-
Notifications
You must be signed in to change notification settings - Fork 1
/
trainer_seq2seq_qa.py
139 lines (122 loc) · 5.37 KB
/
trainer_seq2seq_qa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A subclass of `Trainer` specific to Question-Answering tasks
"""
from torch.utils.data import Dataset
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments
from transformers.trainer_utils import PredictionOutput
class QuestionAnsweringSeq2SeqTrainer(Seq2SeqTrainer):
def __init__(self, *args, eval_examples=None, post_process_function=None, **kwargs):
super().__init__(*args, **kwargs)
self.eval_examples = eval_examples
self.post_process_function = post_process_function
def evaluate(
self,
eval_dataset: Dataset | None = None,
eval_examples=None,
ignore_keys: list[str] | None = None,
metric_key_prefix: str = "eval",
max_length: int | None = None,
num_beams: int | None = None,
) -> dict[str, float]:
assert isinstance(self.args, Seq2SeqTrainingArguments)
self._max_length = (
max_length if max_length is not None else self.args.generation_max_length
)
self._num_beams = (
num_beams if num_beams is not None else self.args.generation_num_beams
)
eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset
eval_dataloader = self.get_eval_dataloader(eval_dataset)
eval_examples = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
compute_metrics = self.compute_metrics
self.compute_metrics = None
eval_loop = (
self.prediction_loop
if self.args.use_legacy_prediction_loop
else self.evaluation_loop
)
try:
output = eval_loop(
eval_dataloader,
description="Evaluation",
# No point gathering the predictions if there are no metrics, otherwise we defer to
# self.args.prediction_loss_only
prediction_loss_only=True if compute_metrics is None else None,
ignore_keys=ignore_keys,
)
finally:
self.compute_metrics = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
eval_preds = self.post_process_function(eval_examples, eval_dataset, output)
metrics = self.compute_metrics(eval_preds)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f"{metric_key_prefix}_"):
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
self.log(metrics)
else:
metrics = {}
# if self.args.tpu_metrics_debug or self.args.debug:
# # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
# xm.master_print(met.metrics_report())
self.control = self.callback_handler.on_evaluate(
self.args, self.state, self.control, metrics
)
return metrics
def predict(
self,
predict_dataset,
predict_examples,
ignore_keys=None,
metric_key_prefix: str = "test",
):
predict_dataloader = self.get_test_dataloader(predict_dataset)
# Temporarily disable metric computation, we will do it in the loop here.
compute_metrics = self.compute_metrics
self.compute_metrics = None
eval_loop = (
self.prediction_loop
if self.args.use_legacy_prediction_loop
else self.evaluation_loop
)
try:
output = eval_loop(
predict_dataloader,
description="Prediction",
# No point gathering the predictions if there are no metrics, otherwise we defer to
# self.args.prediction_loss_only
prediction_loss_only=True if compute_metrics is None else None,
ignore_keys=ignore_keys,
)
finally:
self.compute_metrics = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
# predictions = self.post_process_function(predict_examples, predict_dataset, output.predictions, "predict")
predictions = self.post_process_function(
predict_examples, predict_dataset, output, "predict"
)
metrics = self.compute_metrics(predictions)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f"{metric_key_prefix}_"):
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
return PredictionOutput(
predictions=predictions.predictions,
label_ids=predictions.label_ids,
metrics=metrics,
)