-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgalaxy_model.py
845 lines (712 loc) · 31.1 KB
/
galaxy_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
#!/usr/bin/python
"""
Core code of the `ghost' analytic galaxy-halo model, including pdf definitions
and convenience functions for calculating observables.
-- Phil Bull 2016 <[email protected]>
"""
import numpy as np
import pylab as P
import scipy.integrate
import scipy.interpolate
from scipy.special import erf, erfinv
from halomodel import HaloModel
# Choose integration function
integrate = scipy.integrate.trapz
#integrate = scipy.integrate.simps
# Central wavelength (in Angstroms) of a given band.
band_wavelength = {
'u': 3543.,
'g': 4770.,
'r': 6231.,
'i': 7625.,
'z': 9134.,
}
default_cosmo_params = {
'omega_M_0': 0.316,
'omega_lambda_0': 0.684,
'omega_b_0': 0.049,
'h': 0.67,
'ns': 0.962,
'sigma_8': 0.834,
'gamma': 0.55,
'w0': -1.,
'wa': 0.,
}
default_params = {
# SFR - stellar mass relation
# (Derived from Table 2 of Wang, Farrah, Oliver et al. 2013, Table 2)
#'sfr_alpha0': -3.47, #-9. illustris
#'sfr_alpha1': 1.07, # 0.5
#'sfr_beta': 0.37, # 0.9
# SFR - stellar mass relation (SFMS)
'sfr_sfms_alpha0': -3.47, # -5, De Lucia
'sfr_sfms_alpha1': 1.07,
'sfr_sfms_beta': 0.37, # 0.45, De Lucia
'sfr_sfms_sigma': 0.3, # scatter [dex]
# SFR - stellar mass relation (passive)
#'sfr_pass_logu': False, # log-uniform or log-normal passive SF pop.?
'sfr_pass_type': 'indep', # Type of passive sequence
# (log-uniform, 'log uniform')
'sfr_pass_pthres': 0.05, # Threshold of SFMS pdf at which to set SFR_max
'sfr_pass_sfrmin': 1e-7, # Minimum SFR [M_sun/yr]
# (log-normal, shifted, 'shifted sfms')
'sfr_pass_sigma': 0.4,
'sfr_pass_mshift': 1e-3, # Mean is SFMS mean scaled by this factor
# (log-normal, independent, 'indep', default)
'sfr_pass_alpha0': -4.5,
'sfr_pass_alpha1': 1.07,
'sfr_pass_beta': 0.37,
'sfr_pass_sigma': 0.4,
# Stellar mass - halo mass relation
# (Default values from Moster et al. 2010, Table 7)
'ms_cen_logM1': 11.88,
'ms_cen_norm': 0.0282,
# (redshift dependence)
'ms_cen_mu': 0.019,
'ms_cen_nu': -0.72,
'ms_cen_beta0': 1.06,
'ms_cen_beta1': 0.17,
'ms_cen_gamma0': 0.556,
'ms_cen_gamma1': -0.26,
# (scatter parameters)
'ms_cen_sigmainf': 0.1592,
'ms_cen_sigma1': 0.0460,
'ms_cen_logM2': 11.8045,
'ms_cen_xi': 4.2503,
#'ms_sigma': 0.15, # Scatter, in dex
# Fraction of passive (vs. star-forming) galaxies
'fpass_alpha0': 10.2,
'fpass_alpha1': 0.5,
'fpass_beta': -1.3,
'fpass_zeta': -20.,
# Grid resolution parameters
'mass_mstar_min': 6.,
'mass_mstar_max': 14.,
'mass_mhalo_min': 5.,
'mass_mhalo_max': 16.,
'sfr_min': -5.,
'sfr_max': 4.,
'nsamp_mstar': 200,
'nsamp_mhalo': 200,
'nsamp_sfr': 200,
# HI mass - halo mass relation
'mhi_omegaHI': 1e-4,
'mhi_vc0': 50.,
'mhi_vc1': 200.,
# Optical magnitude fitting function (parameters specified per-band)
'opt_bands': ['u', 'g', 'r', 'i', 'z'],
'opt_cross_amp': [-3.61194266, -2.70027825, -2.01635745, -1.72575487,
-1.56393268],
'opt_cross_beta': -0.262636097,
'opt_cross_gamma': 0.290177366,
'opt_mstar_amp': 3876.55879,
'opt_mstar_beta': -0.000242854097,
'opt_mstar_c': -1.0108709,
'opt_offset': [-27.3176081, -25.9445857, -25.2836569, -24.981922,
-24.8096689],
'opt_pdf_mean': [-0.065874811689195914, -0.053777765775930214,
-0.018547128851928552, -0.0085386560954659688,
-0.0087323005037165322],
'opt_pdf_sigma': [0.28122634653850337, 0.25232918833346546,
0.2468073941298409, 0.25273681573440887,
0.27245133519998282],
}
def mass_stellar_cen(Mh, z, params):
"""
Fitting function for the central galaxy stellar mass of a given halo,
using Eq.2 of Moster, B. P. et al. 2010, ApJ, 710, 903.
