From 01d399bb0ed1f4c598383e0c899d16abfb4c5e03 Mon Sep 17 00:00:00 2001 From: Ian Taylor Date: Tue, 10 Dec 2024 06:46:45 -0800 Subject: [PATCH] run styler::style_pkg(), add action for doc-and-style-r --- .github/.gitignore | 1 + .github/workflows/call-doc-and-style-r.yml | 10 ++ R/calc_index_areas.R | 5 +- R/data.R | 2 +- R/diagnose.R | 2 +- R/filter_grid.R | 4 +- R/filter_odfw.R | 122 ++++++++++----------- R/format_data.R | 2 +- R/format_strata.R | 2 +- R/lookup_grid.R | 2 +- R/map_base.R | 10 +- R/map_density.R | 3 +- R/map_effects.R | 86 ++++++++------- R/map_residuals.R | 1 - R/map_year_re.R | 117 ++++++++++---------- R/plot_indices.R | 6 +- R/plot_qq.R | 13 ++- R/run.R | 2 +- R/run_sdmtmb.R | 20 ++-- data-raw/configuration.R | 20 ++-- data-raw/grid_nwfscSurvey.R | 12 +- man/calc_index_areas.Rd | 3 +- man/map_year_re.Rd | 21 ++-- 23 files changed, 240 insertions(+), 226 deletions(-) create mode 100644 .github/workflows/call-doc-and-style-r.yml diff --git a/.github/.gitignore b/.github/.gitignore index 2d19fc7..0c817ed 100644 --- a/.github/.gitignore +++ b/.github/.gitignore @@ -1 +1,2 @@ *.html +*.rds diff --git a/.github/workflows/call-doc-and-style-r.yml b/.github/workflows/call-doc-and-style-r.yml new file mode 100644 index 0000000..2e93be3 --- /dev/null +++ b/.github/workflows/call-doc-and-style-r.yml @@ -0,0 +1,10 @@ +# document and style R code using a reusable workflow +name: call-doc-and-style-r +# on specifies the build triggers. See more info at https://docs.github.com/en/actions/learn-github-actions/events-that-trigger-workflows +on: + push: + branches: [main] +jobs: + call-workflow: + uses: nmfs-fish-tools/ghactions4r/.github/workflows/doc-and-style-r.yml@main + diff --git a/R/calc_index_areas.R b/R/calc_index_areas.R index bab9877..7b662df 100644 --- a/R/calc_index_areas.R +++ b/R/calc_index_areas.R @@ -44,13 +44,14 @@ #' list("test" = c(39, 38)) #' # run the function #' index <- calc_index_areas( -#' data, fit, grid, dir = getwd(), boundaries = list("test" = c(39, 38)) +#' data, fit, grid, +#' dir = getwd(), boundaries = list("test" = c(39, 38)) #' ) #' # look at the index, which will be in "test" because that is what we #' # named the boundary #' index[["test"]][["index"]] #' } -#' +#' calc_index_areas <- function(data, fit, prediction_grid, diff --git a/R/data.R b/R/data.R index db49a36..433ed3c 100644 --- a/R/data.R +++ b/R/data.R @@ -33,4 +33,4 @@ #' * South of Cape Mendocino #' * North of Monterey Bay #' * South of Monterey Bay -"boundaries_data" \ No newline at end of file +"boundaries_data" diff --git a/R/diagnose.R b/R/diagnose.R index 30baf34..8dc9171 100644 --- a/R/diagnose.R +++ b/R/diagnose.R @@ -81,7 +81,7 @@ diagnose <- function(dir, fit[["data"]][["residuals2"]] <- stats::residuals( fit, model = 2, - type = "mle-mvn" + type = "mle-mvn" ) } diff --git a/R/filter_grid.R b/R/filter_grid.R index 13aa93c..b774ede 100644 --- a/R/filter_grid.R +++ b/R/filter_grid.R @@ -6,7 +6,7 @@ #' @return A data frame with the same structure as `grid`. #' @author Kelli F. Johnson filter_grid <- function(grid, boundary_north, boundary_south) { - sub_grid <- grid %>% + sub_grid <- grid %>% dplyr::filter(latitude < boundary_north) %>% - dplyr::filter(latitude >= boundary_south) + dplyr::filter(latitude >= boundary_south) } diff --git a/R/filter_odfw.R b/R/filter_odfw.R index 0c0de7a..58741ff 100644 --- a/R/filter_odfw.R +++ b/R/filter_odfw.R @@ -1,13 +1,11 @@ - - # ##### AT SEA OBSERVER CPUE DATA PREP/FILTERING -# # created by A. Whitman -# # updated 06/21/2021 +# # created by A. Whitman +# # updated 06/21/2021 # # last update to exclude 2020 due to sample size. -# # purpose: explore drift level data for the At Sea charter observer CPUE index +# # purpose: explore drift level data for the At Sea charter observer CPUE index # # load some libraries - not sure if I'll need all these. @@ -51,29 +49,29 @@ # dat<-dat[!is.na(dat$Total_lingcod),] # summary(dat) -# # adding a p/a variable for lingcod +# # adding a p/a variable for lingcod # dat$ling.pa<-ifelse(dat$Total_lingcod==0,0,1) -# # adding a megaregion variable +# # adding a megaregion variable # dat$Megaregion<-as.factor(ifelse(dat$Port<30,"North","South")) -# # positive rate of overall dataset -# dim(dat)[1] # total records -# length(which(dat$ling.pa==1)) # total positive drifts -# length(which(dat$ling.pa==1))/dim(dat)[1] # positive rate +# # positive rate of overall dataset +# dim(dat)[1] # total records +# length(which(dat$ling.pa==1)) # total positive drifts +# length(which(dat$ling.pa==1))/dim(dat)[1] # positive rate # # positive rate by year without any filtering -# pos_rate_year<-dat %>% +# pos_rate_year<-dat %>% # dplyr::group_by(Year)%>% -# dplyr::summarise(No.Drifts=n(),Pos.Drifts=round((sum(ling.pa)/n()),3)) %>% +# dplyr::summarise(No.Drifts=n(),Pos.Drifts=round((sum(ling.pa)/n()),3)) %>% # as.data.frame() -# pos_rate_year +# pos_rate_year -# # ouch on 2020, might need to throw that year out, otherwise, annual rate +# # ouch on 2020, might need to throw that year out, otherwise, annual rate # # ranges from approx. 0.203 to 0.611 -# #looking at potential filters -# # drift minutes, drifts without depth, depth bins, closed season or depths +# #looking at potential filters +# # drift minutes, drifts without depth, depth bins, closed season or depths # # look at drifts by megaregion and by depth bin, filter by percent midwater # ### FILTER: DRIFT MINUTES @@ -91,7 +89,7 @@ # dat<-dat[dat$DriftMinutes<=28,] # #' -# #' +# #' # filter_odfw_drift_quantile <- function(x, percent = 0.95, verbose = FALSE) { # limit <- stats::quantile(x, percent) # remove <- which(x > limit) @@ -108,48 +106,48 @@ # } # test %>% # dplyr::mutate(filter_drift = filter_odfw_drift_quantile(DriftMinutes)) -# # positive rate of overall dataset -# dim(dat)[1] # total records -# length(which(dat$ling.pa==1)) # total positive drifts -# length(which(dat$ling.pa==1))/dim(dat)[1] # positive rate +# # positive rate of overall dataset +# dim(dat)[1] # total records +# length(which(dat$ling.pa==1)) # total positive drifts +# length(which(dat$ling.pa==1))/dim(dat)[1] # positive rate # ### FILTER: DEPTHS # summary(dat$SDEPTH_fm) -# # remove the NAs +# # remove the NAs # dat<-dat[!is.na(dat$SDEPTH_fm),] # histogram(dat$SDEPTH_fm) -# quantile(dat$SDEPTH_fm,0.99) #99 percentile is 60, so I will cut it off there +# quantile(dat$SDEPTH_fm,0.99) #99 percentile is 60, so I will cut it off there # dat<-dat[dat$SDEPTH_fm<=60,] -# # positive rate of overall dataset -# dim(dat)[1] # total