-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_sim.py
492 lines (399 loc) · 15.7 KB
/
train_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
from paths import DERIVED_DATA
from modelzoo import xception, separable_net, gabor_pyramid, dorsalnet, decoder
from loaders import airsim
from models import extract_subnet_dict
import argparse
import datetime
import itertools
import os
from pathlib import Path
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
import numpy as np
import torch
from torch import nn
from torch import optim
from torch.utils.tensorboard import SummaryWriter
import torch.autograd.profiler as profiler
from torchvision import transforms
import torchvision.models as models
import torch.nn.functional as F
from transforms import ThreedGaussianBlur, ThreedExposure
import wandb
from paths import *
def get_all_layers(net, prefix=[]):
if hasattr(net, "_modules"):
lst = []
for name, layer in net._modules.items():
full_name = "_".join((prefix + [name]))
lst = lst + [(full_name, layer)] + get_all_layers(layer, prefix + [name])
return lst
else:
return []
def save_state(net, title, output_dir):
datestr = str(datetime.datetime.now()).replace(":", "-")
filename = os.path.join(output_dir, f"{title}-{datestr}.pt")
torch.save(net.state_dict(), filename)
return filename
def get_dataset(args):
if args.dataset.startswith("airsim"):
split = args.dataset.split("_")
if len(split) > 1:
split = split[-1]
else:
split = "batch1"
trainset = airsim.AirSim(
os.path.join(args.data_root, "airsim", split),
split="train",
regression=not args.softmax,
)
tuneset = airsim.AirSim(
os.path.join(args.data_root, "airsim", split),
split="tune",
regression=not args.softmax,
)
train_transform = transforms.Compose(
[
ThreedGaussianBlur(5),
transforms.Normalize(123.0, 75.0),
ThreedExposure(0.3, 0.3),
]
)
eval_transform = transforms.Compose([transforms.Normalize(123.0, 75.0)])
sz = 112
else:
raise NotImplementedError(f"{args.dataset} not implemented")
return trainset, tuneset, train_transform, eval_transform, sz
def log_net(net, subnet, layers, writer, n):
for name, layer in layers:
if hasattr(layer, "weight"):
writer.add_scalar(f"Weights/{name}/mean", layer.weight.mean(), n)
writer.add_scalar(f"Weights/{name}/std", layer.weight.std(), n)
writer.add_histogram(f"Weights/{name}/hist", layer.weight.view(-1), n)
if hasattr(layer, "bias") and layer.bias is not None:
writer.add_scalar(f"Biases/{name}/mean", layer.bias.mean(), n)
writer.add_histogram(f"Biases/{name}/hist", layer.bias.view(-1), n)
for name, param in net._parameters.items():
writer.add_scalar(f"Weights/{name}/mean", param.mean(), n)
writer.add_scalar(f"Weights/{name}/std", param.std(), n)
writer.add_histogram(f"Weights/{name}/hist", param.view(-1), n)
if hasattr(subnet, "conv1"):
# NCHW
if subnet.conv1.weight.ndim == 4:
writer.add_images("Weights/conv1d/img", 0.25 * subnet.conv1.weight + 0.5, n)
else:
# NTCHW
scale = 0.5 / abs(subnet.conv1.weight).max()
writer.add_video(
"Weights/conv1d/img",
scale * subnet.conv1.weight.permute(0, 2, 1, 3, 4) + 0.5,
n,
)
def get_subnet(args, start_size):
threed = False
if args.submodel == "xception2d":
subnet = xception.Xception(
start_kernel_size=7, nblocks=args.num_blocks, nstartfeats=args.nfeats
)
sz = start_size // 2
nfeats = args.nfeats
elif args.submodel.startswith("shallownet"):
symmetric = "symmetric" in args.submodel
subnet = dorsalnet.ShallowNet(nstartfeats=args.nfeats, symmetric=symmetric)
threed = True
sz = ((start_size + 1) // 2 + 1) // 2
nfeats = args.nfeats
elif args.submodel.startswith("v1net"):
subnet = dorsalnet.V1Net()
threed = True
sz = ((start_size + 1) // 2 + 1) // 2
nfeats = args.nfeats
elif args.submodel.startswith("dorsalnet"):
symmetric = "untied" not in args.submodel
subnet = dorsalnet.DorsalNet(symmetric, args.nfeats)
