbE4jFLKhC0JvK61fs++uexwkdH+WO6s+BzgDOBSpdRBbNV952ArIQTbqxDA9a51EVCktd5of/0utsTgytd5PnBAa12hte4A3gNm49rX+bDerqvD7mmunAg2A6n2Xgae2Bqaljs5pgFlrxt/HsjSWv+1y1vLgRvtz28EPhzs2BxFa/2w1jpea52E7Zqu1lpfB3wFXGHfzdXO+RBQqJQaY990LrAHF77O2KqEZiqlfO3/zg+fs8te5y56u67LgRvsvYdmAnWHq5BOmdbaZf+AC4H9QC7wqLPjccD5zcFWNNwJbLf/XYitznwVkG1/DHV2rA46/3nAx/bno4BNQA7wDuDl7PgG+FynABn2a/0BEOLq1xn4LbAX2AW8Cni52nUGlmJrA+nA9ov/lt6uK7aqoX/b72eZ2HpUDUgcMrJYCCHcnCtXDQkhhOgHSQRCCOHmJBEIIYSbk0QghBBuThKBEEK4OY++dxHCfSilDnfdA4gGLNimdwBo1lrPdkpgQjiQdB8VohdKqd8AjVrrPzs7FiEcSaqGhOgnpVSj/XGeUuobpdTbSqn9SqknlFLXKaU2KaUylVLJ9v0ilFLLlFKb7X9nOPcMhOiZJAIhTs5kbGsiTASuB0Zrradjmxr7bvs+T2ObO/90YLH9PSGGHGkjEOLkbNb2eV6UUrnAF/btmcDZ9ufzgTTbVDkABCqlArRt7QghhgxJBEKcnLYuz61dXls58v+VAZiltW4ZzMCEOFFSNSSE4/x/e3doAyAQBFF0riMERSEIBVII9WDAgSSIec+dW/dzySa7J1nvxxhj+nEWeCUE8J0tyXwdGj+SLH8PBE+sjwKU8yMAKCcEAOWEAKCcEACUEwKAckIAUE4IAMoJAUC5ExLvmP41Y9fVAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Show the generated data\n", + "plt.figure()\n", + "plt.xlabel('Time')\n", + "plt.ylabel('Values')\n", + "plt.plot(times, noisy_values)\n", + "plt.plot(times, problem.evaluate(y1[:2]))\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/optimisation-followed-by-mcmc.ipynb b/examples/optimisation-spotting-unidentifiable-parameters.ipynb similarity index 99% rename from examples/optimisation-followed-by-mcmc.ipynb rename to examples/optimisation-spotting-unidentifiable-parameters.ipynb index 55344bf9e..eda506a90 100644 --- a/examples/optimisation-followed-by-mcmc.ipynb +++ b/examples/optimisation-spotting-unidentifiable-parameters.ipynb @@ -4,11 +4,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Optimisation followed by MCMC\n", + "# Optimisation: Spotting unidentifiable parameters with MCMC\n", "\n", "As well as minimising error functions, Pints' optimisers can be used to maximise likelihoods (or actually any [LogPDF](https://pints.readthedocs.io/en/latest/log_pdfs.html#pints.LogPDF)).\n", "\n", - "This makes it easy to combine optimisation and sampling. For example, you may have found a best solution through optimisation, but suspect it is not unique. You could then run an MCMC routine to explore the space around your best solution. This is particularly useful when the parameter space is large, so that MCMC on its own might be too computationally demanding." + "This makes it easy to combine optimisation and sampling. For example, you may have found a best solution through optimisation, but suspect it is not unique. You could then run an MCMC (or other sampling) routine to explore the space around your best solution. This is particularly useful when the parameter space is large, so that MCMC on its own might be too computationally demanding." ] }, { From bd8a3ca05f9a72badcfe454755a9ef8dc1aa5d5e Mon Sep 17 00:00:00 2001 From: Michael Clerx Date: Tue, 12 Feb 2019 10:46:28 +0000 Subject: [PATCH 3/4] Added testing infra for notebook with deliberate (instructive) errors. --- .error-books | 2 ++ run-tests.py | 16 +++++++++++++++- 2 files changed, 17 insertions(+), 1 deletion(-) create mode 100644 .error-books diff --git a/.error-books b/.error-books new file mode 100644 index 000000000..d9fae7848 --- /dev/null +++ b/.error-books @@ -0,0 +1,2 @@ +# Notebooks that contain deliberate errors +optimisation-on-a-loglikelihood diff --git a/run-tests.py b/run-tests.py index fc62c3c06..33d15dc91 100755 --- a/run-tests.py +++ b/run-tests.py @@ -109,8 +109,22 @@ def run_notebook_tests(skip_slow_books=False, executable='python'): """ Runs Jupyter notebook tests. Exits if they fail. """ - # Ignore slow books? + # Ignore books with deliberate errors and books that are too slow