-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshapes-vision-utopic.wppl.js
261 lines (216 loc) · 9.35 KB
/
shapes-vision-utopic.wppl.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
var seed = randomInteger(1000000000)
// seed 805225545 for watermelon
util.seedRNG(seed)
display('seed is ' + seed)
var drawShapes = function(canvas, shapeAndColorData) {
var shapes = shapeAndColorData.shapes;
var colorings = shapeAndColorData.shapeColors;
if (shapes.length == 0) { return; }
var next = shapes[0];
var coloring = colorings[0];
var fill = coloring ? coloring.fill : 'white'; // 'rgba(1,1,1,0)'; // transparent
var stroke = coloring ? 'rgba(1,1,1,0)' : 'black';
var opacity = coloring ? coloring.opacity : 1.0;
var outlineThickness = 1;
if (next.shape === 'rect') {
var leftX = next.x - next.dims[0]
var topY = next.y - next.dims[1]
canvas.rectangle(leftX, topY, leftX + next.dims[0], topY + next.dims[1], stroke, fill, opacity, next.angle, outlineThickness);
} else if (next.shape === 'circle') {
canvas.circle(next.x, next.y, next.radius, stroke, fill, opacity, outlineThickness);
} else if (next.shape === 'tri') {
canvas.triangle(next.xs[0], next.ys[0], next.xs[1], next.ys[1], next.xs[2], next.ys[2], stroke, fill, opacity, outlineThickness);
} else {
console.warn('drawing a "', next.shape, '" shape not yet implemented! drawing nothing instead');
}
drawShapes(canvas, { shapes: shapes.slice(1), shapeColors: colorings.slice(1) });
}
var rgbFix = function(value) {
if (value > 255) return 255
if (value < 0) return 0
return value
}
var makeColors = function(n, colors, getStandard) {
if (n == 0) return colors
var redVal = [0, 60, 120, 200, 255][randomInteger(5)]
var noisedRedVal = rgbFix(redVal + (getStandard ? 0 : uniform(-50, 50)))
var greenVal = [0, 50, 100, 140, 235][randomInteger(5)]
var noisedGreenVal = rgbFix(greenVal + (getStandard ? 0 : uniform(-50, 50)))
var blueVal = [0, 60, 120, 200, 255][randomInteger(5)]
var noisedBlueVal = rgbFix(blueVal + (getStandard ? 0 : uniform(-50, 50)))
if (getStandard) {
return [redVal, greenVal, blueVal];
}
var colorString = "rgb("+noisedRedVal+","+noisedGreenVal+","+noisedBlueVal+")"
var color = colorString
//var color = ["red", "blue", "cyan", "green", "yellow", "white", "pink", "black", "orange"][randomInteger(8)]
return makeColors(n - 1, colors.concat([{
fill: color,
stroke: color,
opacity: 1.0
}]))
}
var getStandardColors = function() {
var colors = []
Infer({ method: 'enumerate', model() {
var color = makeColors(1, [], true)
// display(util.prettyJSON(color))
var colorString = "rgb("+color[0]+","+color[1]+","+color[2]+")"
// var stroke = colorString
// var fill = colorString
// Draw(25, 25, true).rectangle(0, 0, 25, 25, stroke, fill, 1.0, 0, 30)
colors.push(colorString)
}})
return colors
}
var drawSwatchGrid = function(colors, rows, cols) {
var width = 200
var height = 200
var swatchWidth = width / cols
var swatchHeight = height / rows
var shapeColors = mapIndexed(function(i, color) {
return {
fill: color,
stroke: color,
opacity: 1.0
}
// canvas.rectangle(x*swatchWidth, y*swatchHeight, swatchWidth, swatchHeight, stroke, fill, 1.0, 0, 30)
}, colors)
display(colors.length)
var shapes = mapIndexed(function(i, color) {
var x = i % cols
var y = Math.floor(i / cols)
return {
// x: x*swatchWidth + swatchWidth/2,
// y: y*swatchHeight + swatchHeight/2,
// shape: 'circle'
// radius: swatchWidth/2,
x: swatchWidth + x*swatchWidth,
y: swatchHeight + y*swatchHeight,
dims: [swatchWidth, swatchHeight],
shape: 'rect'
}
}, colors)
drawShapes(Draw(width, height, true), { shapes, shapeColors })
}
drawSwatchGrid(getStandardColors(), 25, 5)
var makeRandShapes = function(n, shapes, targetImage, prevScore, sampleDiversity) {
// categorical distribution of the shape type is
var rectP = uniform(0, 1)
var circleP = uniform(0, 1-rectP)
var triP = uniform(0, 1-rectP-circleP)
var shapeType = categorical({ ps: [rectP, circleP, triP], vs: ['rect', 'circle', 'tri'] })
// x is distance from left edge, y is distance from top edge
var x = uniform(-5, imgWidth+5)
var y = uniform(-5, imgHeight+5)
var dim1 = uniform(0, imgWidth+10)
var dim2 = shapeType === 'circle' ? dim1 : uniform(0, imgHeight+10)
var dim1b = shapeType === 'tri' ? ((flip() ? -1 : 1) * uniform(0, imgWidth+10)) : 0
var dim2b = shapeType === 'tri' ? ((flip() ? -1 : 1) * uniform(0, imgHeight+10)) : 0
// while we can get all we need from just between 0 and 90,
// allowing for values between 0 and 360 gives the model a bit more flexibility to be able to rotate by changing just one parameter
var angle = shapeType === 'rect' ? uniform(0, 90) : 0
// var createShape = mem(function(type, n) {
// return Infer({ method: 'forward', samples: 30, model() {
// var x = xTrue + uniform(-dim1True/3, dim1True/3)
// var y = yTrue + uniform(-dim2True/3, dim2True/3)
// var dim1 = dim1True + uniform(-dim1True/4, dim1True/4)
// var dim2 = dim2True + uniform(-dim2True/4, dim2True/4)
// var dim1b = shapeType === 'tri' ? dim1bTrue + uniform(-dim1True/2, dim1True/2) : 0
// var dim2b = shapeType === 'tri' ? dim2bTrue + uniform(-dim2True/2, dim2True/2) : 0
// var angle = shapeType === 'rect' ? angleTrue + uniform(-20, 20) : 0
const newShape = (
shapeType === 'rect' ?
