
Connector API

Authors
Person Role Partner Contribution
Frank Asseg DEV FIZ
Matthias Hahn DEV FIZ

Distribution
Person Role Partner
PT Group

Revision History
Version Status Author Date Changes
0.9 Frank Asseg 2012-04-10 Final draf
1.0 Matthias Hahn 2012-04-19
1.1 Frank Asseg 2013-7-02 Added parent ids
1.1.2 Frank Asseg 2014-3-10 Lists of named metadata

1.1.3 Frank Asseg 2014-7-29
Added create Representaion
Added create File
Added add Provenance record

Table of Contents

1 Introduction..2

2 Use Cases of the Connector API...3

3 Storage Strategy..4

4 Schematic views..4

5 Specification...8

6 Technology Compatibility Kit..18

7 Glossary..18

8 List of Figures..20

9 Changes..20

1 Introduction
The Connector API's purpose in the SCAPE platform is to integrate different repositories with the
various SCAPE components. As such it sits on top of the content repository and exposes well defined
services via HTTP used by clients to access the repository content. The proposed Connector API can
be used by clients to access not only content but preservation plans as well.

When preserving collections with mainly small individual content, the overhead to request binary
content via HTTP can be neglected, but when requesting large binary content from the repository via
HTTP the overhead gets significant in respect to the request duration. Therefore two storage
strategies are introduced that handle binary content differently: One is responsible for the whole
lifecycle of a binary object, the second storage strategy only handles references to binary content,
while an outside agent is responsible for content manipulation.

The Connector API is required to acommodate the various use cases in a SCAPE platform arising from
the different API clients. The computation cluster as a client of the Connector API must be able to
perform CRUD1 operations on digital objects, while preservation plan management requires CRUD
operations on preservation plans, and the discorvery of digital objects via SRU2 searches is required
by e.g. plan experimenting.

The Connector API is, aside from the Report API, one of the two APIs a repository has to implement in
order to be employed in a SCAPE platform. Therefore arbitrary repository systems can be used in a
SCAPE environment, if and only if they implement the Connector and the Report API.

Since well defined requests have to be used by clients of the Connector API the format of the objects
is part of the API definitions. The data model definitions for the SCAPE platform can be found in the

1 http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

2 http://www.loc.gov/standards/sru/

http://www.loc.gov/standards/sru/
http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

document “SCAPE Digital Object Model” 3by the PT.WP.5 work package members. This document
introduces Intellectual Entities, Representations, Files and Bitstreams as the core elements of the
SCAPE data model.

2 Use Cases of the Connector API

2.1 Loader application for batch ingest
The Loader Application will be a client application of the repository that enables the administrator to
ingest data into the repository in a batch process. The Loader application takes care of validation,
error logging and retry functionality. The details of the requirements will be described in a separate
document. The loader application requires a HTTP endpoint for ingesting Intellectual Entities in the
repository as described in Chapter 5.4.4.

2.2 Request Intellectual Entities by the computation cluster
In order to run actions on Intellectual Entities for characterization, identification and other tasks
and depending on the Storage Strategy as described in Chapter 3 the data or their references are
needed for task execution. References to the data can be extracted from Intellectual Entities
requested as described in Chapter 5.4.1. Content can also be requested directly from the
repository by using an Identifier as described in Chapter 5.4.8 and depending on the Storage
Strategy the repository returns the content directly or uses HTTP redirection to route the request
to the content's location.

2.3 Update Intellectual Entities with provenance information
To enable preservation actions executed on the computation cluster updating provenance metadata
of Representations an interface is needed. Preservation actions have to employ the HTTP endpoint to
update Intellectual Entities, although it may be possible to expose an endpoint for updating single
representations in the future. If e.g. the computation cluster updated an image file and provenance
information had to be written into the corresponding Representation, the information had to be
updated in the repository by using the HTTP endpoint to update the whole Intellectual Entities as
described in Chapter 5.4.5.

2.4 Partially fetching large scale files
A repository may hold Files such as ARC containers large in size. Since preservation tasks may only be
concerned with a subset of the File, fetching the whole container would be uneconomic and have
negative impact on performance. Therefore the requirement to partially request Files arises. In order
to request partial Files from the repository the endpoint as described in Chapter Error: Reference
source not found can be used or in the case of named bit streams the endpoint as described in
Chapter 5.4.10.