records -# length(which(dat$ling.pa==1)) # total positive drifts -# length(which(dat$ling.pa==1))/dim(dat)[1] # positive rate +# # positive rate of overall dataset +# dim(dat)[1] # total records +# length(which(dat$ling.pa==1)) # total positive drifts +# length(which(dat$ling.pa==1))/dim(dat)[1] # positive rate # #creating a depth bin from the start depth in FMs -# dat<- dat %>% -# mutate(DepthBin=cut(dat$SDEPTH_fm,breaks = c(seq(0,60,by = 5)))) %>% +# dat<- dat %>% +# mutate(DepthBin=cut(dat$SDEPTH_fm,breaks = c(seq(0,60,by = 5)))) %>% # as.data.frame() -# # look at drifts by depth bin +# # look at drifts by depth bin # drifts_by_depth<-dat %>% -# group_by(DepthBin) %>% +# group_by(DepthBin) %>% # summarise(drifts=n()) # drifts_by_depth # histogram(dat$DepthBin) -# ### FILTER: PERCENT MIDWATER FISH +# ### FILTER: PERCENT MIDWATER FISH # summary(dat$percent_midwater) # quantile(dat$percent_midwater) # so 50% is 0.75 midwater, and 75% is 1.0! this would be a pretty heavy filter # histogram(dat$percent_midwater) # lots of zeros and lots of 1.0, no clear break in between -# length(which(dat$percent_midwater<=0.75)) +# length(which(dat$percent_midwater<=0.75)) -# #just to check, are there lingcod caught on any 100% midwater trips? +# #just to check, are there lingcod caught on any 100% midwater trips? # length(which(dat$percent_midwater==1.0 & dat$ling.pa==1)) # yay -# # if I filter out all the 1.0's, what do the quantiles look like then? +# # if I filter out all the 1.0's, what do the quantiles look like then? # dat_test<-dat[dat$percent_midwater<1.0,] # dim(dat_test)[1] # quantile(dat_test$percent_midwater,0.99) # that's 0.92 percent midwater, so I think that's reasonable @@ -157,61 +155,61 @@ # dat<-dat[dat$percent_midwater<=0.92,] -# # positive rate of overall dataset -# dim(dat)[1] # total records -# length(which(dat$ling.pa==1)) # total positive drifts -# length(which(dat$ling.pa==1))/dim(dat)[1] # positive rate +# # positive rate of overall dataset +# dim(dat)[1] # total records +# length(which(dat$ling.pa==1)) # total positive drifts +# length(which(dat$ling.pa==1))/dim(dat)[1] # positive rate -# #### CHECKING OPEN DEPTHS +# #### CHECKING OPEN DEPTHS # summary(dat$GF_OpenDepth) -# # so lingcod is not a LL species, so those get recategorized +# # so lingcod is not a LL species, so those get recategorized # levels(dat$GF_OpenDepth)[levels(dat$GF_OpenDepth)=="<30 fm & >40 fm (LL)"] <- "<30 fm" # levels(dat$GF_OpenDepth)[levels(dat$GF_OpenDepth)=="<40 fm & >40 fm (LL)"] <- "<40 fm" # histogram(dat$GF_OpenDepth) # table(dat$GF_OpenDepth,dat$ling.pa > 0) # a few trips outside of 40fm -# #checking if fishing in legal depths +# #checking if fishing in legal depths # #add a legal depth from the GF_OpenDepth # dat$legal.dep<-as.numeric(ifelse(dat$GF_OpenDepth=="All Depth",1000,substring(dat$GF_OpenDepth,2,3))) # dat$dep.diff<-dat$legal.dep-dat$SDEPTH_fm # so if it's negative, they were fishing in depths that were deeper than legal # length(which(dat$dep.diff<0)) -# #### FILTER: FISHING OUTSIDE LEGAL DEPTHS +# #### FILTER: FISHING OUTSIDE LEGAL DEPTHS -# # remove drifts outside legal depths, with a buffer +# # remove drifts outside legal depths, with a buffer # dat<-dat[dat$dep.diff>-5,] - -# # positive