-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplot_CD.py
executable file
·165 lines (142 loc) · 5.55 KB
/
plot_CD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#!/usr/bin/env python3
# -*- coding: utf-8; -*-
# Plot Critical Difference diagrams according to [1].
#
# Copyright (C) 2018 Luís Augusto Martins Pereira, Campinas, SP, Brazil
# Copyright (C) 2018 Pedro Ribeiro Mendes Júnior, Campinas, SP, Brazil
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see
# <https://www.gnu.org/licenses/>.
import numpy as np
import pandas as pd
from scipy.stats import rankdata
from critical_distance import compute_CD, graph_ranks
import os, sys
import operator as op
import matplotlib
matplotlib.rcParams.update({'font.size': 10})
matplotlib.rcParams.update({'font.size': 16})
matplotlib.rcParams.update({'legend.fontsize': u'medium'})
matplotlib.rcParams.update({'legend.fontsize': 16})
matplotlib.rcParams.update({'legend.labelspacing': 0.5})
matplotlib.rcParams.update({'legend.labelspacing': 0.0})
matplotlib.rcParams.update({'font.weight': u'normal'})
matplotlib.rcParams.update({'font.weight': u'bold'})
matplotlib.rcParams.update({'axes.titleweight': u'normal'})
matplotlib.rcParams.update({'axes.titleweight': u'bold'})
matplotlib.rcParams.update({'axes.labelweight': u'normal'})
matplotlib.rcParams.update({'axes.labelweight': u'bold'})
matplotlib.rcParams.update({'text.usetex': True})
csv_dir = 'CSV_files'
output_dir = 'CD_diagrams'
extensions = ['png', 'pdf']
datatype = 'normal'
gs_extensions = ['O', 'C']
measure_name_map = {
'mafm': '$\mathrm{OSFM}_{M}$',
'mifm': '$\mathrm{OSFM}_{\mu}$',
'na': '$\mathrm{NA}$',
'harmonicNA': '$\mathrm{HNA}$',
'aks': '$\mathrm{AKS}$',
'aus': '$\mathrm{AUS}$',
'bbmafm': '$\mathrm{FM}_{M}$',
'bbmifm': '$\mathrm{FM}_{\mu}$',
}
classifier_name_map = {
'evmC': '$\mathrm{EVM}$',
'evmO': '$\mathrm{EVM}$',
'ocsvmC': '$\mathrm{SVM}^{\mathrm{OC}}$',
'ocsvmO': '$\mathrm{SVM}^{\mathrm{OC}}$',
'ssvmC': '$\mathbf{{OSSVM}}$',
'ssvmO': '$\mathbf{{OSSVM}}$',
'svddC': '$\mathrm{SVDD}$',
'svddO': '$\mathrm{SVDD}$',
'svmC': '$\mathrm{SVM}$',
'svmO': '$\mathrm{SVM}$',
'svmdbcC': '$\mathrm{DBC}$',
'svmdbcO': '$\mathrm{DBC}$',
'pisvmC': '$\mathrm{PISVM}$',
'pisvmO': '$\mathrm{PISVM}$',
'onevsetC': '$\mathrm{1VS}$',
'onevsetO': '$\mathrm{1VS}$',
'wsvmC': '$\mathrm{WSVM}$',
'wsvmO': '$\mathrm{WSVM}$',
}
results_csv = [
'NA.csv',
'HNA.csv',
'AKS.csv',
'AUS.csv',
'OSFMmacro.csv',
'OSFMmicro.csv',
'FMmacro.csv',
'FMmicro.csv',
]
def mean_experiments(df):
"""This function receives all the results for every experiment
performed. For each group of 10 experiments, it performs the mean of
them for statistical tests.
"""
assert isinstance(df, pd.DataFrame), type(df)
newdf = (df
.groupby(['lenacs', 'dataset', 'classifier'])
.agg({'experiment': 'size', 'result': 'mean'}))
assert len(set(newdf.experiment)) == 1 and \
newdf.experiment[0] == 10, newdf.experiment
newdf = newdf.drop('experiment', axis=1)
newdf = newdf.reset_index()
return newdf
if __name__ == '__main__':
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for csv_filename in results_csv:
csv_filename = '{}_{}'.format(datatype, csv_filename)
for gs in gs_extensions:
control_method = 'ssvm{}'.format(gs)
# Output filename for the CD diagram.
name, _ = csv_filename.split('.')
# Loading the data.
csv_path = os.path.join(csv_dir, csv_filename)
df = pd.read_csv(csv_path)
# Select data by grid search type (open or closed).
df = df[list(map(lambda classifier: classifier.endswith(gs),
df.classifier))]
df = mean_experiments(df)
assert control_method in set(df.classifier), \
(control_method, set(df.classifier))
data = []
names = []
classifiers = np.unique(df['classifier'])
# Prepare data
for i, classifier in enumerate(classifiers):
mask = df['classifier'] == classifier
data.append(np.array(df['result'][mask]))
names.append(classifier_name_map[classifier])
if classifier == control_method:
cdmethod = i
data = np.array(data).T
# Compute the average of the ranks
ranks = [rankdata(-1*d) for d in data]
avranks = np.mean(ranks, axis=0)
# Compute the critical distance
n_datasets = data.shape[0]
cd = compute_CD(avranks, N=n_datasets, alpha='0.05',
type="bonferroni-dunn")
# Plot and save critical distance diagram
for ext in extensions:
output_filename = 'CD_{}_{}.{}'.format(name, gs, ext)
output = os.path.join(output_dir, output_filename)
print('Generating CD diagram "{}"...'.format(output))
graph_ranks(output, avranks, names, cdmethod=cdmethod,
cd=cd, width=6, textspace=1.5, reverse=True)