-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainFrechet.py
182 lines (130 loc) · 5.65 KB
/
trainFrechet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import time
import sys
import os
import torch
import torch.nn as nn
import random
import numpy as np
sys.path.append("net")
sys.path.append("net/modelzoo")
sys.path.append("net/basemodel")
from DebugVisualizer import DebugVisualizer
from JointsDataset import JointsDataset
[sys.path.append(i) for i in ['.', '..']]
from torch import optim
from torch.utils.data import DataLoader
from EmbeddingNet import EmbeddingNet
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
from absl import app
from absl import flags
FLAGS = flags.FLAGS
flags.DEFINE_string('meta', 'meta/', 'Directory containing metadata files')
flags.DEFINE_string('train', 'FrechetData/train/', 'Directory containing train files')
flags.DEFINE_string('test', 'FrechetData/test/', 'Directory containing train files')
flags.DEFINE_string('ckpt_dir', 'ckpt/', 'Directory to store checkpoints')
flags.DEFINE_string('model', 'frechet', 'model type')
flags.DEFINE_integer('batch_size', 512, 'Training set mini batch size')
flags.DEFINE_integer('epochs', 1000, 'Training epochs')
flags.DEFINE_integer('nframes', 120, 'Window size in number of frames')
flags.DEFINE_float('learning_rate', 0.0009, 'Initial learning rate')
flags.DEFINE_integer('ckpt', 10, 'Number of epochs to checkpoint')
def get_inputs(batch, is_training):
b = batch['buyer']['directions']
l = batch['leftSeller']['directions']
r = batch['rightSeller']['directions']
trainx = torch.cat((b, l, r), dim=0).float()
if is_training:
trainx = (trainx + (0.1**0.5)*torch.randn(trainx.shape)).cuda()
else:
trainx = trainx.cuda()
return {'data': trainx, 'target': trainx}
def reconstruction(predictions, targets):
"""
Defines a reconstruction loss with L1 regularization loss
:param predictions: predcitions from the model
:param targets: ground truth targets
:param model_params: model params to calculate l1 loss over
:param lmd: smoothing parameter
:return: total loss for the predictions
"""
# set the criterion objects
criterion1 = nn.MSELoss(reduction='mean')
# calculate losses
mse = criterion1(predictions, targets)
return mse
def get_loss_fn():
"""
Returns the appropriate loss function for training
:return: loss function
"""
return reconstruction
def reconstruct(predictions, batch, idx, num, dataset):
vis = DebugVisualizer()
skeleton = vis.humanSkeleton
predictions = dataset.denormalize_data(predictions.cpu().numpy())
predictions = predictions.reshape((predictions.shape[0], predictions.shape[1], -1, 3))
keys = ['buyer', 'leftSeller', 'rightSeller']
skels_pred = []
skels_target = []
for i in range(3):
pred = predictions[i * FLAGS.batch_size + idx, :, :, :]
positions = batch[keys[i]]['positions'][idx, :, :, :].cpu().numpy()
new_skeleton = positions.copy()
for idx, bone in enumerate(skeleton):
new_skeleton[:, bone[1], :] = pred[:, idx, :] + new_skeleton[:, bone[0], :]
skels_pred.append(vis.conv_debug_visual_form(new_skeleton))
skels_target.append(vis.conv_debug_visual_form(positions))
skels = skels_target + skels_pred
vis.create_animation(skels, 'FrechetTest/' + str(num))
def main(args):
# initialize the dataset and the data loader
train_dataset = JointsDataset(FLAGS.train, FLAGS)
train_dataloader = DataLoader(train_dataset, batch_size=FLAGS.batch_size, shuffle=True, num_workers=10)
test_dataset = JointsDataset(FLAGS.test, FLAGS)
test_dataloader = DataLoader(test_dataset, batch_size=FLAGS.batch_size, shuffle=False, num_workers=10)
# train
pose_dim = 42 # 14 x 3
# init model and optimizer
model = EmbeddingNet(pose_dim, FLAGS.nframes).cuda()
criterion = get_loss_fn()
optimizer = optim.Adam(model.parameters(), lr=FLAGS.learning_rate, betas=(0.5, 0.999))
# training
for epoch in range(FLAGS.epochs):
training = True
total_train_loss = 0.0
total_val_loss = 0.0
model.train()
for iter_idx, batch in enumerate(train_dataloader):
# zero prev gradients
optimizer.zero_grad()
inputs = get_inputs(batch, training)
predictions, poses_feat, poses_mu, poses_logvar = model(inputs['data'])
loss = criterion(predictions, inputs['target'])
total_train_loss += loss.detach().item()
# calculate gradients
loss.backward()
optimizer.step()
# set the model to evaluation mode
model.eval()
training = False
# calculate validation loss
with torch.no_grad():
count = 0
for i_batch, batch in enumerate(test_dataloader):
# get train input and labels
inputs = get_inputs(batch, training)
# forward pass through the network
predictions, poses_feat, poses_mu, poses_logvar = model(inputs['data'])
# calculate loss
total_val_loss += reconstruction(predictions, inputs['target']).detach().item()
if epoch % 100 == 0 and epoch > 0:
if count < 5:
rand = random.randrange(0, FLAGS.batch_size)
reconstruct(predictions, batch, rand, epoch + count, test_dataset)
count += 1
print("Epoch: ", epoch, " Total train loss: ", total_train_loss, " Total validation loss: ", total_val_loss)
if epoch % FLAGS.ckpt == 0 and epoch > 0:
ckpt = os.path.join(FLAGS.ckpt_dir, FLAGS.model + '/')
model.save_model(ckpt, epoch)
if __name__ == '__main__':
app.run(main)