3 https://portal.ait.ac.at/sites/Scape/PT/Shared%20Documents/PT.WP.5%20Repository
%20Integration/SCAPE_Dgital_Object_Model.doc

https://portal.ait.ac.at/sites/Scape/PT/Shared%20Documents/PT.WP.5%20Repository%20Integration/SCAPE_Dgital_Object_Model.doc
https://portal.ait.ac.at/sites/Scape/PT/Shared%20Documents/PT.WP.5%20Repository%20Integration/SCAPE_Dgital_Object_Model.doc

3 Storage Strategy
The heterogeneity of collections in regard to size poses a challenge for a well performing
implementation: while fetching small collections through an API exposed via HTTP for
workflow execution is a practical approach, the performance to fetch very large collections will be
poor. Therefore the following two Storrage Strategies are available, letting stakeholders choose the
more fitting alterantive:

1. Managed Content: When using this strategy Files are accessible only via the Connector API,
so that any operations involving Files the binary data requires the clients to use the
Connector API to retrieve or update the binary data from the repository. This functionality is
exposed to the clients by an HTTP enpoint as described in Chapter 5. This strategy is not very
well suited for large amounts of data or geographically separated storage and computation
clusters, because of the necessary I/O overhead for data retrieval by the computation cluster..

2. Referenced Content: When using this strategy the repository is integrated with the different
components by storing Files in a file system directly accessible by the SCAPE platform, and
only referencing Files in the repository by an URI. This enables the platform to handle large
files without having to move them in between machines before computation can take place.

The first approach enables preservation actions to be performed on an external computation cluster,
which is in use for a limited time only. The export of the data to the cluster is performed via the
Connector API. In this scenario the computation cluster and storage are physical and/or geographical
distinct entities. Drawbacks to this approach are that an institutions policy might prevent exporting
the data to an untrusted third party and it introduces a bottleneck by exporting the data over a
network - a worst case scenario would be to move the entire content - to a computation cluster.
The second approach is more eligible for running a Hadoop cluster with access to the same HDFS file
system the Files are stored in. Computation Cluster and Storage are not distinct instances in this
scenario, requiring the hardware to act as a storage and computation platform for the preserved
Intellectual Entities.

4 Schematic views

4.1 Fetching an Intellectual Entity

To fetch an Intellectual Entity from the repository via the Connector API the following workflow has
been identified:

1. A taverna workflow4 has been scheduled for execution on the computation cluster

2. A process on the computation cluster requests collection metadata from the repository via
the Connector API

3. The repository gathers the Intellectual Entities' metadata from the metadata storage

4. The repository answers the process' Connector API request by returning the XML
representation for the Intellectual Entity.

4 http://www.taverna.org.uk/

http://www.taverna.org.uk/

5. If referenced content is used the computation cluster can access the binary data by resolving
URIs in the collection profile, otherwise the computation cluster requests the binary data
from the repository via the Connector API.

The following sequence diagram illustrates this workflow to retrieve an Intellectual Entity from the
repository.

Figure 4-1: Sequence Diagram illustrating the workflow to fetch an Intellectual Entity

4.2 Fetching a File

This two sequence diagrams illustrate the workflow to fetch a File from the repository in a scenario
where the files are handled as referenced content and in the second diagram within a managed
content scenario.

Figure 4-2: Sequence Diagram illustrating the workflow to fetch an File (as referenced
content)

Figure 4-3: Sequence Diagram illustrating the workflow to fetch an Intellectual Entity (as
managed content)

4.3 Ingesting or Updating an Intellectual Entity

To ingest or to update an Intellectual Entity in a repository via the Connector API the following
workflow has been identified:

1. A Taverna workflow has executed successfully and the resulting Intellectual Entities have to
be written back to the repository.

2. A process on the computation cluster sends the updated Intellectual Entity via the Data
Connector API to the repository, and references the updated binary data in the request.

3. The repository updates the Intellectual Entities' metadata, and if using managed content the
updated binary data gets written from the referenced location to the binary storage.

4. The repository answers the process' request and informs about any errors that might have
occurred while the operation was performed.

The following sequence diagrams illustrates this workflow for two storage scenarios of managed and
referenced content:

Figure 4-4: Sequence Diagram illustrating the workflow to ingest an Intellectual Entity (as
referenced content)

Figure 4-5: Sequence Diagram illustrating the workflow to ingest an Intellectual Entity (as
managed content)

5 Specification
The content repository exposes a RESTful5 API to the workflow execution layer on top of a Hadoop
computation cluster, for operations on the metadata of Intellectual Entities. The API consists of
various HTTP endpoints defined in the following section.
The preserved Intellectual Entities consist of administrative, structural, rights and descriptive
metadata and associated Files and are themselves versioned. Existing and well established standards
for encoding the different aspects of metadata are used for wrapping the metadata of Intellectual
Entities.