[Mvir should be in Msun]
"""
# Best-fit parameters
logM1 = params['ms_cen_logM1']
norm0 = params['ms_cen_norm'] # (m/M)_0
mu = params['ms_cen_mu']
nu = params['ms_cen_nu']
beta0 = params['ms_cen_beta0']
beta1 = params['ms_cen_beta1']
gamma0 = params['ms_cen_gamma0']
gamma1 = params['ms_cen_gamma1']
# Redshift-dependent functions (Eqs. 23-26 of Moster et al.)
logM1 = logM1 * (1. + z)**mu
M1 = 10.**logM1
norm = norm0 * (1. + z)**nu
beta = beta0 + beta1*z
gamma = gamma0 * (1. + z)**gamma1
return 2.*Mh * norm / ((Mh/M1)**(-beta) + (Mh/M1)**gamma)
def mass_stellar_sat(Mh, z, params):
"""
Fitting function for the satellite galaxy stellar mass of a given halo,
using Eq.13 of Moster, B. P. et al. 2010, ApJ, 710, 903.
[Mvir should be in Msun]
"""
logM1 = params['ms_sat_logM1']
norm0 = params['ms_sat_norm'] # (m/M)_0
beta = params['ms_sat_beta']
gamma = params['ms_sat_gamma']
# FIXME: Assumed no redshift dependence for satellite parameters!
logM1 = logM1
M1 = 10.**logM1
norm = norm0
return 2.*Mh * norm / ((Mh/M1)**(-beta) + (Mh/M1)**gamma)
def pdf_mass_stellar_cen(Ms, Mh, z, params):
"""
Prob. density function for stellar mass, given halo mass and redshift. Uses
the form from Moster et al. (2010). Central galaxies.
"""
sigma_inf = params['ms_cen_sigmainf']
sigma1 = params['ms_cen_sigma1']
M2 = 10.**params['ms_cen_logM2']
xi = params['ms_cen_xi']
# Mean stellar mass as fn. of halo mass
mean_ms = mass_stellar_cen(Mh, z, params=params)
# Scatter as a fn. of halo mass [Eq. 12 of Moster et al. (2010)]
sigma = sigma_inf + sigma1*(1. - 2./np.pi * np.arctan(xi*np.log10(Mh/M2)))
sigma *= np.log(10.) # sigma in dex
# Ensure that sigma is +ve, and larger than the value needed for
# integration to converge
sigma[np.where(sigma < 2e-2)] = 2e-2
# Return pdf
return np.exp(-np.log(Ms/mean_ms)**2./(2.*sigma**2.)) \
/ (np.sqrt(2.*np.pi)*sigma*Ms)
def pdf_mass_stellar_sat(Ms, Mh, z, params):
"""
Prob. density function for stellar mass, given halo mass and redshift. Uses
the form from Moster et al. (2010). Satellite galaxies.
"""
sigma_inf = params['ms_sat_sigmainf']
sigma1 = params['ms_sat_sigma1']
M3 = 10.**params['ms_sat_logM3']
xi = params['ms_sat_xi']
# Mean stellar mass as fn. of halo mass
mean_ms = mass_stellar_sat(Mh, z, params=params)
# Schechter function exponent [Eq. 15 of Moster et al. (2010)]
alpha = alpha_inf + alpha1*(1. - 2./np.pi * np.arctan(xi*np.log10(Mh/M3)))
# Return pdf [Eq. 9]
return phi0 * (Mh)**lam / mean_ms * (Ms/mean_ms)**alpha \
* np.exp(-(Ms/mean_ms)**2.)
def pdf_mass_stellar(Ms, Mh, z, params):
# FIXME: Uses centrals only
return pdf_mass_stellar_cen(Ms, Mh, z, params=params)
def stellar_mass_fn(hm, mstar, z, params):
"""
Calculate the stellar mass function, dn/dlog(M*), as a function of stellar
mass and redshift.
