forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmemory.py
386 lines (316 loc) · 15.1 KB
/
memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ==============================================================================
"""Memory module for storing "nearest neighbors".
Implements a key-value memory for generalized one-shot learning
as described in the paper
"Learning to Remember Rare Events"
by Lukasz Kaiser, Ofir Nachum, Aurko Roy, Samy Bengio,
published as a conference paper at ICLR 2017.
"""
import numpy as np
import tensorflow as tf
class Memory(object):
"""Memory module."""
def __init__(self, key_dim, memory_size, vocab_size,
choose_k=256, alpha=0.1, correct_in_top=1, age_noise=8.0,
var_cache_device='', nn_device=''):
self.key_dim = key_dim
self.memory_size = memory_size
self.vocab_size = vocab_size
self.choose_k = min(choose_k, memory_size)
self.alpha = alpha
self.correct_in_top = correct_in_top
self.age_noise = age_noise
self.var_cache_device = var_cache_device # Variables are cached here.
self.nn_device = nn_device # Device to perform nearest neighbour matmul.
caching_device = var_cache_device if var_cache_device else None
self.update_memory = tf.constant(True) # Can be fed "false" if needed.
self.mem_keys = tf.get_variable(
'memkeys', [self.memory_size, self.key_dim], trainable=False,
initializer=tf.random_uniform_initializer(-0.0, 0.0),
caching_device=caching_device)
self.mem_vals = tf.get_variable(
'memvals', [self.memory_size], dtype=tf.int32, trainable=False,
initializer=tf.constant_initializer(0, tf.int32),
caching_device=caching_device)
self.mem_age = tf.get_variable(
'memage', [self.memory_size], dtype=tf.float32, trainable=False,
initializer=tf.constant_initializer(0.0), caching_device=caching_device)
self.recent_idx = tf.get_variable(
'recent_idx', [self.vocab_size], dtype=tf.int32, trainable=False,
initializer=tf.constant_initializer(0, tf.int32))
# variable for projecting query vector into memory key
self.query_proj = tf.get_variable(
'memory_query_proj', [self.key_dim, self.key_dim], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(0, 0.01),
caching_device=caching_device)
def get(self):
return self.mem_keys, self.mem_vals, self.mem_age, self.recent_idx
def set(self, k, v, a, r=None):
return tf.group(
self.mem_keys.assign(k),
self.mem_vals.assign(v),
self.mem_age.assign(a),
(self.recent_idx.assign(r) if r is not None else tf.group()))
def clear(self):
return tf.variables_initializer([self.mem_keys, self.mem_vals, self.mem_age,
self.recent_idx])
def get_hint_pool_idxs(self, normalized_query):
"""Get small set of idxs to compute nearest neighbor queries on.
This is an expensive look-up on the whole memory that is used to
avoid more expensive operations later on.
Args:
normalized_query: A Tensor of shape [None, key_dim].
Returns:
A Tensor of shape [None, choose_k] of indices in memory
that are closest to the queries.
"""
# look up in large memory, no gradients
with tf.device(self.nn_device):
similarities = tf.matmul(tf.stop_gradient(normalized_query),
self.mem_keys, transpose_b=True, name='nn_mmul')
_, hint_pool_idxs = tf.nn.top_k(
tf.stop_gradient(similarities), k=self.choose_k, name='nn_topk')
return hint_pool_idxs
def make_update_op(self, upd_idxs, upd_keys, upd_vals,
batch_size, use_recent_idx, intended_output):
"""Function that creates all the update ops."""
mem_age_incr = self.mem_age.assign_add(tf.ones([self.memory_size],
dtype=tf.float32))
with tf.control_dependencies([mem_age_incr]):
mem_age_upd = tf.scatter_update(
self.mem_age, upd_idxs, tf.zeros([batch_size], dtype=tf.float32))
mem_key_upd = tf.scatter_update(
self.mem_keys, upd_idxs, upd_keys)
mem_val_upd = tf.scatter_update(
self.mem_vals, upd_idxs, upd_vals)
if use_recent_idx:
recent_idx_upd = tf.scatter_update(
self.recent_idx, intended_output, upd_idxs)
else:
recent_idx_upd = tf.group()
return tf.group(mem_age_upd, mem_key_upd, mem_val_upd, recent_idx_upd)
def query(self, query_vec, intended_output, use_recent_idx=True):
"""Queries memory for nearest neighbor.
Args:
query_vec: A batch of vectors to query (embedding of input to model).
intended_output: The values that would be the correct output of the
memory.
use_recent_idx: Whether to always insert at least one instance of a
correct memory fetch.
Returns:
A tuple (result, mask, teacher_loss).
result: The result of the memory look up.
mask: The affinity of the query to the result.
teacher_loss: The loss for training the memory module.
