diff --git a/scripts/cr_cut.py b/scripts/cr_cut.py
index 8f70889..f8266d0 100755
--- a/scripts/cr_cut.py
+++ b/scripts/cr_cut.py
@@ -108,7 +108,24 @@ def getgti(evf):
default=None,
)
+parser.add_argument(
+ "--log-level",
+ type=str,
+ choices=("TRACE", "DEBUG", "INFO", "WARNING", "ERROR"),
+ default="INFO",
+ help="Logging level",
+ dest="loglevel",
+)
+
args = parser.parse_args()
+log.remove()
+log.add(
+ sys.stderr,
+ level=args.loglevel,
+ colorize=True,
+ format='{level: <8} ({name: <30}): {message}'
+ #filter=pint.logging.LogFilter(),
+)
################################################
## STEP 0 - open event file and get GTI
diff --git a/scripts/ni_Htest_sortgti.py b/scripts/ni_Htest_sortgti.py
index ce0d083..431aac1 100755
--- a/scripts/ni_Htest_sortgti.py
+++ b/scripts/ni_Htest_sortgti.py
@@ -130,6 +130,14 @@
action="store_true",
default=False,
)
+
+parser.add_argument(
+ "--save_rates",
+ help="export count rates from optimal GTI selection (also saves a figure)",
+ action="store_true",
+ default=False,
+)
+
parser.add_argument(
"--usez",
help="Use Z^2_2 test instead of H test.",
@@ -145,8 +153,27 @@
parser.add_argument(
"--name", help="Pulsar name for output figure", type=str, default=""
)
+
+parser.add_argument(
+ "--log-level",
+ type=str,
+ choices=("TRACE", "DEBUG", "INFO", "WARNING", "ERROR"),
+ default="INFO",
+ help="Logging level",
+ dest="loglevel",
+)
+
args = parser.parse_args()
+log.remove()
+log.add(
+ sys.stderr,
+ level=args.loglevel,
+ colorize=True,
+ format='{level: <8} ({name: <30}): {message}'
+ #filter=pint.logging.LogFilter(),
+)
+
import matplotlib
if args.remote:
@@ -670,6 +697,7 @@ def make_sn(data, rate=0.1, usez=False, snonly=False, minexp=None):
plt.legend(loc="lower right")
plt.savefig("{}_sig.png".format(args.outfile))
+ log.info("Effective count rate cut: {:0.3f} ct/s".format(gti_rts_s[Hmax]))
plt.clf()
nbins = args.nbins
select_ph = np.concatenate(ph_gti[: Hmax + 1]).ravel()
@@ -755,6 +783,7 @@ def make_sn(data, rate=0.1, usez=False, snonly=False, minexp=None):
ls="--",
label="Max H-test (sig={:0.3f})".format(hsig[Hmax]),
)
+ log.info("Effective count rate cut: {:0.3f} ct/s".format(gti_rts_s[Hmax]))
plt.xlabel("Background Rate (ct/s)")
plt.ylabel("Significance (sigma)")
plt.title("{} - [{:0.2f},{:0.2f}]".format(args.name, eminbest, emaxbest))
@@ -795,7 +824,7 @@ def make_sn(data, rate=0.1, usez=False, snonly=False, minexp=None):
plt.xlabel("Phase")
plt.title(args.name)
plt.savefig("{}_profile.png".format(args.outfile))
-
+ plt.clf()
log.info("Maximum significance: {:0.3f} sigma".format(hsig[Hmax]))
log.info(
" obtained in {:0.2f} (out of {:0.2f} ksec)".format(
@@ -824,6 +853,30 @@ def make_sn(data, rate=0.1, usez=False, snonly=False, minexp=None):
output_data,
header='Phase Counts ErrorBar')
+if args.save_rates:
+
+ gti_centers = 0.5 * (gti_t0_s[: Hmax + 1] + gti_t1_s[: Hmax + 1])
+ select_rates = gti_rts_s[: Hmax + 1]
+ sorted_ind = gti_centers.argsort()
+ # gti_centers = gti_centers[sorted_ind[::-1]]
+ # select_rates = select_rates[sorted_ind[::-1]]
+ gti_centers = gti_centers[sorted_ind]
+ select_rates = select_rates[sorted_ind]
+
+ # Figure of count rate
+ plt.scatter(gti_centers-gti_centers[0], select_rates, s=1)
+ plt.xlabel('Elapsed time (s)')
+ plt.ylabel('Count rate (ct/s) in selected GTIs')
+ plt.title('Count rate light curve in selected GTIs'.format(args.name))
+ plt.tight_layout()
+ plt.savefig("{}_lightcurve.png".format(args.outfile))
+
+ # Dump data points
+ output_data = np.array([gti_centers,select_rates]).T
+ np.savetxt("{}_lightcurve.txt".format(args.outfile),
+ output_data,
+ header='GTI Center (s) Count rate (c/s)')
+
# output summary results to text file
a50 = int(round(len(gti_rts_s) * 0.5))
a90 = int(round(len(gti_rts_s) * 0.9))