forked from 20020001-UET/dsa-decision-tree
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSplitData.cpp
259 lines (224 loc) · 7.12 KB
/
SplitData.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#include "SplitData.h"
#include <random>
SplitData::SPLIT_VAL SplitData::getSplitValue(int index)
{
switch (index)
{
case 0:
return SplitData::ATTRIBUTE;
case 1:
return SplitData::COMPARISON;
case 2:
return SplitData::COMBINATION;
default:
return SplitData::NONE;
}
}
SplitData::SPLIT_VAL SplitData::randSplit(int rMin, int rMax)
{
int num = rand() % (rMax - rMin + 1) + rMin;
switch (num)
{
case 0:
return SplitData::ATTRIBUTE;
case 1:
return SplitData::COMPARISON;
case 2:
return SplitData::COMBINATION;
default:
return SplitData::NONE;
}
}
SplitData::GroupSplitData::GroupSplitData(double cost, int atr, int com, SPLIT_VAL met, GroupDataSet *groupData) : costIndex(cost), attribute(atr), compareValue(com), method(met)
{
group = groupData;
}
SplitData::GroupSplitData::~GroupSplitData()
{
}
// Compare function
bool SplitData::Attribute::compare(Data *data, int atr, int value)
{
return data->attribute.at(atr) == value;
}
// Split a dataset based on an attribute and attribute value (equal to atr)
GroupDataSet *SplitData::Attribute::split(DataSet *data, int atr, int value)
{
DataSet *left = new DataSet();
DataSet *right = new DataSet();
for (int i = 0; i < data->size(); i++)
{
if (data->at(i)->attribute.at(atr) == value)
left->push_back(data->at(i));
else
{
right->push_back(data->at(i));
}
}
GroupDataSet *group = new GroupDataSet(left, right);
return group;
}
// Split a dataset based on an attribute to a group of two new datasets
// and select the best split point!
SplitData::GroupSplitData SplitData::Attribute::getSplit(DataSet *data, int atr)
{
GroupDataSet *chosenGroup = NULL;
double chosenCost = 2.0;
int chosenValue = -1;
for (int value = Data::ATT_MIN; value < Data::ATT_MAX; value++)
{
GroupDataSet *group = SplitData::Attribute::split(data, atr, value);
DataSet *left = group->first;
DataSet *right = group->second;
if (left->empty() || right->empty())
continue;
// double cost = CostCalc::Gini::getGiniIndex(group, data->size());
double cost = CostCalc::Entropy::getEntropyIndex(group, data->size());
if (chosenCost > cost)
{
delete chosenGroup;
chosenGroup = group;
chosenCost = cost;
chosenValue = value;
}
else
{
delete group;
}
}
return SplitData::GroupSplitData(chosenCost, atr, chosenValue, SplitData::ATTRIBUTE, chosenGroup);
}
vector<int> SplitData::Attribute::getErrorIndex(DataSet *data, int atr, int value) {
vector<int> errorIndex;
for (int i = 0; i < data->size(); i++)
{
if (data->at(i)->attribute.at(atr) != value) errorIndex.push_back(i);
}
return errorIndex;
}
// Compare function
bool SplitData::Comparison::compare(Data *data, int atr, int value)
{
return data->attribute.at(atr) < value;
}
// Split a dataset based on an attribute and attribute value (less to atr)
GroupDataSet *SplitData::Comparison::split(DataSet *data, int atr, int value)
{
DataSet *left = new DataSet();
DataSet *right = new DataSet();
for (int i = 0; i < data->size(); i++)
{
if (data->at(i)->attribute.at(atr) < value)
{
left->push_back(data->at(i));
}
else
{
right->push_back(data->at(i));
}
}
GroupDataSet *group = new GroupDataSet(left, right);
return group;
}
// Split a dataset based on comparing attribute to a group of two new datasets
// and select the best split point!
SplitData::GroupSplitData SplitData::Comparison::getSplit(DataSet *data, int atr)
{
GroupDataSet *chosenGroup = NULL;
double chosenCost = 2.0;
int chosenValue = -1;
for (int value = Data::ATT_MIN; value < Data::ATT_MAX; value++)
{
GroupDataSet *group = SplitData::Comparison::split(data, atr, value);
DataSet *left = group->first;
DataSet *right = group->second;
if (left->empty() || right->empty())
continue;
// double cost = CostCalc::Gini::getGiniIndex(group, data->size());
double cost = CostCalc::Entropy::getEntropyIndex(group, data->size());
if (chosenCost > cost)
{
delete chosenGroup;
chosenGroup = group;
chosenCost = cost;
chosenValue = value;
}
else
{
delete group;
}
}
return SplitData::GroupSplitData(chosenCost, atr, chosenValue, SplitData::COMPARISON, chosenGroup);
}
vector<int> SplitData::Comparison::getErrorIndex(DataSet *data, int atr, int value) {
vector<int> errorIndex;
for (int i = 0; i < data->size(); i++)
{
if (data->at(i)->attribute.at(atr) >= value) errorIndex.push_back(i);
}
return errorIndex;
}
// Compare function
bool SplitData::Combination::compare(Data *data, int atr, int mask)
{
return getBit(mask, data->attribute.at(atr) - 1);
}
// Split a dataset based on a combination of attribute value
// mask is the combinatino bit mask of the value
GroupDataSet *SplitData::Combination::split(DataSet *data, int atr, int mask)
{
DataSet *left = new DataSet();
DataSet *right = new DataSet();
for (int i = 0; i < data->size(); i++)
{
int curAtt = data->at(i)->attribute.at(atr) - 1;
if (getBit(mask, curAtt))
left->push_back(data->at(i));
else
right->push_back(data->at(i));
}
GroupDataSet *group = new GroupDataSet(left, right);
return group;
}
// Split a dataset based on a combination of attribute value
// to a group of two new datasets and select the best split point!
SplitData::GroupSplitData SplitData::Combination::getSplit(DataSet *data, int atr)
{
int maskSize = 1 << Data::ATT_SIZE;
GroupDataSet *chosenGroup = NULL;
double chosenCost = 2.0;
int chosenMask = -1;
for (int mask = 0; mask < maskSize; mask++)
{
GroupDataSet *group = SplitData::Combination::split(data, atr, mask);
DataSet *left = group->first;
DataSet *right = group->second;
if (left->empty() || right->empty())
continue;
// double cost = CostCalc::Gini::getGiniIndex(group, data->size());
double cost = CostCalc::Entropy::getEntropyIndex(group, data->size());
if (chosenCost > cost)
{
delete chosenGroup;
chosenGroup = group;
chosenCost = cost;
chosenMask = mask;
}
else
{
delete group;
}
}
/** TODO: change return type so it can contain comMask and gini index */
return SplitData::GroupSplitData(chosenCost, atr, chosenMask, SplitData::COMBINATION, chosenGroup);
}
vector<int> SplitData::Combination::getErrorIndex(DataSet *data, int atr, int value) {
vector<int> errorIndex;
for (int i = 0; i < data->size(); i++)
{
int curAtt = data->at(i)->attribute.at(atr) - 1;
if (getBit(value, curAtt))
errorIndex.push_back(i);
}
return errorIndex;
}