"""
batch_size = tf.shape(query_vec)[0]
output_given = intended_output is not None
# prepare query for memory lookup
query_vec = tf.matmul(query_vec, self.query_proj)
normalized_query = tf.nn.l2_normalize(query_vec, dim=1)
hint_pool_idxs = self.get_hint_pool_idxs(normalized_query)
if output_given and use_recent_idx: # add at least one correct memory
most_recent_hint_idx = tf.gather(self.recent_idx, intended_output)
hint_pool_idxs = tf.concat(
axis=1,
values=[hint_pool_idxs, tf.expand_dims(most_recent_hint_idx, 1)])
choose_k = tf.shape(hint_pool_idxs)[1]
with tf.device(self.var_cache_device):
# create small memory and look up with gradients
my_mem_keys = tf.stop_gradient(tf.gather(self.mem_keys, hint_pool_idxs,
name='my_mem_keys_gather'))
similarities = tf.matmul(tf.expand_dims(normalized_query, 1),
my_mem_keys, adjoint_b=True, name='batch_mmul')
hint_pool_sims = tf.squeeze(similarities, [1], name='hint_pool_sims')
hint_pool_mem_vals = tf.gather(self.mem_vals, hint_pool_idxs,
name='hint_pool_mem_vals')
# Calculate softmax mask on the top-k if requested.
# Softmax temperature. Say we have K elements at dist x and one at (x+a).
# Softmax of the last is e^tm(x+a)/Ke^tm*x + e^tm(x+a) = e^tm*a/K+e^tm*a.
# To make that 20% we'd need to have e^tm*a ~= 0.2K, so tm = log(0.2K)/a.
softmax_temp = max(1.0, np.log(0.2 * self.choose_k) / self.alpha)
mask = tf.nn.softmax(hint_pool_sims[:, :choose_k - 1] * softmax_temp)
# prepare hints from the teacher on hint pool
teacher_hints = tf.to_float(
tf.abs(tf.expand_dims(intended_output, 1) - hint_pool_mem_vals))
teacher_hints = 1.0 - tf.minimum(1.0, teacher_hints)
teacher_vals, teacher_hint_idxs = tf.nn.top_k(
hint_pool_sims * teacher_hints, k=1)
neg_teacher_vals, _ = tf.nn.top_k(
hint_pool_sims * (1 - teacher_hints), k=1)
# bring back idxs to full memory
teacher_idxs = tf.gather(
tf.reshape(hint_pool_idxs, [-1]),
teacher_hint_idxs[:, 0] + choose_k * tf.range(batch_size))
# zero-out teacher_vals if there are no hints
teacher_vals *= (
1 - tf.to_float(tf.equal(0.0, tf.reduce_sum(teacher_hints, 1))))
# prepare returned values
nearest_neighbor = tf.to_int32(
tf.argmax(hint_pool_sims[:, :choose_k - 1], 1))
no_teacher_idxs = tf.gather(
tf.reshape(hint_pool_idxs, [-1]),
nearest_neighbor + choose_k * tf.range(batch_size))
# we'll determine whether to do an update to memory based on whether
# memory was queried correctly
sliced_hints = tf.slice(teacher_hints, [0, 0], [-1, self.correct_in_top])
incorrect_memory_lookup = tf.equal(0.0, tf.reduce_sum(sliced_hints, 1))
# loss based on triplet loss
teacher_loss = (tf.nn.relu(neg_teacher_vals - teacher_vals + self.alpha)
- self.alpha)
with tf.device(self.var_cache_device):
result = tf.gather(self.mem_vals, tf.reshape(no_teacher_idxs, [-1]))
# prepare memory updates
update_keys = normalized_query
update_vals = intended_output
fetched_idxs = teacher_idxs # correctly fetched from memory
with tf.device(self.var_cache_device):
fetched_keys = tf.gather(self.mem_keys, fetched_idxs, name='fetched_keys')
fetched_vals = tf.gather(self.mem_vals, fetched_idxs, name='fetched_vals')
# do memory updates here
fetched_keys_upd = update_keys + fetched_keys # Momentum-like update
fetched_keys_upd = tf.nn.l2_normalize(fetched_keys_upd, dim=1)
# Randomize age a bit, e.g., to select different ones in parallel workers.
mem_age_with_noise = self.mem_age + tf.random_uniform(
[self.memory_size], - self.age_noise, self.age_noise)
_, oldest_idxs = tf.nn.top_k(mem_age_with_noise, k=batch_size, sorted=False)
with tf.control_dependencies([result]):
upd_idxs = tf.where(incorrect_memory_lookup,
oldest_idxs,
fetched_idxs)
# upd_idxs = tf.Print(upd_idxs, [upd_idxs], "UPD IDX", summarize=8)
upd_keys = tf.where(incorrect_memory_lookup,
update_keys,
fetched_keys_upd)
upd_vals = tf.where(incorrect_memory_lookup,
update_vals,
fetched_vals)
def make_update_op():
return self.make_update_op(upd_idxs, upd_keys, upd_vals,
batch_size, use_recent_idx, intended_output)
update_op = tf.cond(self.update_memory, make_update_op, tf.no_op)
with tf.control_dependencies([update_op]):
result = tf.identity(result)
mask = tf.identity(mask)
teacher_loss = tf.identity(teacher_loss)
return result, mask, tf.reduce_mean(teacher_loss)
class LSHMemory(Memory):
"""Memory employing locality sensitive hashing.