"""
# Halo mass function, n(M_h) = dn/dlogM
Mh = np.logspace(params['mass_mhalo_min'], params['mass_mhalo_max'],
params['nsamp_mhalo'])
dndlogm = hm.dndlogm(Mh, z)
# Integrate mass fn. over halo mass, weighted by p(M* | M_h), to get n(M*)
n_mstar = [ integrate(
dndlogm * pdf_mass_stellar(_mstar, Mh, z,
params=params),
np.log(Mh) ) for _mstar in mstar]
return mstar * np.array(n_mstar) # Convert to dn/dlog(M*)
def f_passive(mstar, z, params):
"""
Fraction of passive galaxies at a given stellar mass and redshift.
"""
alpha0 = params['fpass_alpha0']
alpha1 = params['fpass_alpha1']
beta = params['fpass_beta']
c = 0.5 * (1. + np.tanh(params['fpass_zeta']))
return c + (1. - c) / ( 1. + (mstar / (10.**(alpha0 + alpha1*z)))**beta )
def sfr_sfms(mstar, z, params):
"""
Mean SFR of the star-formation main sequence.
"""
alpha0 = params['sfr_sfms_alpha0']
alpha1 = params['sfr_sfms_alpha1']
beta = params['sfr_sfms_beta']
sfr = 10.**(alpha0 + alpha1*z) * (mstar/1e10)**beta
return sfr
def sfr_pass(mstar, z, params):
"""
Mean SFR of the passive sequence (assuming a power-law like the SFMS).
"""
alpha0 = params['sfr_pass_alpha0']
alpha1 = params['sfr_pass_alpha1']
beta = params['sfr_pass_beta']
return 10.**(alpha0 + alpha1*z) * (mstar/1e10)**beta
def sfrmax_passive(mstar, z, params, pthres=0.05):
"""
Get maximum SFR for the passive SF population, which is defined to be some
value in the lower wing of the SFMS distribution. For example, pthres=0.05
places the maximum at the 5% level of the SFMS distribution.
"""
sigma = params['sfr_sfms_sigma'] * np.log(10.)
mean_sfr = sfr_sfms(mstar, z)
# cdf of log-normal distribution is function of erf; need erfinv to invert
return mean_sfr * np.exp(np.sqrt(2.)*sigma * erfinv(2.*pthres - 1.))
def pdf_sfr_sfms(sfr, mstar, z, params):
"""
Prob. density function for SFR on the SF main sequence, given stellar mass
and redshift, p(SFR | M_*, z).
"""
sigma = params['sfr_sfms_sigma'] * np.log(10.)
mean_sfr = sfr_sfms(mstar, z, params=params)
# FIXME
#if 'sfr_sfms_mscale' in params.keys() \
#and 'sfr_sfms_gamma' in params.keys():
# mscale = 10.**params['sfr_sfms_mscale']
# gamma = params['sfr_sfms_gamma']
# mean_sfr *= (1. - np.exp(-(mstar/mscale)**gamma))
return np.exp(-np.log(sfr/mean_sfr)**2./(2.*sigma**2.)) \
/ (np.sqrt(2.*np.pi)*sigma*sfr)
def pdf_sfr_passive_loguniform(sfr, mstar, z, params):
"""
Prob. density function for SFR for passive SF galaxies, given stellar mass
and redshift, p(SFR | M_*, z). [log-uniform version]
"""
sfrmax = sfrmax_passive(mstar, z, pthres=params['sfr_pass_pthres'])
sfrmin = params['sfr_pass_sfrmin'] * np.ones(sfrmax.shape)
idxs = np.where(np.logical_or(sfr < sfrmin, sfr > sfrmax))
p = 1./sfr / np.log(sfrmax / sfrmin)
p[idxs] = 0. # Remove values outside of bounds
return p
def pdf_sfr_passive_lognormal(sfr, mstar, z, params, type='shifted'):
"""
Prob. density function for SFR on the SF main sequence, given stellar mass
and redshift, p(SFR | M_*, z). [log-normal version]
"""
if type == 'shifted':
# Take the SFMS powerlaw, shift it by some factor, and change scatter
assert params['sfr_pass_mshift'] >= 0.
