-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistfit.py
293 lines (240 loc) · 9.47 KB
/
distfit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import scipy.stats as ss
import numpy as np
import matplotlib.pyplot as plt
import xarray as xr
import pandas as pd
import statsmodels.api as sm
def fit_Hs(sample,N,return_fr=False):
bounds = [(N,N),(1E-5,1),(1E-5,1)]
fr = ss.fit(ss.gamma,sample,bounds)
if fr.success:
coeffs = [p for p in fr.params]
else:
coeffs = [np.nan, np.nan, np.nan]
coeffs.append(fr.nllf())
if return_fr:
return np.array(coeffs), fr
else:
return np.array(coeffs)
def fit_Tz(sample,N,plot=False,return_fr=False):
bounds = [(0.5,1.0),(0.01,3)]
fr = ss.fit(ss.norm,sample,bounds)
if fr.success:
coeffs = [p for p in fr.params]
else:
coeffs = [np.nan, np.nan]
coeffs = [np.nan,] + coeffs # No shape for normal distribution
coeffs.append(fr.nllf())
if return_fr:
return np.array(coeffs), fr
else:
return np.array(coeffs)
def fit_Hmax(sample,N,plot=False,return_fr=False):
bounds = [(np.exp(1-np.exp(1))*N**(-1/8),np.exp(1-np.exp(1))*N**(-1/8)),(0.8,2),(0.05,0.5)] #
fr = ss.fit(ss.genextreme,sample,bounds)
if fr.success:
coeffs = [p for p in fr.params]
else:
coeffs = [np.nan, np.nan, np.nan]
coeffs.append(fr.nllf())
if return_fr:
return np.array(coeffs), fr
else:
return np.array(coeffs)
def fit_HmHs(sample,N,return_fr=False):
bounds = [(np.exp(-(np.exp(1)*np.log(N))**0.5+0.5),np.exp(-(np.exp(1)*np.log(N))**0.5+0.5)),(0.2,2),(1/8,1/8)]
fr = ss.fit(ss.genextreme,sample,bounds)
if fr.success:
coeffs = [p for p in fr.params]
else:
coeffs = [np.nan, np.nan, np.nan]
coeffs.append(fr.nllf())
if return_fr:
return np.array(coeffs), fr
else:
return np.array(coeffs)
def fit_r(sample,N,return_fr=False):
bounds = [(0.1,1),(0.2,0.9),(1/np.sqrt(2*N),1/np.sqrt(2*N))]
# bounds = [(-0.5,-0.5),(-4,4),(0.0001,10)]
fr = ss.fit(ss.genextreme,sample,bounds)
if fr.success:
coeffs = [p for p in fr.params]
else:
coeffs = [np.nan, np.nan, np.nan]
coeffs.append(fr.nllf())
if return_fr:
return np.array(coeffs), fr
else:
return np.array(coeffs)
def summary2xarray(summary2, dim, coord):
#Convert summary statistics tables output from statsmodel library into xarray to allow saving
vv1=summary2.tables[0].iloc[:,[0,1]].set_index(0).T.rename(index={1:coord})
vv2=summary2.tables[0].iloc[:,[2,3]].set_index(2).T.rename(index={3:coord})
df = pd.concat([vv1,vv2],axis=1)
for c in df.columns:
# print(c)
if c == "Date:":
df[c] = pd.to_datetime(df[c].astype(str))
elif c in ['Model:','Dependent Variable:']:
df[c] = df[c].astype(str).convert_dtypes()
else:
df[c] = pd.to_numeric(df[c].astype(str).str.strip())
ds_stats = xr.Dataset(df).rename({'dim_0':dim})
# Convert the coefficients table
ds_fits = xr.Dataset(summary2.tables[1]).rename({'dim_0':'coeff'}).expand_dims({dim:[coord,]})
ds = xr.merge([ds_stats,ds_fits])
# Cleanup variable names not accepted by netcdf
for v in ds.data_vars:
ds = ds.rename({v:"".join(i for i in v if i not in r'\/:*?"<>|[]')})
return ds
def get_transform(t):
if t == 'noop':
return lambda x:x, ''
elif t == 'log':
return np.log, '\log'
def get_invtransform(t):
if t == 'noop':
return lambda x:x, ''
elif t == 'log':
return np.exp, '\exp'
def parameter_model(data,ytran='noop',xtran='log',xpow=1.,v='',p='',plot=False,labels=None):
"""
Fit a model for the probability distribution parameters as a function of JONSWAP gamma and number of waves (N).
For further details refer to publication (TBC).
Parameters
----------
data : xarray Dataset
Dataset of distribution fit coefficients as a function of gamma and N.
ytran : string either ['noop', 'log']
The transformation to apply to the distribution coefficient
xtran : string either ['noop', 'log']
The transformation to apply to N
xpow : float
Power to raise transformed x variate, i.e. xtran(N)**xpow
v : string
Time-domain variable being evaluated (i.e. Hs etc)
p : string
Distribution parameter being modelled (i.e. loc [location], shape or scale)
plot : boolean
Generate plots of model fits
labels : Dictionary
Plot labels for each variable v
Returns
-------
ds_regression : xarray Dataset
A dataset with regression results returned from statsmodels.OLS
ds_param_model : xarray Dataset
Dataset containing fitted coefficients for the given variable (v) and
parameter (p). Allows estimation of p given an input gamma and N.
