forked from TheIndependentCode/Neural-Network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvolutional.py
35 lines (30 loc) · 1.48 KB
/
convolutional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import numpy as np
from scipy import signal
from layer import Layer
class Convolutional(Layer):
def __init__(self, input_shape, kernel_size, depth):
input_depth, input_height, input_width = input_shape
self.depth = depth
self.input_shape = input_shape
self.input_depth = input_depth
self.output_shape = (depth, input_height - kernel_size + 1, input_width - kernel_size + 1)
self.kernels_shape = (depth, input_depth, kernel_size, kernel_size)
self.kernels = np.random.randn(*self.kernels_shape)
self.biases = np.random.randn(*self.output_shape)
def forward(self, input):
self.input = input
self.output = np.copy(self.biases)
for i in range(self.depth):
for j in range(self.input_depth):
self.output[i] += signal.correlate2d(self.input[j], self.kernels[i, j], "valid")
return self.output
def backward(self, output_gradient, learning_rate):
kernels_gradient = np.zeros(self.kernels_shape)
input_gradient = np.zeros(self.input_shape)
for i in range(self.depth):
for j in range(self.input_depth):
kernels_gradient[i, j] = signal.correlate2d(self.input[j], output_gradient[i], "valid")
input_gradient[j] += signal.convolve2d(output_gradient[i], self.kernels[i, j], "full")
self.kernels -= learning_rate * kernels_gradient
self.biases -= learning_rate * output_gradient
return input_gradient