sigma = params['sfr_pass_sigma'] * np.log(10.) # sigma in dex
mean_sfr = sfr_sfms(mstar, z, params) * params['sfr_pass_mshift']
# FIXME
#if 'sfr_sfms_mscale' in params.keys() \
#and 'sfr_sfms_gamma' in params.keys():
# mscale = 10.**params['sfr_pass_mscale']
# gamma = params['sfr_pass_gamma']
# mean_sfr *= (1. - np.exp(-(mstar/mscale)**gamma))
else:
# Use a different powerlaw to the SFMS, and a different scatter
sigma = params['sfr_pass_sigma'] * np.log(10.) # sigma in dex
mean_sfr = sfr_pass(mstar, z, params=params)
return np.exp(-0.5 * (np.log(sfr/mean_sfr) / sigma)**2.) \
/ (np.sqrt(2.*np.pi)*sigma*sfr)
def pdf_sfr_passive(sfr, mstar, z, params, mean_sfr=None):
"""
Prob. density function for SFR on the SF main sequence, given stellar mass
and redshift, p(SFR | M_*, z).
"""
if params['sfr_pass_type'] == 'log uniform':
return pdf_sfr_passive_loguniform(sfr, mstar, z, params)
elif params['sfr_pass_type'] == 'shifted sfms':
return pdf_sfr_passive_lognormal(sfr, mstar, z, params, type='shifted')
else:
return pdf_sfr_passive_lognormal(sfr, mstar, z, params, type='indep')
def sfr_fn(hm, sfr, z, params):
"""
Number density for a given SFR, found by integrating the stellar mass
function weighted by p(SFR|M*).
"""
mstar = np.logspace(params['mass_mstar_min'], params['mass_mstar_max'],
params['nsamp_mstar'])
# Calculate passive fraction and stellar mass function
fpass = f_passive(mstar, z, params=params)
dndlogms = stellar_mass_fn(hm, mstar, z, params=params)
# Integrate over stellar mass function, weighted by p(SFR | M_*),
# to get n(SFR); do this for each population
n_sfr_sfms = [ integrate(
(1.-fpass) * dndlogms * pdf_sfr_sfms(_sfr, mstar, z,
params=params),
np.log(mstar) ) for _sfr in sfr]
n_sfr_pass = [ integrate(
fpass * dndlogms * pdf_sfr_passive(_sfr, mstar, z,
params=params),
np.log(mstar) ) for _sfr in sfr]
n_sfr_sfms = np.array(n_sfr_sfms)
n_sfr_pass = np.array(n_sfr_pass)
# Return total function (dn/dlog(SFR))
#return sfr * (n_sfr_sfms + n_sfr_pass)
return sfr * n_sfr_sfms, sfr * n_sfr_pass
def mhalo_mstar_plane(hm, mhalo, mstar, z, params):
"""
Convenience function to return M_halo vs. M* grid, assuming log bins.
"""
# Calculate halo mass function
dndlogm = hm.dndlogm(mhalo, z=z)
# Calculate number density in each population
n_mstar = np.array([_mstar * pdf_mass_stellar(_mstar, mhalo, z,
params=params)
for _mstar in mstar]) * dndlogm
return n_mstar
def sfr_mstar_plane(hm, sfr, mstar, z, params):
"""
Convenience function to return SFR vs. M* grid, assuming log bins.
"""
# Calculate passive fraction and stellar mass function
fpass = f_passive(mstar, z, params)
dndlogms = stellar_mass_fn(hm, mstar, z, params)
# Calculate number density in each population
n_sfr_mstar_sfms = np.array([_sfr * pdf_sfr_sfms(_sfr, mstar, z,
params=params)
for _sfr in sfr]) * (1.-fpass) * dndlogms
n_sfr_mstar_pass = np.array([_sfr * pdf_sfr_passive(_sfr, mstar, z,
params=params)
for _sfr in sfr]) * fpass * dndlogms
return n_sfr_mstar_sfms, n_sfr_mstar_pass
def sfr_to_luminosity(sfr, type, z, params):
"""
Convert the SFR to a luminosity. Expects SFR in M_sun/yr, outputs
luminosity in erg/s.