rate of overall dataset -# dim(dat)[1] # total records -# length(which(dat$ling.pa==1)) # total positive drifts -# length(which(dat$ling.pa==1))/dim(dat)[1] # positive rate + +# # positive rate of overall dataset +# dim(dat)[1] # total records +# length(which(dat$ling.pa==1)) # total positive drifts +# length(which(dat$ling.pa==1))/dim(dat)[1] # positive rate # # positive rate by year without any filtering -# pos_rate_year<-dat %>% +# pos_rate_year<-dat %>% # dplyr::group_by(Year)%>% -# dplyr::summarise(No.Drifts=n(),Pos.Drifts=sum(ling.pa),Pos.Perc=round((sum(ling.pa)/n()),3)) %>% +# dplyr::summarise(No.Drifts=n(),Pos.Drifts=sum(ling.pa),Pos.Perc=round((sum(ling.pa)/n()),3)) %>% # as.data.frame() -# pos_rate_year +# pos_rate_year -# ### FILTER - REMOVE 2020 BECAUSE OF SAMPLE SIZE +# ### FILTER - REMOVE 2020 BECAUSE OF SAMPLE SIZE # dat<-dat[dat$Year %in% c(2001,2003:2019),] -# # positive rate of overall dataset -# dim(dat)[1] # total records -# length(which(dat$ling.pa==1)) # total positive drifts -# length(which(dat$ling.pa==1))/dim(dat)[1] # positive rate +# # positive rate of overall dataset +# dim(dat)[1] # total records +# length(which(dat$ling.pa==1)) # total positive drifts +# length(which(dat$ling.pa==1))/dim(dat)[1] # positive rate -# pos_rate_year<-dat %>% +# pos_rate_year<-dat %>% # dplyr::group_by(Year)%>% -# dplyr::summarise(No.Drifts=n(),Pos.Drifts=sum(ling.pa),Pos.Perc=round((sum(ling.pa)/n()),3)) %>% +# dplyr::summarise(No.Drifts=n(),Pos.Drifts=sum(ling.pa),Pos.Perc=round((sum(ling.pa)/n()),3)) %>% # as.data.frame() # pos_rate_year -# # okay, I think that's it for filters. +# # okay, I think that's it for filters. -# # exporting final dataset and positive rate table +# # exporting final dataset and positive rate table # #write.csv(dat,"Final_filtered_ORAtSea_updated.csv",row.names = F) # #write.csv(pos_rate_year,"PositivesByYear_updated.csv",row.names = F) diff --git a/R/format_data.R b/R/format_data.R index d9e0a0c..df5863a 100644 --- a/R/format_data.R +++ b/R/format_data.R @@ -46,7 +46,7 @@ format_data <- function(data, ...) { if (all( c("Latitude_dd", "cpue_kg_per_ha_der", "Datetime_utc_iso") %in% - colnames(data) + colnames(data) )) { class(data) <- c("nwfscSurvey", class(data)) } diff --git a/R/format_strata.R b/R/format_strata.R index 5783d57..dea58dc 100644 --- a/R/format_strata.R +++ b/R/format_strata.R @@ -9,7 +9,7 @@ #' format_strata(nwfscSurvey::GetStrata.fn("sablefish")) format_strata <- function(strata = nwfscSurvey::GetStrata.fn("coast"), min_depth = 55, - max_depth = 1280){ + max_depth = 1280) { strata_temp <- strata %>% tidyr::separate(name, into = c("dname", "STRATA"), sep = "_") %>% dplyr::group_by(STRATA) %>% diff --git a/R/lookup_grid.R b/R/lookup_grid.R index fa783e1..701d704 100644 --- a/R/lookup_grid.R +++ b/R/lookup_grid.R @@ -50,7 +50,7 @@ lookup_grid <- function(x, out <- dplyr::mutate( .data = data, - area_km2 = {{column}}, + area_km2 = {{ column }}, vessel_year = "0", depth_scaled = scale(depth, center = mean_depth, scale = sd_depth), depth_scaled_squared = depth_scaled^2 diff --git a/R/map_base.R b/R/map_base.R index ccd8c33..732f8b9 100644 --- a/R/map_base.R +++ b/R/map_base.R @@ -27,11 +27,11 @@ map_base <- function(x_min = -155, # Crop the polygon for