# Lock in the shallow net features.
# path = Path(args.ckpt_root) / 'model.ckpt-8700000-2021-01-03 22-34-02.540594.pt'
# subnet.s1.requires_grad_(False)
# checkpoint = torch.load(str(path))
# subnet_dict = extract_subnet_dict(checkpoint)
# subnet.s1.load_state_dict(subnet_dict)
threed = True
sz = ((start_size + 1) // 2 + 1) // 2
nfeats = args.nfeats
elif args.submodel.startswith("shallowdorsalnet"):
symmetric = "untied" not in args.submodel
subnet = dorsalnet.ShallowDorsalNet(symmetric, args.nfeats)
# Lock in the shallow net features.
# path = Path(args.ckpt_root) / 'model.ckpt-8700000-2021-01-03 22-34-02.540594.pt'
# subnet.s1.requires_grad_(False)
# checkpoint = torch.load(str(path))
# subnet_dict = extract_subnet_dict(checkpoint)
# subnet.s1.load_state_dict(subnet_dict)
threed = True
sz = ((start_size + 1) // 2 + 1) // 2
nfeats = args.nfeats
elif args.submodel == "gaborpyramid2d":
subnet = nn.Sequential(
gabor_pyramid.GaborPyramid(4), transforms.Normalize(2.2, 2.2)
)
sz = start_size // 2
nfeats = args.nfeats
elif args.submodel == "gaborpyramid3d":
subnet = nn.Sequential(
gabor_pyramid.GaborPyramid3d(4), transforms.Normalize(2.2, 2.2)
)
threed = True
sz = start_size
nfeats = args.nfeats
elif args.submodel == "gaborpyramid3d_tiny":
subnet = nn.Sequential(
gabor_pyramid.GaborPyramid3d(2), transforms.Normalize(2.2, 2.2)
)
threed = True
sz = start_size
nfeats = args.nfeats
return subnet, threed, sz, nfeats
def main(args):
print("Main")
output_dir = os.path.join(args.output_dir, args.exp_name)
# Train a network
try:
os.makedirs(args.data_root)
except FileExistsError:
pass
try:
os.makedirs(output_dir)
except FileExistsError:
pass
writer = SummaryWriter(comment=args.exp_name)
writer.add_hparams(vars(args), {})
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if device == "cpu":
print("No CUDA! Sad!")
trainset, tuneset, train_transform, eval_transform, start_sz = get_dataset(args)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=args.batch_size, shuffle=True, pin_memory=True
)
tuneloader = torch.utils.data.DataLoader(
tuneset, batch_size=args.batch_size, shuffle=True, pin_memory=True
)
tuneloader_iter = iter(tuneloader)
print("Init models")
subnet, threed, sz, nfeats = get_subnet(args, start_sz)
if args.load_conv1_weights:
W = np.load(args.load_conv1_weights)
subnet.conv1.weight.data = torch.tensor(W)
subnet.to(device=device)
if args.decoder == "average":
net = decoder.Average(
trainset.noutputs, trainset.nclasses, nfeats, threed=threed
).to(device)
elif args.decoder == "center":
net = decoder.Center(
trainset.noutputs, trainset.nclasses, nfeats, threed=threed
).to(device)
elif args.decoder == "point":
net = decoder.Point(
trainset.noutputs, trainset.nclasses, nfeats, threed=threed
).to(device)
else:
raise NotImplementedError(f"{args.decoder} not implemented")
net.to(device=device)
# Load a baseline with pre-trained weights
if args.load_ckpt != "":
net.load_state_dict(torch.load(args.load_ckpt))
layers = get_all_layers(net)
optimizer = optim.Adam(
list(net.parameters()) + list(subnet.parameters()), lr=args.learning_rate
)
scheduler = None
activations = {}
def hook(name):
def hook_fn(m, i, o):
activations[name] = o
return hook_fn
if hasattr(subnet, "layers"):
# Hook the activations
for name, layer in subnet.layers:
layer.register_forward_hook(hook(name))
net.requires_grad_(True)
subnet.requires_grad_(True)
if args.softmax:
loss_fun = nn.CrossEntropyLoss()
else:
loss_fun = nn.MSELoss()
ll, m, n = 0, 0, 0
tune_loss = 0.0
running_loss = 0.0
try:
for epoch in range(args.num_epochs): # loop over the dataset multiple times
for data in trainloader:
net.train()
# get the inputs; data is a list of [inputs, labels]
X, labels = data
X, labels = X.to(device), labels.to(device)
optimizer.zero_grad()
# zero the parameter gradients
X = train_transform(X)
X = subnet(X)
outputs = net(X)
loss = loss_fun(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if not args.softmax:
label_mean = labels.mean()
writer.add_scalar("Labels/mean", label_mean, n)
output_mean = outputs.mean()
writer.add_scalar("Outputs/mean", output_mean, n)
output_std = outputs.std()
writer.add_scalar("Outputs/std", output_std, n)
writer.add_scalar("Loss/train", loss.item(), n)
if ll % args.print_frequency == args.print_frequency - 1:
