forked from burakbayramli/books
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCC.java
167 lines (152 loc) · 5.29 KB
/
CC.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/*************************************************************************
* Compilation: javac CC.java
* Execution: java CC filename.txt
* Dependencies: Graph.java StdOut.java Queue.java
* Data files: http://algs4.cs.princeton.edu/41undirected/tinyG.txt
*
* Compute connected components using depth first search.
* Runs in O(E + V) time.
*
* % java CC tinyG.txt
* 3 components
* 0 1 2 3 4 5 6
* 7 8
* 9 10 11 12
*
* % java CC mediumG.txt
* 1 components
* 0 1 2 3 4 5 6 7 8 9 10 ...
*
* % java -Xss50m CC largeG.txt
* 1 components
* 0 1 2 3 4 5 6 7 8 9 10 ...
*
*************************************************************************/
/**
* The <tt>CC</tt> class represents a data type for
* determining the connected components in an undirected graph.
* The <em>id</em> operation determines in which connected component
* a given vertex lies; the <em>connected</em> operation
* determines whether two vertices are in the same connected component;
* the <em>count</em> operation determines the number of connected
* components; and the <em>size</em> operation determines the number
* of vertices in the connect component containing a given vertex.
* The <em>component identifier</em> of a connected component is one of the
* vertices in the connected component: two vertices have the same component
* identifier if and only if they are in the same connected component.
* <p>
* This implementation uses depth-first search.
* The constructor takes time proportional to <em>V</em> + <em>E</em>
* (in the worst case),
* where <em>V</em> is the number of vertices and <em>E</em> is the number of edges.
* Afterwards, the <em>id</em>, <em>count</em>, <em>connected</em>,
* and <em>size</em> operations take constant time.
* <p>
* For additional documentation, see <a href="/algs4/41graph">Section 4.1</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class CC {
private boolean[] marked; // marked[v] = has vertex v been marked?
private int[] id; // id[v] = id of connected component containing v
private int[] size; // size[id] = number of vertices in given component
private int count; // number of connected components
/**
* Computes the connected components of the undirected graph <tt>G</tt>.
* @param G the graph
*/
public CC(Graph G) {
marked = new boolean[G.V()];
id = new int[G.V()];
size = new int[G.V()];
for (int v = 0; v < G.V(); v++) {
if (!marked[v]) {
dfs(G, v);
count++;
}
}
}
// depth-first search
private void dfs(Graph G, int v) {
marked[v] = true;
id[v] = count;
size[count]++;
for (int w : G.adj(v)) {
if (!marked[w]) {
dfs(G, w);
}
}
}
/**
* Returns the component id of the connected component containing vertex <tt>v</tt>.
* @param v the vertex
* @return the component id of the connected component containing vertex <tt>v</tt>
*/
public int id(int v) {
return id[v];
}
/**
* Returns the number of vertices in the connected component containing vertex <tt>v</tt>.
* @param v the vertex
* @return the number of vertices in the connected component containing vertex <tt>v</tt>
*/
public int size(int v) {
return size[id[v]];
}
/**
* Returns the number of connected components.
* @return the number of connected components
*/
public int count() {
return count;
}
/**
* Are vertices <tt>v</tt> and <tt>w</tt> in the same connected component?
* @param v one vertex
* @param w the other vertex
* @return <tt>true</tt> if vertices <tt>v</tt> and <tt>w</tt> are in the same
* connected component, and <tt>false</tt> otherwise
*/
public boolean connected(int v, int w) {
return id(v) == id(w);
}
/**
* Are vertices <tt>v</tt> and <tt>w</tt> in the same connected component?
* @param v one vertex
* @param w the other vertex
* @return <tt>true</tt> if vertices <tt>v</tt> and <tt>w</tt> are in the same
* connected component, and <tt>false</tt> otherwise
* @deprecated Use connected(v, w) instead.
*/
public boolean areConnected(int v, int w) {
return id(v) == id(w);
}
/**
* Unit tests the <tt>CC</tt> data type.
*/
public static void main(String[] args) {
In in = new In(args[0]);
Graph G = new Graph(in);
CC cc = new CC(G);
// number of connected components
int M = cc.count();
StdOut.println(M + " components");
// compute list of vertices in each connected component
Queue<Integer>[] components = (Queue<Integer>[]) new Queue[M];
for (int i = 0; i < M; i++) {
components[i] = new Queue<Integer>();
}
for (int v = 0; v < G.V(); v++) {
components[cc.id(v)].enqueue(v);
}
// print results
for (int i = 0; i < M; i++) {
for (int v : components[i]) {
StdOut.print(v + " ");
}
StdOut.println();
}
}
}