-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvae_sample.py
61 lines (53 loc) · 2.02 KB
/
vae_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
import torchvision
from PIL import Image
import numpy as np
import os
import pytorch_lightning as pl
from pytorch_lightning.callbacks import Callback
from models.autoencoder import AutoencoderKL
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10
path = './lightning_logs/version_7/checkpoints/epoch=28-step=29000.ckpt'
ddconfig = {
"double_z": True,
"z_channels": 3,
"resolution": 32,
"in_channels": 3,
"out_ch": 3,
"ch": 128,
"ch_mult": [1,2,4],
"num_res_blocks": 2,
"attn_resolutions": [],
"dropout": 0.0,
"lr": 0.001
}
test_dataset = CIFAR10('./data', train=False, transform=transforms.Compose([
transforms.Resize(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))]), download=True)
eval_loader = torch.utils.data.DataLoader(test_dataset,
batch_size=64,
shuffle=False,
num_workers=4,
pin_memory=True,
drop_last = True)
if __name__ == '__main__':
model = AutoencoderKL(ddconfig=ddconfig, embed_dim=ddconfig["z_channels"], ckpt_path=path)
for batch_idx, (x,y) in enumerate(eval_loader):
if batch_idx % 100 == 0:
log = model.log_images(x)
root = os.path.join("./samples", "vae_eval")
for k in log:
grid = torchvision.utils.make_grid(log[k], nrow=4)
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
grid = grid.numpy()
grid = (grid * 255).astype(np.uint8)
filename = "{}_{}_{}.png".format(
k,
"eval",
batch_idx)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
Image.fromarray(grid).save(path)