"""
type = type.lower()
# Choose which Kennicut-Schmidt law to use
if type == 'halpha':
# H-alpha line
return sfr / 7.9e-42 # astro-ph/9807187, Eq. 2
elif type == '24um':
# Infrared, 24 micron
return sfr / 4.5e-44
elif type == '1.4ghz':
# Radio (SF only) 1.4 GHz
#return sfr * 4.324e29 # arXiv:0810.4150, Eq. 17
return sfr / 5.52e-29 # erg/s/Hz, Bell (2003), Eq. 6
elif type == 'yun1.4ghz':
# Radio (SF only) 1.4 GHz
return sfr / 5.9e-29 # erg/s/Hz, Yun (2001), Eq. 14
else:
raise ValueError("Luminosity type '%s' not recognised." % type)
def luminosity_sfr(hm, z, params,
pkfile="camb_pk_z0.dat"):
"""
Return luminosity function as a function of log-SFR, i.e. dn/dlog(SFR).
"""
# Load my halo model
hm = HaloModel(pkfile, h=0.67, om=0.32) # FIXME
# Number density as a function of halo mass, dn/dlog(mhalo)
mhalo = np.logspace(params['mass_mhalo_min'], params['mass_mhalo_max'],
params['nsamp_mhalo'])
dndlogm = hm.dndlogm(mhalo, z=z)
# Number density as a function of stellar mass, dn/dlog(mstar)
mstar = np.logspace(params['mass_mstar_min'], params['mass_mstar_max'],
params['nsamp_mstar'])
dndlogms = stellar_mass_fn(hm, mstar, z=z, params=params)
# Number density as a function of sfr, dn/dlog(sfr)
sfr = np.logspace(params['sfr_min'], params['sfr_max'], params['nsamp_sfr'])
dndlogsfr_sfms, dndlogsfr_pass = sfr_fn(hm, sfr, z=z, params=params)
return sfr, dndlogsfr_sfms, dndlogsfr_pass
def tau_extinction(sintheta, mstar, band, z, params):
"""
Dust extinction optical depth as a function of inclination angle.
"""
# Extinction parameters
tau0 = params['extinction_tau0']
beta = params['extinction_beta']
adisk = params['extinction_diskfac']
kappa = params['extinction_kappa']
lambda0 = params['extinction_lambda0']
# Get band wavelength
l = band_wavelength[band]
# Calculate optical depth and return
tau = tau0 * (mstar / 1e11)**beta * (1. + adisk*sintheta) \
* np.exp(-kappa * (l - lambda0))
#tau = A * (mstar / 1e11)**beta * (1. + kappa*sintheta) \
# * (l / 5000.)**alpha
return tau
def optical_mag(sfr, mstar, band, z, params):
"""
Return the predicted optical magnitude given the stellar mass and SFR.
Calculated using an ansatz with best-fit parameters calibrated against
the Guo et al. catalogue.
"""
# Figure out which band to use
if band in params['opt_bands']:
i = params['opt_bands'].index(band)
else:
raise KeyError("Band '%s' not recognised; available bands are: %s" % \
(band, params['opt_bands']))
# Ansatz, roughly taking into account 2 sources of stellar light: star
# formation (SFR as proxy) and older stars (via stellar mass)
p = params
mag = p['opt_mstar_amp'] * ( p['opt_mstar_c'] \
+ (mstar/1e9)**p['opt_mstar_beta'] ) \
+ p['opt_cross_amp'][i] * (mstar/1e9)**p['opt_cross_beta'] \
* sfr**p['opt_cross_gamma'] \
- p['opt_offset'][i]
return mag
def pdf_optical_mag(mag, sfr, mstar, band, z, params):
"""
Intrinsic optical magnitude pdf, conditioned on Mstar and SFR:
p(mag_X | M_*, SFR, z).
Assumed to be lognormal, with scatter measured from Guo et al. simulations.
"""
# Figure out which band to use
if band in params['opt_bands']:
i = params['opt_bands'].index(band)
else:
raise KeyError("Band '%s' not recognised; available bands are: %s" % \
(band, params['opt_bands']))
# Central value (mu), and mean and standard deviation of residual
mu = optical_mag(sfr, mstar, band, z=z, params=params)
mean = params['opt_pdf_mean'][i]
sigma = params['opt_pdf_sigma'][i]
# Return shifted log-normal pdf (handle negative arguments)
#u = 1. - mag + mu # FIXME: Should this be +/-mu?
u_mean = np.exp( mean + 0.5*sigma**2. ) # Mean of shifted log-normal
u = mu + u_mean - mag # Linear shift
idxs = np.where(u > 0.)
pdf = np.zeros(u.shape)
pdf[idxs] = np.exp(-0.5 * ((np.log(u[idxs]) - mean) / sigma)**2.) \
/ (np.sqrt(2.*np.pi) * u[idxs] * sigma)
return pdf
def pdf_optical_mag_atten(mag, sfr, mstar, band, z, params):
"""
Dust-attenuated optical magnitude pdf, conditioned on Mstar and SFR:
p(mag_X | M_*, SFR, z).
