-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.py
457 lines (298 loc) · 13.1 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import os
import numpy as np
import pandas as pd
from keras.preprocessing.image import load_img, save_img, img_to_array
from keras.applications.imagenet_utils import preprocess_input
from keras.preprocessing import image
import cv2
from pathlib import Path
import gdown
import hashlib
import math
from PIL import Image
import copy
import base64
import multiprocessing
import subprocess
import tensorflow as tf
import keras
import bz2
from mtcnn import MTCNN #0.1.0
def initialize_detector(detector_backend):
global face_detector
home = str(Path.home())
if detector_backend == 'opencv':
opencv_path = get_opencv_path()
face_detector_path = opencv_path+"haarcascade_frontalface_default.xml"
eye_detector_path = opencv_path+"haarcascade_eye.xml"
if os.path.isfile(face_detector_path) != True:
raise ValueError("Confirm that opencv is installed on your environment! Expected path ",face_detector_path," violated.")
face_detector = cv2.CascadeClassifier(face_detector_path)
global eye_detector
eye_detector = cv2.CascadeClassifier(eye_detector_path)
elif detector_backend == 'ssd':
#check required ssd model exists in the home/.deepface/weights folder
#model structure
if os.path.isfile(home+'/.deepface/weights/deploy.prototxt') != True:
print("deploy.prototxt will be downloaded...")
url = "https://github.com/opencv/opencv/raw/3.4.0/samples/dnn/face_detector/deploy.prototxt"
output = home+'/.deepface/weights/deploy.prototxt'
gdown.download(url, output, quiet=False)
#pre-trained weights
if os.path.isfile(home+'/.deepface/weights/res10_300x300_ssd_iter_140000.caffemodel') != True:
print("res10_300x300_ssd_iter_140000.caffemodel will be downloaded...")
url = "https://github.com/opencv/opencv_3rdparty/raw/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel"
output = home+'/.deepface/weights/res10_300x300_ssd_iter_140000.caffemodel'
gdown.download(url, output, quiet=False)
face_detector = cv2.dnn.readNetFromCaffe(
home+"/.deepface/weights/deploy.prototxt",
home+"/.deepface/weights/res10_300x300_ssd_iter_140000.caffemodel"
)
elif detector_backend == 'dlib':
import dlib #this is not a must library within deepface. that's why, I didn't put this import to a global level. version: 19.20.0
global sp
face_detector = dlib.get_frontal_face_detector()
#check required file exists in the home/.deepface/weights folder
if os.path.isfile(home+'/.deepface/weights/shape_predictor_5_face_landmarks.dat') != True:
print("shape_predictor_5_face_landmarks.dat.bz2 is going to be downloaded")
url = "http://dlib.net/files/shape_predictor_5_face_landmarks.dat.bz2"
output = home+'/.deepface/weights/'+url.split("/")[-1]
gdown.download(url, output, quiet=False)
zipfile = bz2.BZ2File(output)
data = zipfile.read()
newfilepath = output[:-4] #discard .bz2 extension
open(newfilepath, 'wb').write(data)
sp = dlib.shape_predictor(home+"/.deepface/weights/shape_predictor_5_face_landmarks.dat")
elif detector_backend == 'mtcnn':
face_detector = MTCNN()
def initializeFolder():
home = str(Path.home())
if not os.path.exists(home+"/.deepface"):
os.mkdir(home+"/.deepface")
print("Directory ",home,"/.deepface created")
if not os.path.exists(home+"/.deepface/weights"):
os.mkdir(home+"/.deepface/weights")
print("Directory ",home,"/.deepface/weights created")
def loadBase64Img(uri):
encoded_data = uri.split(',')[1]
nparr = np.fromstring(base64.b64decode(encoded_data), np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
return img
def get_opencv_path():
opencv_home = cv2.__file__
folders = opencv_home.split(os.path.sep)[0:-1]
path = folders[0]
for folder in folders[1:]:
path = path + "/" + folder
return path+"/data/"
def load_image(img):
exact_image = False
if type(img).__module__ == np.__name__:
exact_image = True
base64_img = False
if len(img) > 11 and img[0:11] == "data:image/":
base64_img = True
#---------------------------
if base64_img == True:
img = loadBase64Img(img)
elif exact_image != True: #image path passed as input
if os.path.isfile(img) != True:
raise ValueError("Confirm that ",img," exists")
img = cv2.imread(img)
return img
def detect_face(img, detector_backend = 'opencv', grayscale = False, enforce_detection = True):
home = str(Path.home())
#if functions.preproces_face is called directly, then face_detector global variable might not been initialized.
