-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathmex_conv3d.m
23 lines (23 loc) · 932 Bytes
/
mex_conv3d.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
%MEX_CONV3D Volume convolution for 3D convnet
% Y = MEX_CONV3D(X, F, B); forward pass
% [dZdX, dZdF, dZdB] = MEX_CONV3D(X, F, B dZdY); backward pass
% [...] =MEX_CONV3D(..., 'stride', s, 'pad', p); the options
%
% Input:
% X: [H,W,D,P,N]. Input volume or feature maps. H, W, D are volume's
% height, width and depth, respectively. P is #volumes (or #feature maps).
% N is #instances.
% F: [FH,FW,FD,P,Q]. Filter kernels (a volume). FH, FW, FD are kernel's
% height, width and depth, respectively. P is #input feature map and Q is
% #output feature map
% B: [1, Q]. Bias.
% dZdY: [Ho,Wo,Do,Q,N]. Output feature maps. Subscript "o" means output.
% s: [1] or [a,b,c]. the stride. default 1
% p: [1] or [a,b,c]. pad. default 0
%
% Output:
% Y: [Ho,Wo,Do,Q,N]. Output feature maps
% dZdX: [H,W,D,P,N]. Delta w.r.t X where Z means loss.
% dZdF: [FH,FW,FD,P,Q]. Delta w.r.t. F
% dZdB: [1, Q]. Delta w.r.t. B
%