log_net(net, subnet, layers, writer, n)
print(
"[%02d, %07d] average train loss: %.3f"
% (epoch + 1, n, running_loss / args.print_frequency)
)
running_loss = 0
ll = 0
if hasattr(subnet, "layers"):
for name, layer in subnet.layers:
writer.add_histogram(
f"Activations/{name}/hist",
activations[name].view(-1),
n,
)
writer.add_scalar(
f"Activations/{name}/mean", activations[name].mean(), n
)
writer.add_scalar(
f"Activations/{name}/std",
activations[name]
.permute(1, 0, 2, 3, 4)
.reshape(activations[name].shape[1], -1)
.std(dim=1)
.mean(),
n,
)
if ll % 10 == 0:
net.eval()
try:
tune_data = next(tuneloader_iter)
except StopIteration:
tuneloader_iter = iter(tuneloader)
tune_data = next(tuneloader_iter)
# get the inputs; data is a list of [inputs, labels]
with torch.no_grad():
X, labels = tune_data
X, labels = X.to(device), labels.to(device)
X = eval_transform(X)
X = subnet(X)
outputs = net(X)
loss = loss_fun(outputs, labels)
writer.add_scalar("Loss/tune", loss.item(), n)
tune_loss += loss.item()
m += 1
if m == args.print_frequency:
print(f"tune accuracy: {tune_loss / args.print_frequency:.3f}")
tune_loss = 0
m = 0
if scheduler is not None:
scheduler.step()
n += args.batch_size
ll += 1
if n % args.ckpt_frequency == 0:
save_state(subnet, f"model.ckpt-{n:07}", output_dir)
except KeyboardInterrupt:
pass
filename = save_state(subnet, f"model.ckpt-{n:07}", output_dir)
if args.no_wandb:
print("Skipping W&B per config")
else:
if n > 10000:
print("Saving to weight and biases")
wandb.init(project="crcns-train_sim.py", config=vars(args))
config = wandb.config
wandb.watch(subnet, log="all")
torch.save(subnet.state_dict(), os.path.join(wandb.run.dir, "model.pt"))
print("done")
else:
print("Aborted too early, did not save results")
if __name__ == "__main__":
desc = "Train a neural net"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument("--exp_name", required=True, help="Friendly name of experiment")
parser.add_argument("--decoder", default="average", type=str, help="Decoder model")
parser.add_argument(
"--submodel",
default="xception2d",
type=str,
help="Sub-model type (currently, either xception2d, gaborpyramid2d, gaborpyramid3d",
)
parser.add_argument(
"--learning_rate", default=5e-3, type=float, help="Learning rate"
)
parser.add_argument(
"--num_epochs", default=20, type=int, help="Number of epochs to train"
)
parser.add_argument("--image_size", default=112, type=int, help="Image size")
parser.add_argument("--batch_size", default=1, type=int, help="Batch size")
parser.add_argument("--nfeats", default=64, type=int, help="Number of features")
parser.add_argument("--num_blocks", default=0, type=int, help="Num Xception blocks")
parser.add_argument(
"--warmup",
default=5000,
type=int,
help="Number of iterations before unlocking tuning RFs and filters",
)
parser.add_argument(
"--subset",
default="-1",
type=str,
help="Fit data to a specific subset of the data",
)
parser.add_argument(
"--ckpt_frequency", default=2500, type=int, help="Checkpoint frequency"
)
parser.add_argument(
"--print_frequency", default=100, type=int, help="Print frequency"
)
parser.add_argument(
"--virtual",
default="",
type=str,
help="Create virtual cells by transforming the inputs (" ", rot or all)",
)
parser.add_argument(
"--no_sample",
default=False,
help="Whether to use a normal gaussian layer rather than a sampled one",
action="store_true",
)
parser.add_argument(
"--no_wandb", default=False, help="Skip using W&B", action="store_true"
)
parser.add_argument(
"--skip_existing", default=False, help="Skip existing runs", action="store_true"
)
parser.add_argument(
"--softmax",
default=False,
help="Use softmax objective rather than regression",
action="store_true",
)
parser.add_argument(
"--load_conv1_weights", default="", help="Load conv1 weights in .npy format"
)
parser.add_argument("--load_ckpt", default="", help="Load checkpoint")
parser.add_argument(
"--dataset", default="airsim", help="Dataset (currently airsim only)"
)
parser.add_argument("--data_root", default=DERIVED_DATA, help="Data path")
parser.add_argument("--ckpt_root", default=CHECKPOINTS, help="Data path")
parser.add_argument(
"--output_dir", default="./models", help="Output path for models"
)
args = parser.parse_args()
main(args)