Note: Not fully tested.
"""
def __init__(self, key_dim, memory_size, vocab_size,
choose_k=256, alpha=0.1, correct_in_top=1, age_noise=8.0,
var_cache_device='', nn_device='',
num_hashes=None, num_libraries=None):
super(LSHMemory, self).__init__(
key_dim, memory_size, vocab_size,
choose_k=choose_k, alpha=alpha, correct_in_top=1, age_noise=age_noise,
var_cache_device=var_cache_device, nn_device=nn_device)
self.num_libraries = num_libraries or int(self.choose_k ** 0.5)
self.num_per_hash_slot = max(1, self.choose_k // self.num_libraries)
self.num_hashes = (num_hashes or
int(np.log2(self.memory_size / self.num_per_hash_slot)))
self.num_hashes = min(max(self.num_hashes, 1), 20)
self.num_hash_slots = 2 ** self.num_hashes
# hashing vectors
self.hash_vecs = [
tf.get_variable(
'hash_vecs%d' % i, [self.num_hashes, self.key_dim],
dtype=tf.float32, trainable=False,
initializer=tf.truncated_normal_initializer(0, 1))
for i in xrange(self.num_libraries)]
# map representing which hash slots map to which mem keys
self.hash_slots = [
tf.get_variable(
'hash_slots%d' % i, [self.num_hash_slots, self.num_per_hash_slot],
dtype=tf.int32, trainable=False,
initializer=tf.random_uniform_initializer(maxval=self.memory_size,
dtype=tf.int32))
for i in xrange(self.num_libraries)]
def get(self): # not implemented
return self.mem_keys, self.mem_vals, self.mem_age, self.recent_idx
def set(self, k, v, a, r=None): # not implemented
return tf.group(
self.mem_keys.assign(k),
self.mem_vals.assign(v),
self.mem_age.assign(a),
(self.recent_idx.assign(r) if r is not None else tf.group()))
def clear(self):
return tf.variables_initializer([self.mem_keys, self.mem_vals, self.mem_age,
self.recent_idx] + self.hash_slots)
def get_hash_slots(self, query):
"""Gets hashed-to buckets for batch of queries.
Args:
query: 2-d Tensor of query vectors.
Returns:
A list of hashed-to buckets for each hash function.
"""
binary_hash = [
tf.less(tf.matmul(query, self.hash_vecs[i], transpose_b=True), 0)
for i in xrange(self.num_libraries)]
hash_slot_idxs = [
tf.reduce_sum(
tf.to_int32(binary_hash[i]) *
tf.constant([[2 ** i for i in xrange(self.num_hashes)]],
dtype=tf.int32), 1)
for i in xrange(self.num_libraries)]
return hash_slot_idxs
def get_hint_pool_idxs(self, normalized_query):
"""Get small set of idxs to compute nearest neighbor queries on.
This is an expensive look-up on the whole memory that is used to
avoid more expensive operations later on.
Args:
normalized_query: A Tensor of shape [None, key_dim].
Returns:
A Tensor of shape [None, choose_k] of indices in memory
that are closest to the queries.
"""
# get hash of query vecs
hash_slot_idxs = self.get_hash_slots(normalized_query)
# grab mem idxs in the hash slots
hint_pool_idxs = [
tf.maximum(tf.minimum(
tf.gather(self.hash_slots[i], idxs),
self.memory_size - 1), 0)
for i, idxs in enumerate(hash_slot_idxs)]
return tf.concat(axis=1, values=hint_pool_idxs)
def make_update_op(self, upd_idxs, upd_keys, upd_vals,
batch_size, use_recent_idx, intended_output):
"""Function that creates all the update ops."""
base_update_op = super(LSHMemory, self).make_update_op(
upd_idxs, upd_keys, upd_vals,
batch_size, use_recent_idx, intended_output)
# compute hash slots to be updated
hash_slot_idxs = self.get_hash_slots(upd_keys)
# make updates
update_ops = []
with tf.control_dependencies([base_update_op]):
for i, slot_idxs in enumerate(hash_slot_idxs):
# for each slot, choose which entry to replace
entry_idx = tf.random_uniform([batch_size],
maxval=self.num_per_hash_slot,
dtype=tf.int32)
entry_mul = 1 - tf.one_hot(entry_idx, self.num_per_hash_slot,
dtype=tf.int32)
entry_add = (tf.expand_dims(upd_idxs, 1) *
tf.one_hot(entry_idx, self.num_per_hash_slot,
dtype=tf.int32))
mul_op = tf.scatter_mul(self.hash_slots[i], slot_idxs, entry_mul)
with tf.control_dependencies([mul_op]):
add_op = tf.scatter_add(self.hash_slots[i], slot_idxs, entry_add)
update_ops.append(add_op)
return tf.group(*update_ops)