"""
if plot:
fig,axs = plt.subplot_mosaic('AA\nAA\n01',figsize=(7,8))
else:
fig = None
results = []
for gamma in data.gamma:
this_data = data.sel(gamma=gamma)
xt, xl = get_transform(xtran)
yt, yl = get_transform(ytran)
y=yt(this_data.values)
x=xt(this_data.n.values)**xpow
if xpow != 1.:
xlabel = f'$({xl}N)^{{{xpow}}}$'
else:
xlabel = f'${xl}N$'
ylabel = f'${yl}{p}$'
X = sm.add_constant(x)
ols = sm.OLS(y,X)
fr = ols.fit()
results.append(summary2xarray(fr.summary2(),dim='gamma',coord=float(gamma)))
if plot:
ax = axs['A']
ax.scatter(x,y,15,alpha=0.5)
y_hat=ols.predict(fr.params,X)
ax.plot(x,y_hat,label=float(gamma),alpha=0.75)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ds_regression = xr.merge(results).rename({'coeff':'term'})
# Finally establish parameter dependance on gamma
param_results =[]
eqn=[]
for a,t in enumerate(ds_regression.term):
y = ds_regression['Coef.'].sel(term=t).values
x = ds_regression['gamma']
X = x.to_dataframe()
X['gamma^2'] = X['gamma']**2
X['Intercept'] = 1
X = X[['gamma^2','gamma','Intercept']]
ols = sm.OLS(y,X)
fr = ols.fit()
param_results.append(summary2xarray(fr.summary2(),dim='term',coord=str(t.values)))
fp = fr.params
e = f'${fp["gamma^2"]:.1E}\gamma^2 + {fp.gamma:.1E}\gamma + {fp.Intercept:.1E}$'
eqn.append(e)
if plot:
ax=axs[str(a)]
ax.scatter(x,y,alpha=0.5)
y_hat=ols.predict(fp,X)
ax.plot(x,y_hat)
ax.set_xlabel('$\gamma$')
ax.set_ylabel(t.values)
ax.set_title(e,fontsize=10)
eqn = f'{ylabel} = x1.{xlabel} + const'
if plot:
lax=axs['A'].legend(loc='upper left', bbox_to_anchor=(1.0, 0.95))
lax.set_title('$\gamma$')
fig.axes[0].set_title(f'Variable : {labels[v]}, Parameter: ${p}$\n{eqn}')
fig.tight_layout()
ds_param_model = xr.merge(param_results)
# Append input transformations to allow recreation
for input,value in dict(ytran=ytran,xtran=xtran,xpow=xpow,equation=eqn).items():
ds_param_model[input]=value
ds_regression[input]=value
ds_regression = ds_regression.expand_dims({'variable':[v],'parameter':[p]})
ds_param_model = ds_param_model.expand_dims({'variable':[v],'parameter':[p]})
return ds_regression, ds_param_model, fig
def get_distribution(ds_model,v='Hs',gamma=1.0,N=50):
"""
Get a parametric probability distribution for a given variable, gamma and number of waves
Parameters
----------
ds_model : xarray Dataset
Dataset of univariate parametric model coefficients.
v : string
Time-domain variable, one of ['Hs','Tz','Hmax','HmHs','r_sample']
gamma : float in range [1..8]
JONSWAP peak enhancement factor
N : float in range [10..500]
The expected number of waves in the sample.
Returns
-------
dist_inst : scipy.stats.rv_continuous
A frozen scipy.stats.rv_continuous with distribution parameters
predicted by the empirical model coefficients of ds_model.
"""
ds_var = ds_model.sel(variable=v)
dist_name = str(ds_var.distribution.values)
dist = getattr(ss, dist_name)
params = {}
for p in ds_var.parameter:
ds_param = ds_var.sel(parameter=p)
# Fixed parameter definition - no fit
cs = ds_param['Coef.'].sel(term=['x1','const'],coeff=['gamma^2','gamma','Intercept']).values
if np.isnan(cs[0,0]):
slope=1.
intercept=0.
else: # Parameter determined by fit
slope = float(cs[0,0]*gamma**2 + cs[0,1]*gamma + cs[0,2])
intercept = float(cs[1,0]*gamma**2 + cs[1,1]*gamma + cs[1,2])
ytr, _ = get_invtransform(str(ds_param.ytran.values))
xtr, _ = get_transform(str(ds_param.xtran.values))
xpow = float(ds_param.xpow.values)
y = slope*xtr(N)**xpow+intercept
param_value = ytr(y)
params[str(p.values)] = param_value
#Instantiate the distribution with model parameters
if dist_name == "norm":
dist_inst = dist(*[params['loc'],params['scale']])
else:
dist_inst = dist(*[params['shape'],params['loc'],params['scale']])
return dist_inst