plotting and efficiency: # sf::st_bbox(map_data) to find the rough coordinates coast <- suppressWarnings(suppressMessages( - sf::st_crop( - map_data, - c(xmin = x_min, ymin = y_min, xmax = x_max, ymax = y_max) - ) - )) + sf::st_crop( + map_data, + c(xmin = x_min, ymin = y_min, xmax = x_max, ymax = y_max) + ) + )) coast_proj <- sf::st_transform(coast, crs = utm_zone_10) gg <- ggplot2::ggplot(coast_proj) + ggplot2::geom_sf() + diff --git a/R/map_density.R b/R/map_density.R index d0216f1..3a98284 100644 --- a/R/map_density.R +++ b/R/map_density.R @@ -34,7 +34,6 @@ map_density <- function(predictions, n_col = 2, column_grep = "^est[2]*$", tile_size = c(2000, 2000)) { - column <- grep(column_grep, colnames(predictions), value = TRUE) predictions <- dplyr::rename( .data = predictions, @@ -66,7 +65,7 @@ map_density <- function(predictions, ) names(x) <- split_names - gg <- map_base() + + gg <- map_base() + ggplot2::geom_tile( data = purrr::list_rbind(x, names_to = "year"), mapping = aes(x * 1000, y * 1000, fill = layer) diff --git a/R/map_effects.R b/R/map_effects.R index 44607f5..254336b 100644 --- a/R/map_effects.R +++ b/R/map_effects.R @@ -10,51 +10,53 @@ #' #' @author Chantel R. Wetzel #' @export -map_effects <- function(predictions, dir, verbose = FALSE){ - column <- ifelse( - "est_non_rf2" %in% colnames(predictions), - "est_non_rf2", - ifelse("est_non_rf" %in% colnames(predictions), - "est_non_rf", - "skip") - ) +map_effects <- function(predictions, dir, verbose = FALSE) { + column <- ifelse( + "est_non_rf2" %in% colnames(predictions), + "est_non_rf2", + ifelse("est_non_rf" %in% colnames(predictions), + "est_non_rf", + "skip" + ) + ) - if(column != 'skip'){ - p1 <- map_nwfsc(predictions, exp(predictions[,column])) + - scale_fill_viridis_c(trans = "sqrt", name = "Fixed \nEffects") + - labs(x = "Longitude", y = "Latitude") + - ggtitle("Fixed pass effects") - } else { - if(verbose){ - message('The est_non_rf column not found in the predictions. Fixed effects map not created.') - } - } + if (column != "skip") { + p1 <- map_nwfsc(predictions, exp(predictions[, column])) + + scale_fill_viridis_c(trans = "sqrt", name = "Fixed \nEffects") + + labs(x = "Longitude", y = "Latitude") + + ggtitle("Fixed pass effects") + } else { + if (verbose) { + message("The est_non_rf column not found in the predictions. Fixed effects map not created.") + } + } - column <- ifelse( - "omega_s2" %in% colnames(predictions), - "omega_s2", - ifelse("omega_s" %in% colnames(predictions), - "omega_s", - "skip") - ) + column <- ifelse( + "omega_s2" %in% colnames(predictions), + "omega_s2", + ifelse("omega_s" %in% colnames(predictions), + "omega_s", + "skip" + ) + ) - if(column != 'skip'){ - p2 <- map_nwfsc(predictions, predictions[,column]) + - scale_fill_viridis_c(name = "Random \nEffects") + - labs(x = "Longitude", y = "Latitude") + - ggtitle("Spatial random effects") - } else { - if(verbose){ - message('The omega_s column not found in the predictions. Spatial random effects map not created.') - } - } + if (column != "skip") { + p2 <- map_nwfsc(predictions, predictions[, column]) + + scale_fill_viridis_c(name = "Random \nEffects") + + labs(x = "Longitude", y = "Latitude") + + ggtitle("Spatial random effects") + } else { + if (verbose) { + message("The omega_s column not found in the predictions. Spatial random effects map not created.") + } + } - g <- gridExtra::grid.arrange(p1, p2, nrow = 1) + g <- gridExtra::grid.arrange(p1, p2, nrow = 1) - suppressMessages(ggsave( - plot = g, - filename = file.path(dir, paste0("fixed_and_spatial_effects.png")), - width = 14, height = 10, units = 'in' - )) -} \ No newline at end of file + suppressMessages(ggsave( + plot = g, + filename = file.path(dir, paste0("fixed_and_spatial_effects.png")), + width = 14, height = 10, units = "in" + )) +} diff --git a/R/map_residuals.R b/R/map_residuals.R index 3ada6c6..7f09e98 100644 --- a/R/map_residuals.R +++ b/R/map_residuals.R @@ -14,7 +14,6 @@ map_residuals <- function(data, n_row = 1, n_col = 2, save_prefix = file.path(getwd(), "data_")) { - # data_extent <- raster::extent(data[, c("x", "y")]) # data_raster <- raster::raster(data_extent, # ncol = floor((slot(data_extent, "xmax") - slot(data_extent, "xmin")) / 2), diff --git a/R/map_year_re.R b/R/map_year_re.R index ec61b31..8d66e11 100644 --- a/R/map_year_re.R +++ b/R/map_year_re.R @@ -1,9 +1,9 @@ -#' Plot the annual random effects predictions by year +#' Plot the annual random effects predictions by year #' for the fit model #' #' #' @template predictions -#' @template dir +#' @template dir #' @template nrow #' @template ncol #' @template verbose @@ -14,64 +14,67 @@ #' #' @examples #' \dontrun{ -#' predictions <- predict( -#' fit , -#' newdata = prediction_grid -#' ) -#' predictions[, c("lon", "lat")] <- round(predictions[, c("Lon", "Lat")], 1) -#' map_year_re( -#' predictions = predictions, -#' dir = file.path(sppdir, survey, "index", obs) -#' ) -#' } +#' predictions <- predict( +#' fit, +#' newdata = prediction_grid +#' ) +#' predictions[, c("lon", "lat")] <- round(predictions[, c("Lon", "Lat")], 1) +#' map_year_re( +#' predictions = predictions, +#' dir = file.path(sppdir, survey, "index", obs) +#' ) +#' } #' -#' -map_year_re <- function(predictions, dir, nrow = 3, ncol = 4, verbose = FALSE){ +map_year_re <- function(predictions, dir, nrow = 3, ncol = 4, verbose = FALSE) { + column <- ifelse( + "epsilon_st2" %in% colnames(predictions), + "epsilon_st2", + ifelse("epsilon_st" %in% colnames(predictions), + "epsilon_st", + "skip" + ) + ) - column <- ifelse( - "epsilon_st2" %in% colnames(predictions), - "epsilon_st2", - ifelse("epsilon_st" %in% colnames(predictions), - "epsilon_st", - "skip") - ) + if (column != "skip") { + num_years <- sort(unique(predictions$Year)) + g <- split( + num_years, + ceiling(seq_along(num_years) / (ncol * nrow)) + ) - if(column != 'skip'){ - num_years <- sort(unique(predictions$Year)) - g <- split( - num_years, - ceiling(seq_along(num_years) / (ncol * nrow)) - ) - - for(page in 1:length(g)) { - map_nwfsc(predictions[predictions$Year %in% g[[page]], ], - predictions[predictions$Year %in% g[[page]], column]) + - #scale_fill_gradient2() + - scale_fill_viridis_c( - name = "Spatial \neffects", - # trim extreme high values to make spatial variation more visible - na.value = "yellow", - limits = c(quantile(predictions[, column], 0.005), - quantile(predictions[, column], 0.995)) - ) + - facet_wrap(~Year, ncol = ncol, nrow = nrow) + - labs(x = "Longitude", y = "Latitude") + - ggtitle("Spatio-temporal