forked from 20020001-UET/dsa-decision-tree
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTree.cpp
236 lines (208 loc) · 4.81 KB
/
Tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#include "Tree.h"
#include "TerminalNode.h"
#include "DecisionNode.h"
Tree::Tree(bool consoleActivate)
{
root = NULL;
console = new Console("Tree", consoleActivate);
}
Tree::Tree(vector<Data *> *dataset, int minSize, int maxDepth, bool consoleActivate)
{
console = new Console("Tree", consoleActivate);
buildTree(dataset, minSize, maxDepth);
}
Tree::~Tree()
{
/** TODO: delete all Node */
delete root;
delete console;
}
/**
* @brief Building a tree function.
*
* @param dataset The main dataset.
* @param minSize Minimum Node Records.
* @param maxDepth Maximum Tree Depth.
*/
void Tree::buildTree(vector<Data *> *dataset, int minSize, int maxDepth)
{
console->log(cout, "Buiding tree");
split(root, dataset, minSize, maxDepth, 1);
console->log(cout, "done!\n");
return;
}
void Tree::printTree()
{
printNode(root, 1);
}
double Tree::calcAccuracy(DataSet *dataset)
{
int count = 0;
for (int i = 0; i < dataset->size(); i++)
{
if (predict(dataset->at(i)))
{
count++;
}
}
return count * 100.0 / dataset->size();
;
}
bool Tree::predict(Data *data)
{
return predict(root, data);
}
bool Tree::predict(Node *node, Data *data)
{
if (node->compare(data))
{
if (node->isTerminal())
{
if (node->getLabel() == data->label)
{
return true;
}
else
return false;
}
else
predict(node->left, data);
}
else
{
if (node->isTerminal())
{
if (node->getLabel() == data->label)
{
return true;
}
else
return false;
}
else
predict(node->right, data);
}
}
char Tree::predictNode(Data *data)
{
return predictNode(root, data);
}
char Tree::predictNode(Node *node, Data *data)
{
if (node->compare(data))
{
if (node->isTerminal())
{
return node->getLabel();
}
else
predictNode(node->left, data);
}
else
{
if (node->isTerminal())
{
return node->getLabel();
}
else
predictNode(node->right, data);
}
}
void Tree::import(string importData)
{
int count;
stringstream ss(importData);
ss >> count;
vector<Node*> nodes;
nodes.resize(count, NULL);
for (int index = 0; index < count; index++)
{
int isTerminal;
ss >> isTerminal;
if (isTerminal)
{
char label;
ss >> label;
nodes[index] = new TerminalNode(label);
}
else
{
int attribute;
int compareValue;
int method;
ss >> attribute >> compareValue >> method;
nodes[index] = new DecisionNode(attribute, compareValue, SplitData::getSplitValue(method));
}
int parentCode, direction;
ss >> parentCode >> direction;
if (parentCode == -1)
{
root = nodes[index];
}
else
{
if (direction == 0)
{
nodes[parentCode]->left = nodes[index];
}
else
{
nodes[parentCode]->right = nodes[index];
}
}
}
}
string Tree::getExport()
{
string exportData = "";
int count = 0;
exportNode(exportData, root, count, -1, -1);
string line;
stringstream ss;
ss << count;
getline(ss, line);
exportData = line + '\n' + exportData;
return exportData;
}
void Tree::exportNode(string& exportData, Node* node, int& count, int parentCode, int direction)
{
if (node == NULL)
return;
node->setCode(count++);
string line;
stringstream ss;
ss << node->getExport() << ' ' << parentCode << ' ' << direction;
getline(ss, line);
exportData += line + '\n';
exportNode(exportData, node->left, count, node->code, 0);
exportNode(exportData, node->right, count, node->code, 1);
}
Tree *buildBestModel(DataSet *train, DataSet *valid)
{
Tree *bestModel = NULL;
double acc = -1.0;
for (int minSize = 1; minSize <= 3; minSize++)
{
for (int maxDepth = 3; maxDepth <= 8; maxDepth++)
{
Tree *curModel = new Tree(train, minSize, maxDepth, false);
double curAcc = curModel->calcAccuracy(valid);
if (curAcc > acc)
{
bestModel = curModel;
acc = curAcc;
}
}
}
return bestModel;
}
void printNode(Node *node, int depth)
{
if (node == NULL)
return;
for (int i = 0; i < depth; i++)
cout << " ";
cout << node->toString() << '\n';
printNode(node->left, depth + 1);
printNode(node->right, depth + 1);
}