{ shape: shapeType, dims: [dim1, dim2], x, y, angle }
: shapeType === 'circle' ?
{ shape: shapeType, radius: dim1/2, x, y }
: shapeType === 'tri' ?
{
shape: shapeType,
xs: [x - dim1/2, x + dim1/2, x+dim1b/2],
ys: [y - dim2/2, y + dim2/2, y+dim2b/2]
// the third component gives the triangle three degrees of variability for each axis
}
: null)
// }
// })
// })
// var shapeCreator = createShape(shapeType)
var newShapes = shapes.concat([newShape])
// if (targetImage) {
// var show = true // flip(0.05)
// var generatedImage = Draw(imgWidth, imgHeight, show)
// generatedImage.rectangle(0,0,imgWidth,imgHeight,'white','white')
// var shapeColors = repeat(newShapes.length, function() {return undefined}) // dummy
// drawShapes(generatedImage, { shapes: newShapes, shapeColors })
// var newScore = -targetImage.distance(generatedImage)/sampleDiversity;
// if (!show) generatedImage.destroy()
// if (newScore == prevScore) {
// factor(-Infinity) // prevent completely hidden shapes
// } else {
// factor(newScore - prevScore)
// }
// return (n==1) ? {shapes: newShapes, shapeType} : makeRandShapes(n - 1, newShapes, targetImage, newScore, sampleDiversity)
// }
return (n==1) ? {shapes: newShapes, shapeType} : makeRandShapes(n - 1, newShapes)
}
// our inference loop is run once, for finding shapes and colors (findShapeColors)
// we are doing this inference step jointly for sake of illustration of what could maybe be possible (because it looks nicer)
var painter = function(targetimage) {
var sampleDiversity = 10000
// var distanceNoise = 0.001
var counter = []
var showEveryN = 100
var findShapeColors = function() {
var numShapes = randomInteger(20)
var randShapes = makeRandShapes(numShapes, [])
var shapes = randShapes.shapes
var shapeType = randShapes.shapeType
var shapeColors = makeColors(numShapes, [])
// condition inference using target image data (integrating lower-level color information)
var show = counter.length % showEveryN == 0
var canvas1 = Draw(imgWidth, imgHeight, show)
drawShapes(canvas1, { shapes, shapeColors })
var score = -(canvas1.distance(targetimage)) // + gaussian(0, distanceNoise))
// display(score)
factor(score/sampleDiversity)
if (!show) {
canvas1.destroy()
}
counter.push(1)
return {shapes, shapeColors}
}
return findShapeColors
}
// Run:
// load input image
var imgWidth = 50
var imgHeight = 50
var targetimage = Draw(imgWidth, imgHeight, true)
var imagePath = 'assets/geometric2.png'
loadImage(targetimage, imagePath, true) // third param is "fill" (if false, image is contained, if true, image fills bounds)
// Find shapes and colors
// fill in the shapes
var bestColoredShapes = Infer({ method: 'MCMC', samples: 10000, callbacks: [editor.MCMCProgress()], model: painter(targetimage) })
// samples should not be a multiple of showEveryN, since it might be causing the canvas to be destroyed and then Draw tries to connect to that one
display('done!')
// TODO: scale up all outputs?
// sample from the resulting distribution a few times to assess how specific the results are (assess variance)
var finalResultCanvas = Draw(imgWidth, imgHeight, true)
var finalResultSamples = repeat(10, function() {
var s = sample(bestColoredShapes)
var shapeColors = map(function(color) {
// change opacity
return {
fill: color.fill,
stroke: color.stroke,
opacity: 1/10
}
}, s.shapeColors)
var shapes = s.shapes
drawShapes(finalResultCanvas, { shapes, shapeColors })
})
// show the target image again for comparison
loadImage(Draw(imgWidth, imgHeight, true), imagePath)
// // show the true edges again for comparison
// Draw(imgWidth, imgHeight, true).setImageData(edgePixels)