for + # fast testing. ignore_list = [] + if os.path.isfile('.error-books'): + with open('.error-books', 'r') as f: + for line in f.readlines(): + line = line.strip() + if not line or line[:1] == '#': + continue + if not line.startswith('examples/'): + line = 'examples/' + line + if not line.endswith('.ipynb'): + line = line + '.ipynb' + if not os.path.isfile(line): + raise Exception('Error notebook not found: ' + line) + ignore_list.append(line) if skip_slow_books and os.path.isfile('.slow-books'): with open('.slow-books', 'r') as f: for line in f.readlines(): From 1b86f23696dad0d58f53a6bbc564a551074cc0d4 Mon Sep 17 00:00:00 2001 From: Michael Clerx Date: Tue, 12 Feb 2019 10:46:40 +0000 Subject: [PATCH 4/4] Updated list of examples in examples/README --- examples/README.md | 24 +++++++++++++++++------- 1 file changed, 17 insertions(+), 7 deletions(-) diff --git a/examples/README.md b/examples/README.md index 2eb2a3af0..387098774 100644 --- a/examples/README.md +++ b/examples/README.md @@ -6,6 +6,7 @@ Each example was created as a _Jupyter notebook_ (http://jupyter.org/). These notebooks can be downloaded and used, or you can simply copy/paste the relevant code. + ## Getting started - [Optimisation: First example](./optimisation-first-example.ipynb) - [Sampling: First example](./sampling-first-example.ipynb) @@ -13,27 +14,32 @@ relevant code. - [Writing a custom LogPDF](./writing-a-logpdf.ipynb) - [Writing a custom LogPrior](./writing-a-prior.ipynb) + ## Optimisation +- [Optimising a loglikelihood](./optimisation-on-a-loglikelihood.ipynb) +- [Spotting unidentifiable parameters](./optimisation-spotting-unidentifiable-parameters.ipynb) +- [Transformed parameter space](./optimisation-transformed-parameters.ipynb) +- [Ask-and-tell interface](./optimisation-ask-and-tell.ipynb) +- [Convenience methods fmin() and curve\_fit()](./optimisation-convenience.ipynb) + ### Particle-based methods - [CMA-ES](./optimisation-cmaes.ipynb) - [PSO](./optimisation-pso.ipynb) - [SNES](./optimisation-snes.ipynb) - [XNES](./optimisation-xnes.ipynb) -### Further optimisation - -- [Transformed parameter space](./optimisation-transformed-parameters.ipynb) -- [Ask-and-tell interface](./optimisation-ask-and-tell.ipynb) -- [Convenience methods fmin() and curve\_fit()](./optimisation-convenience.ipynb) ## Sampling ### MCMC without gradients -- [Metropolis Random Walk MCMC](./sampling-metropolis-mcmc.ipynb) - [Adaptive Covariance MCMC](./sampling-adaptive-covariance-mcmc.ipynb) -- [Population MCMC](./sampling-population-mcmc.ipynb) +- [Metropolis Random Walk MCMC](./sampling-metropolis-mcmc.ipynb) - [Differential Evolution MCMC](./sampling-differential-evolution-mcmc.ipynb) +- [Dream MCMC](./sampling-dream-mcmc.ipynb) +- [Emcee Hammer](./sampling-emcee-hammer.ipynb) +- [Hamiltonian MCMC](./sampling-hamiltonian-mcmc.ipynb) +- [Population MCMC](./sampling-population-mcmc.ipynb) ### Nested sampling - [Ellipsoidal nested rejection sampling](./sampling-ellipsoidal-nested-rejection-sampling.ipynb) @@ -48,8 +54,10 @@ relevant code. ### Further sampling - [Effective sample size](./sampling-effective-sample-size.ipynb) +- [Cauchy noise model](./sampling-cauchy-sampling-error.ipynb) - [Student-t noise model](./sampling-student-t-sampling-error.ipynb) + ## Toy problems ### Models @@ -67,6 +75,8 @@ relevant code. ### Distributions +- [Annulus distribution](./toy-distribution-annulus.ipynb) +- [Cone distribution](./toy-distribution-cone.ipynb) - [Multimodal normal distribution](./toy-distribution-multimodal-normal.ipynb) - [Rosenbrock function](./toy-distribution-rosenbrock.ipynb) - [Simple Egg Box](./toy-distribution-simple-egg-box.ipynb)