This is an analytic marginalisation of the dust model over the lognormal
intrinsic optical magnitude pdf.
"""
# Figure out which band to use
if band in params['opt_bands']:
i = params['opt_bands'].index(band)
else:
raise KeyError("Band '%s' not recognised; available bands are: %s" % \
(band, params['opt_bands']))
# Central value (mu), and mean and standard deviation of residual, for the
# intrinsic optical magnitude pdf
mu = optical_mag(sfr, mstar, band, z=z, params=params)
mean = params['opt_pdf_mean'][i]
sigma = params['opt_pdf_sigma'][i]
############################################################################
# Terms in analytically-marginalised pdf
u_mean = np.exp(mean + 0.5*sigma**2.) # shifted mean of log-normal
#dm0 = 1.086 * tau_extinction(0., mstar, band, z, params) # theta=0
#dmpi2 = 1.086 * tau_extinction(0.5*np.pi, mstar, band, z, params) # th=pi/2
# In-line the tau_extinction() function, to save some time
tau0 = params['extinction_tau0']
beta = params['extinction_beta']
adisk = params['extinction_diskfac']
kappa = params['extinction_kappa']
lambda0 = params['extinction_lambda0']
dm0 = 1.086 * tau0 * (mstar / 1e11)**beta \
* np.exp(-kappa * (band_wavelength[band] - lambda0)) # theta=0
dmpi2 = dm0 * (1. + adisk) # theta=pi/2
############################################################################
# Sanitise erf arguments so that x +ve, i.e. take max(x, 0)
x0 = mu + dm0 + u_mean - mag
xpi2 = mu + dmpi2 + u_mean - mag
# Insensitive to 1e-4 even for quite large values of sigma
x0[np.where(x0 < 1e-4)] = 1e-4
xpi2[np.where(xpi2 < 1e-4)] = 1e-4
y0 = (np.log(x0) - mean) / (np.sqrt(2.) * sigma)
ypi2 = (np.log(xpi2) - mean) / (np.sqrt(2.) * sigma)
# Construct pdf, p(m_int | M*, SFR)
pdf = 0.5 * (erf(ypi2) - erf(y0)) / (dmpi2 - dm0)
# Sanitise parts of pdf where the extinction is negligible; just return the
# standard unextincted result
u = mu + u_mean - mag
idxs = np.where(np.logical_and( np.abs(dm0 - dmpi2) < 1e-8, u > 0. ))
pdf[idxs] = np.exp(-0.5 * ((np.log(u[idxs]) - mean) / sigma)**2.) \
/ (np.sqrt(2.*np.pi) * u[idxs] * sigma)
return pdf
def optical_mag_fn(hm, mag, band, z, params):
"""
Number density per unit optical magnitude, in a given band.
"""
mstar = np.logspace(params['mass_mstar_min'], params['mass_mstar_max'],
params['nsamp_mstar'])
sfr = np.logspace(params['sfr_min'], params['sfr_max'], params['nsamp_sfr'])
# Calculate passive fraction and stellar mass function
fpass = f_passive(mstar, z, params=params)
dndlogms = stellar_mass_fn(hm, mstar, z, params=params)
# Loop over magnitude values
n_mag_sfms = []; n_mag_pass = []
for m in mag:
# Evaluate p(mag | SFR, M*) . p(SFR | M*) n(M*) and integrate over M*
n_sfms = []; n_pass = []
for _sfr in sfr:
_pdf_om = pdf_optical_mag(m, _sfr, mstar, band, z, params)
n_sfms.append( integrate(
(1. - fpass) * dndlogms * _pdf_om
* pdf_sfr_sfms(_sfr, mstar, z, params),
np.log(mstar) ) )
n_pass.append( integrate(
fpass * dndlogms * _pdf_om
* pdf_sfr_passive(_sfr, mstar, z, params),
np.log(mstar) ) )
"""
# Evaluate p(mag | SFR, M*) . p(SFR | M*) n(M*) and integrate over M*
n_sfms = [integrate(
(1. - fpass) * dndlogms
* pdf_sfr_sfms(_sfr, mstar, z, params=params)
* pdf_optical_mag(m, _sfr, mstar, band, z=z, params=params),
np.log(mstar) ) for _sfr in sfr]
n_pass = [integrate(
fpass * dndlogms
* pdf_sfr_passive(_sfr, mstar, z, params=params)
* pdf_optical_mag(m, _sfr, mstar, band, z=z, params=params),
np.log(mstar) ) for _sfr in sfr]
"""
# Integrate over SFR to get n(mag)
n_mag_sfms.append( integrate(n_sfms, sfr) )
n_mag_pass.append( integrate(n_pass, sfr) )
# Return total function (dn/dmag) ~ Mpc^-3 mag^-1
return np.array(n_mag_sfms), np.array(n_mag_pass)
def optical_mag_fn_atten(hm, mag, band, z, params):
"""
Number density per unit observed (extincted) optical magnitude, in a given
band. Uses an analytic marginalisation to reduce the number of integrals.