random effects of the catch rate model") - - height <- ifelse( - length(g[[page]]) == nrow * ncol, 10, 7) + for (page in 1:length(g)) { + map_nwfsc( + predictions[predictions$Year %in% g[[page]], ], + predictions[predictions$Year %in% g[[page]], column] + ) + + # scale_fill_gradient2() + + scale_fill_viridis_c( + name = "Spatial \neffects", + # trim extreme high values to make spatial variation more visible + na.value = "yellow", + limits = c( + quantile(predictions[, column], 0.005), + quantile(predictions[, column], 0.995) + ) + ) + + facet_wrap(~Year, ncol = ncol, nrow = nrow) + + labs(x = "Longitude", y = "Latitude") + + ggtitle("Spatio-temporal random effects of the catch rate model") - suppressMessages(ggsave( - filename = file.path(dir, paste0("year_random_effects_", page, ".png")), - width = 10, - height = height, - units = 'in' - )) - } - } else { - if(verbose){ - message('The espsilon_st column not found in the predictions. Random effects map not created.') - } - } + height <- ifelse( + length(g[[page]]) == nrow * ncol, 10, 7 + ) + suppressMessages(ggsave( + filename = file.path(dir, paste0("year_random_effects_", page, ".png")), + width = 10, + height = height, + units = "in" + )) + } + } else { + if (verbose) { + message("The espsilon_st column not found in the predictions. Random effects map not created.") + } + } } diff --git a/R/plot_indices.R b/R/plot_indices.R index a8512bb..fd65cca 100644 --- a/R/plot_indices.R +++ b/R/plot_indices.R @@ -49,9 +49,9 @@ plot_indices <- function(data, ) + ggplot2::theme_bw() + ggplot2::theme( - # If we want legend on the figure - # legend.justification = c(0, 1), - # legend.direction = "horizontal" + # If we want legend on the figure + # legend.justification = c(0, 1), + # legend.direction = "horizontal" legend.position = legend_loc, ) + ggplot2::scale_colour_viridis_d() + diff --git a/R/plot_qq.R b/R/plot_qq.R index ab3f088..a085ff8 100644 --- a/R/plot_qq.R +++ b/R/plot_qq.R @@ -75,12 +75,13 @@ plot_qq <- function(fit, file_name = "qq.png") { ggplot2::ylab("Sample quantiles") + ggplot2::labs(title = "Normal quantile-quantile plot") + ggplot2::theme_bw() + - ggplot2::theme(legend.position = - if (length(unique(data[["model"]])) > 1) { - c(0.15, 0.9) - } else { - "none" - } + ggplot2::theme( + legend.position = + if (length(unique(data[["model"]])) > 1) { + c(0.15, 0.9) + } else { + "none" + } ) + ggplot2::geom_abline( mapping = ggplot2::aes( diff --git a/R/run.R b/R/run.R index 78ddfcb..a0e2e4b 100644 --- a/R/run.R +++ b/R/run.R @@ -36,7 +36,7 @@ run <- function(data, "year", "fyear", "survey_name", "common_name", "catch_weight", "effort", "x", "y" ) %in% - colnames(data) + colnames(data) )) # Objects diff --git a/R/run_sdmtmb.R b/R/run_sdmtmb.R index 2e066b6..b4a7b51 100644 --- a/R/run_sdmtmb.R +++ b/R/run_sdmtmb.R @@ -32,7 +32,7 @@ run_sdmtmb <- function(dir_main = getwd(), "year", "fyear", "survey_name", "common_name", "catch_weight", "effort", "x", "y" ) %in% - colnames(data) + colnames(data) )) # TODO: # * check if random effects in formula and if converged, if yes and no, then @@ -67,15 +67,15 @@ run_sdmtmb <- function(dir_main = getwd(), # Create prediction grid ranges <- data %>% - dplyr::filter(catch_weight > 