if not "face_detector" in globals():
initialize_detector(detector_backend = detector_backend)
if detector_backend == 'opencv':
faces = []
try:
faces = face_detector.detectMultiScale(img, 1.3, 5)
except:
pass
if len(faces) > 0:
x,y,w,h = faces[0] #focus on the 1st face found in the image
detected_face = img[int(y):int(y+h), int(x):int(x+w)]
return detected_face
else: #if no face detected
if enforce_detection != True:
return img
else:
raise ValueError("Face could not be detected. Please confirm that the picture is a face photo or consider to set enforce_detection param to False.")
elif detector_backend == 'ssd':
ssd_labels = ["img_id", "is_face", "confidence", "left", "top", "right", "bottom"]
target_size = (300, 300)
base_img = img.copy() #we will restore base_img to img later
original_size = img.shape
img = cv2.resize(img, target_size)
aspect_ratio_x = (original_size[1] / target_size[1])
aspect_ratio_y = (original_size[0] / target_size[0])
imageBlob = cv2.dnn.blobFromImage(image = img)
face_detector.setInput(imageBlob)
detections = face_detector.forward()
detections_df = pd.DataFrame(detections[0][0], columns = ssd_labels)
detections_df = detections_df[detections_df['is_face'] == 1] #0: background, 1: face
detections_df = detections_df[detections_df['confidence'] >= 0.90]
detections_df['left'] = (detections_df['left'] * 300).astype(int)
detections_df['bottom'] = (detections_df['bottom'] * 300).astype(int)
detections_df['right'] = (detections_df['right'] * 300).astype(int)
detections_df['top'] = (detections_df['top'] * 300).astype(int)
if detections_df.shape[0] > 0:
#TODO: sort detections_df
#get the first face in the image
instance = detections_df.iloc[0]
left = instance["left"]
right = instance["right"]
bottom = instance["bottom"]
top = instance["top"]
detected_face = base_img[int(top*aspect_ratio_y):int(bottom*aspect_ratio_y), int(left*aspect_ratio_x):int(right*aspect_ratio_x)]
return detected_face
else: #if no face detected
if enforce_detection != True:
img = base_img.copy()
return img
else:
raise ValueError("Face could not be detected. Please confirm that the picture is a face photo or consider to set enforce_detection param to False.")
elif detector_backend == 'dlib':
detections = face_detector(img, 1)
if len(detections) > 0:
for idx, d in enumerate(detections):
left = d.left(); right = d.right()
top = d.top(); bottom = d.bottom()
detected_face = img[top:bottom, left:right]
return detected_face
else: #if no face detected
if enforce_detection != True:
return img
else:
raise ValueError("Face could not be detected. Please confirm that the picture is a face photo or consider to set enforce_detection param to False.")
elif detector_backend == 'mtcnn':
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) #mtcnn expects RGB but OpenCV read BGR
detections = face_detector.detect_faces(img_rgb)
if len(detections) > 0:
detection = detections[0]
x, y, w, h = detection["box"]
detected_face = img[int(y):int(y+h), int(x):int(x+w)]
return detected_face
else: #if no face detected
if not enforce_detection:
return img
else:
raise ValueError("Face could not be detected. Please confirm that the picture is a face photo or consider to set enforce_detection param to False.")