"""
mstar = np.logspace(params['mass_mstar_min'], params['mass_mstar_max'],
params['nsamp_mstar'])
sfr = np.logspace(params['sfr_min'], params['sfr_max'], params['nsamp_sfr'])
# Calculate passive fraction and stellar mass function
fpass = f_passive(mstar, z, params=params)
dndlogms = stellar_mass_fn(hm, mstar, z, params=params)
# Loop over magnitude values
n_mag_sfms = []; n_mag_pass = []
for m in mag:
# Evaluate p(mag | SFR, M*) . p(SFR | M*) n(M*) and integrate over M*
n_sfms = []; n_pass = []
for _sfr in sfr:
_pdf_om = pdf_optical_mag_atten(m, _sfr, mstar, band, z, params)
n_sfms.append( integrate(
(1. - fpass) * dndlogms * _pdf_om
* pdf_sfr_sfms(_sfr, mstar, z, params),
np.log(mstar) ) )
n_pass.append( integrate(
fpass * dndlogms * _pdf_om
* pdf_sfr_passive(_sfr, mstar, z, params),
np.log(mstar) ) )
"""
# Evaluate p(mag | SFR, M*) . p(SFR | M*) n(M*) and integrate over M*
n_sfms = [integrate(
(1. - fpass) * dndlogms
* pdf_sfr_sfms(_sfr, mstar, z, params=params)
* pdf_optical_mag_atten(m, _sfr, mstar, band, z, params),
np.log(mstar) ) for _sfr in sfr]
n_pass = [integrate(
fpass * dndlogms
* pdf_sfr_passive(_sfr, mstar, z, params=params)
* pdf_optical_mag_atten(m, _sfr, mstar, band, z, params),
np.log(mstar) ) for _sfr in sfr]
"""
# Integrate over SFR to get n(mag)
n_mag_sfms.append( integrate(n_sfms, sfr) )
n_mag_pass.append( integrate(n_pass, sfr) )
# Return total function (dn/dmag) ~ Mpc^-3 mag^-1
return np.array(n_mag_sfms), np.array(n_mag_pass)
def joint_optical_mag_fn_atten(hm, mag1, mag2, band1, band2, z, params):
"""
Number density per unit observed (extincted) optical magnitude, in two
given bands. Uses an analytic marginalisation for extinction.
"""
# FIXME: Needs testing for correctness
mstar = np.logspace(params['mass_mstar_min'], params['mass_mstar_max'],
params['nsamp_mstar'])
sfr = np.logspace(params['sfr_min'], params['sfr_max'], params['nsamp_sfr'])
# Calculate passive fraction and stellar mass function
fpass = f_passive(mstar, z, params=params)
dndlogms = stellar_mass_fn(hm, mstar, z, params=params)