0) %>% - dplyr::summarize( - dplyr::across( - dplyr::matches("tude"), - .fns = list("max" = ~ max(.) + 0.1, "min" = ~ min(.) - 0.1) - ), - # depth_min = min(abs(depth), na.rm = TRUE), - depth_max = min(depth, na.rm = TRUE) - ) + dplyr::filter(catch_weight > 0) %>% + dplyr::summarize( + dplyr::across( + dplyr::matches("tude"), + .fns = list("max" = ~ max(.) + 0.1, "min" = ~ min(.) - 0.1) + ), + # depth_min = min(abs(depth), na.rm = TRUE), + depth_max = min(depth, na.rm = TRUE) + ) data_truncated <- data %>% dplyr::filter( latitude > ranges[["latitude_min"]] & latitude < ranges[["latitude_max"]], diff --git a/data-raw/configuration.R b/data-raw/configuration.R index e5d8848..a144e15 100644 --- a/data-raw/configuration.R +++ b/data-raw/configuration.R @@ -54,21 +54,21 @@ indices <- dir( load(x) if (exists("index_areas")) { return(data.frame(i = x, index_areas)) - } else { - return(NULL) - } + } else { + return(NULL) + } } ) gg <- ggplot2::ggplot( - data = indices %>% - dplyr::mutate( - dist = basename(dirname(dirname(i))) - ) %>% - dplyr::filter(area == "coastwide"), + data = indices %>% + dplyr::mutate( + dist = basename(dirname(dirname(i))) + ) %>% + dplyr::filter(area == "coastwide"), ggplot2::aes(x = year, y = est, lty = dist, col = dist, group = i) ) + -ggplot2::geom_line() + -ggplot2::theme_bw() + ggplot2::geom_line() + + ggplot2::theme_bw() ggsave(gg, filename = "indexwc_copper_rockfish.png") diff --git a/data-raw/grid_nwfscSurvey.R b/data-raw/grid_nwfscSurvey.R index 65d7e4e..23ef8f9 100644 --- a/data-raw/grid_nwfscSurvey.R +++ b/data-raw/grid_nwfscSurvey.R @@ -26,12 +26,12 @@ california_current_grid <- california_current_grid %>% ) ) - california_current_grid <- suppressWarnings(sdmTMB::add_utm_columns( - california_current_grid, - utm_crs = utm_zone_10, - ll_names = c("Lon", "Lat"), - utm_names = c("x", "y") - )) %>% +california_current_grid <- suppressWarnings(sdmTMB::add_utm_columns( + california_current_grid, + utm_crs = utm_zone_10, + ll_names = c("Lon", "Lat"), + utm_names = c("x", "y") +)) %>% dplyr::rename( longitude = "Lon", latitude = "Lat" diff --git a/man/calc_index_areas.Rd b/man/calc_index_areas.Rd index 5990c5e..082a1f4 100644 --- a/man/calc_index_areas.Rd +++ b/man/calc_index_areas.Rd @@ -62,7 +62,8 @@ boundaries_data[4] list("test" = c(39, 38)) # run the function index <- calc_index_areas( - data, fit, grid, dir = getwd(), boundaries = list("test" = c(39, 38)) + data, fit, grid, + dir = getwd(), boundaries = list("test" = c(39, 38)) ) # look at the index, which will be in "test" because that is what we # named the boundary diff --git a/man/map_year_re.Rd b/man/map_year_re.Rd index 858d344..050efad 100644 --- a/man/map_year_re.Rd +++ b/man/map_year_re.Rd @@ -27,17 +27,16 @@ for the fit model } \examples{ \dontrun{ - predictions <- predict( - fit , - newdata = prediction_grid - ) - predictions[, c("lon", "lat")] <- round(predictions[, c("Lon", "Lat")], 1) - map_year_re( - predictions = predictions, - dir = file.path(sppdir, survey, "index", obs) - ) - } - +predictions <- predict( + fit, + newdata = prediction_grid +) +predictions[, c("lon", "lat")] <- round(predictions[, c("Lon", "Lat")], 1) +map_year_re( + predictions = predictions, + dir = file.path(sppdir, survey, "index", obs) +) +} } \author{