else:
detectors = ['opencv', 'ssd', 'dlib', 'mtcnn']
raise ValueError("Valid backends are ", detectors," but you passed ", detector_backend)
def findEuclideanDistance(source_representation, test_representation):
euclidean_distance = source_representation - test_representation
euclidean_distance = np.sum(np.multiply(euclidean_distance, euclidean_distance))
euclidean_distance = np.sqrt(euclidean_distance)
return euclidean_distance
def alignment_procedure(img, left_eye, right_eye):
#this function aligns given face in img based on left and right eye coordinates
left_eye_x, left_eye_y = left_eye
right_eye_x, right_eye_y = right_eye
#-----------------------
#find rotation direction
if left_eye_y > right_eye_y:
point_3rd = (right_eye_x, left_eye_y)
direction = -1 #rotate same direction to clock
else:
point_3rd = (left_eye_x, right_eye_y)
direction = 1 #rotate inverse direction of clock
#-----------------------
#find length of triangle edges
a = findEuclideanDistance(np.array(left_eye), np.array(point_3rd))
b = findEuclideanDistance(np.array(right_eye), np.array(point_3rd))
c = findEuclideanDistance(np.array(right_eye), np.array(left_eye))
#-----------------------
#apply cosine rule
if b != 0 and c != 0: #this multiplication causes division by zero in cos_a calculation
cos_a = (b*b + c*c - a*a)/(2*b*c)
angle = np.arccos(cos_a) #angle in radian
angle = (angle * 180) / math.pi #radian to degree
#-----------------------
#rotate base image
if direction == -1:
angle = 90 - angle
img = Image.fromarray(img)
img = np.array(img.rotate(direction * angle))
#-----------------------
return img #return img anyway
def align_face(img, detector_backend = 'opencv'):
home = str(Path.home())
if (detector_backend == 'opencv') or (detector_backend == 'ssd'):
detected_face_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #eye detector expects gray scale image
eyes = eye_detector.detectMultiScale(detected_face_gray)
if len(eyes) >= 2:
#find the largest 2 eye
base_eyes = eyes[:, 2]
items = []
for i in range(0, len(base_eyes)):
item = (base_eyes[i], i)
items.append(item)
df = pd.DataFrame(items, columns = ["length", "idx"]).sort_values(by=['length'], ascending=False)
eyes = eyes[df.idx.values[0:2]] #eyes variable stores the largest 2 eye
#-----------------------
#decide left and right eye
eye_1 = eyes[0]; eye_2 = eyes[1]
if eye_1[0] < eye_2[0]:
left_eye = eye_1; right_eye = eye_2
else:
left_eye = eye_2; right_eye = eye_1
#-----------------------
#find center of eyes
left_eye = (int(left_eye[0] + (left_eye[2] / 2)), int(left_eye[1] + (left_eye[3] / 2)))
right_eye = (int(right_eye[0] + (right_eye[2]/2)), int(right_eye[1] + (right_eye[3]/2)))
img = alignment_procedure(img, left_eye, right_eye)
return img #return img anyway
elif detector_backend == 'dlib':
import dlib #this is not a must dependency in deepface
detections = face_detector(img, 1)
if len(detections) > 0:
detected_face = detections[0]
img_shape = sp(img, detected_face)
img = dlib.get_face_chip(img, img_shape, size = img.shape[0])
return img #return img anyway
elif detector_backend == 'mtcnn':
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) #mtcnn expects RGB but OpenCV read BGR
detections = face_detector.detect_faces(img_rgb)
if len(detections) > 0:
detection = detections[0]
keypoints = detection["keypoints"]
left_eye = keypoints["left_eye"]
right_eye = keypoints["right_eye"]
img = alignment_procedure(img, left_eye, right_eye)
return img #return img anyway
def preprocess_face(img, target_size=(224, 224), grayscale = False, enforce_detection = True, detector_backend = 'opencv'):
#img_path = copy.copy(img)
#img might be path, base64 or numpy array. Convert it to numpy whatever it is.
img = load_image(img)
base_img = img.copy()
img = detect_face(img = img, detector_backend = detector_backend, grayscale = grayscale, enforce_detection = enforce_detection)
#--------------------------
if img.shape[0] > 0 and img.shape[1] > 0:
img = align_face(img = img, detector_backend = detector_backend)
else:
if enforce_detection == True:
raise ValueError("Detected face shape is ", img.shape,". Consider to set enforce_detection argument to False.")
else: #restore base image
img = base_img.copy()
#--------------------------
#post-processing
if grayscale == True:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.resize(img, target_size)
img_pixels = image.img_to_array(img)
img_pixels = np.expand_dims(img_pixels, axis = 0)
img_pixels /= 255 #normalize input in [0, 1]
return img_pixels
def find_input_shape(model):
#face recognition models have different size of inputs
#my environment returns (None, 224, 224, 3) but some people mentioned that they got [(None, 224, 224, 3)]. I think this is because of version issue.
input_shape = model.layers[0].input_shape
if type(input_shape) == list:
input_shape = input_shape[0][1:3]
else:
input_shape = input_shape[1:3]
return input_shape