# Evaluate p(mag1 | SFR, M*) p(mag2 | SFR, M*) p(SFR | M*) n(M*)
# and integrate over M*. Assumes magnitude pdfs are independent.
n_sfms = []; n_pass = []
for _sfr in sfr:
pdf_om1 = pdf_optical_mag_atten(mag1, _sfr, mstar, band1, z, params)
pdf_om2 = pdf_optical_mag_atten(mag2, _sfr, mstar, band2, z, params)
n_sfms.append( integrate(
(1. - fpass) * dndlogms * pdf_om1 * pdf_om2
* pdf_sfr_sfms(_sfr, mstar, z, params),
np.log(mstar) ) )
n_pass.append( integrate(
fpass * dndlogms * pdf_om1 * pdf_om2
* pdf_sfr_passive(_sfr, mstar, z, params),
np.log(mstar) ) )
# Integrate over SFR to get n(mag)
n_mag_sfms = integrate(n_sfms, sfr)
n_mag_pass = integrate(n_pass, sfr)
# Return total function (dn/dmag1/dmag2) ~ Mpc^-3 mag^-1
return n_mag_sfms, n_mag_pass
def joint_lumfn_sfr_optical(hm, sfr, mag, band, z, params, atten=True):
"""
Joint luminosity function for tracers of SFR and optical magnitudes.
"""
mstar = np.logspace(params['mass_mstar_min'], params['mass_mstar_max'],
params['nsamp_mstar'])
# Calculate passive fraction and stellar mass function
fpass = f_passive(mstar, z, params=params)
dndlogms = stellar_mass_fn(hm, mstar, z, params=params)
# Evaluate joint lum. fn. on a grid in SFR and (dust-atten.) optical mag.
# The pdf for the SFR tracer is assumed to be a delta-fn., so the SFR
# integral has effectively already been evaluated in this expression.
n_sfms = []; n_pass = []
for _sfr in sfr:
_nsfms = []; _npass = []
for _mag in mag:
# Apply dust attenuation correction (or not)
if atten:
pdf_mag = pdf_optical_mag_atten(_mag, _sfr, mstar, band, z, params)
else:
pdf_mag = pdf_optical_mag(_mag, _sfr, mstar, band, z, params)
# Integrate over stellar mass
_nsfms.append( integrate(
(1. - fpass) * dndlogms * pdf_mag
* pdf_sfr_sfms(_sfr, mstar, z, params),
np.log(mstar) ) )
_npass.append( integrate(
fpass * dndlogms * pdf_mag
* pdf_sfr_passive(_sfr, mstar, z, params),
np.log(mstar) ) )
n_sfms.append(_nsfms)
n_pass.append(_npass)
# Return joint luminosity fns., dn(SFR, mag)/dSFR/dmag
return np.array(n_sfms), np.array(n_pass)
#-------------------------------------------------------------------------------
# Luminosity functions from other sources
#-------------------------------------------------------------------------------
def dndlogL_sfradio(L):
"""
Radio (1.4 GHz) luminosity of star-forming galaxies per channel bandwidth
(Hz), from Sect. 5.3 of Yun et al. [astro-ph/0102154].
"""
nstar = 3.2e-4 # Mpc^-3 mag^-1
nstar *= 2.5/np.log(10.) # convert from mag^-1 to logL
Lstar = 2.1e22 * 1e7 # erg/s/Hz
alpha = -0.633
x = L / Lstar
return nstar * x**alpha * np.exp(-x)
def dndlogL_sbradio(L):
"""
Radio (1.4 GHz) luminosity of starburst galaxies per channel bandwidth
(Hz), from Sect. 5.3 of Yun et al. [astro-ph/0102154].
"""
nstar = 8.3e-6 # Mpc^-3 mag^-1
nstar *= 2.5/np.log(10.) # convert from mag^-1 to logL
Lstar = 1.4e23 * 1e7 # erg/s/Hz
alpha = -0.63
x = L / Lstar
return nstar * x**alpha * np.exp(-x)
def dndlogL_halpha(L, type='geach'):
"""
From Geach (2010). L ~ erg/s.
"""
if type == 'geach':
# From Geach et al. (2010)
nstar = 10.**-2.8 # Mpc^-3
Lstar = 1e42 # erg/s/Hz
alpha = -1.35 + 1. # +1 converts from phi(L)dL -> (dn/dlogL).dlogL
else:
# From Pozzetti et al. (2016)
nstar = 10.**-2.8 # Mpc^-3
Lstar = 10**41.5 # erg/s
alpha = -1.35 + 1.
# Gallego 1995
#nstar = 10.**-2.78
#Lstar = 10.**41.47
#alpha = -1.3 + 1.
x = L / Lstar
return nstar * x**alpha * np.exp(-x)
def dndlogL_24um(L):
"""
xxx
"""
# FIXME
nstar = 10.**-2.8 # Mpc^-3
Lstar = 1e42 # erg/s/Hz
alpha = -1.35
x = L / Lstar
return nstar * x**alpha * np.exp(-x)