5.1 Authentication & Authorization
Following the REST recommendations authentication is done by using Basic and Digest Access
Authentication mechanism, also known as HTTP Basic Authentication, which is well established and
supported throughout the otherwise heterogeneous IT landscape. This implies that every HTTP
request has to have a BASE64 encoded user name and password string in the Authentication Header.
Therefore encryption by using HTTP over SSL/TLS is strongly recommended.
Authorization is done by the repository depending on the current user and the individual
Representations' associated rights and permission metadata.

5.2 Life cycle states
The life cycle state of an Intellectual Entity contains the information describing the state of an
Intellectual Entity in the preservation lifecycle. Currently three states are defined: INGESTED,
INGEST_FAILED, OTHER. Each of these states also has details associated with it, so the repository can
supply additional information. These states result from the following use case: When ingesting SIPs
asynchronously a user has to be able to get information about the ingestion process: Whether
ingestion succeeded, failed or is currently in process. In order to supply information about currently
running ingestion processes (e.g. virus checking) “OTHER” can be used with it’s details describing the
process of the ingestion workflow the SIP is currently in.

<lifecyclestate id=”entity-42” state=”INGESTED”>
<details>Ingest finished successfully at 6/27/2012 13:34:57</details>

</lifecyclestate>

Example 1: XML Representation of the life cycle state of an ingested Intellectual Entity

5.3 HTTP Status codes
The existing HTTP status codes with their individual semantics are used in the context of the
connector API.

 200 OK This indicates success.

5R.T. Fielding, 2000,“Architectural Styles and the Design of Network-based Software Architectures”

 201 Created means that an object has been created in the repository.
 401 Unauthorized The request requires authentication. The user should authenticate

properly against the repository and repeat the request.
 403 Forbidden The server refuses to fulfill the request. Authorization will not help and the

request should not be repeated.
 404 Not Found The requested resource cannot be found.
 415 Unsupported Media Type The media type sent with the requested was not valid.
 500 Internal Server Error In the case of runtime errors that might be happening while

requesting a resource: e.g. Disk full.

5.4 HTTP endpoints
Following is a specification of the HTTP endpoints. The implementation of the endpoints has to be
done by each repository in order to be deployed in a SCAPE Platform environment.
 The XML Schemas of the XML responses are defined by the Scape Digital Object Model and by
metadata frameworks like Dublin Core and VideoMD. The schemas for object representations as
defined in the Digital Object Model are generated by the JAX-B implementation’s schemagen tool.
The schemas for existing metadata frameworks employed by the SCAPE platform are readily available
on the web.

5.4.1 Retrieve an Intellectual Entity
Retrieval of entities is done via a GET request. Since Intellectual Entities can have multiple versions
there is an optional version identifier, which when omitted defaults to the most current version of the
Intellectual Entity. When successful the response body is a METS representation of the Intellectual
Entity. The parameter useReferences controls wether the response is created using references to the
metadata via <mdRef> elements or if the metadata should be wrapped inside <mdWrap> elements in
the METS document.

Path:

/entity/<entity-id>/<version-id>?useReferences=[yes|no]

Method:

HTTP/1.1 GET

Parameters:

entity-id: the id of the requested Intellectual Entity

version-id: the version of the requested entity (optional)

useReferences: Wether to wrap metadata inside <mdWrap> elements or to reference the metadata
using<mdref> elements. Defaults to yes.

Produces:

A XML representation of the requested Intellectual Entity version

Content-Type:

text/xml

5.4.2 Retrieve a metadata record
Retrieval of single metadata records of entities is done via a GET request. Since Intellectual Entities
can have multiple versions there is an optional version identifier, which when omitted defaults to the
most current version of the Intellectual Entity. When successful the response body is a XML

representation of the corresponding metadata record. In case of technical metadata a list of technical
metadata records is returned as defined in the data model.

Path:

/metadata/<entity-id>/<rep-id>/<file-id>/<bitstream-id>/<version-id>/<md-id>

Method:

HTTP/1.1 GET

Parameters:

entity-id: the id of the Intellectual Entity

rep-id: the id of the Representation (optional)

file-id: the id of the File (optional)

bitstream-id: the id of the requested binary content (optional)

md-id: the id of the metadata to retrieve

version-id: the version of the requested bit stream's parent Intellectual Entity (optional)

Produces:

A XML representation of the requested metadata record according to the corresponding metadata’s
schema

Content-Type:

text/xml

5.4.3 Retrieve a set of Intellectual Entities
In order to make fetching a whole set of entities feasible this POST method consumes a list of URIs
sent with the request. It resolves the URIs to Intellectual Entities and creates a response consisting of
the corresponding METS representations. If at least one URI could not be resolved the
implementation returns a HTTP 404 Not Found status message.

Path:

/entity-list

Method:

HTTP/1.1 POST

Consumes:

A text/uri-list of the entities to be retrieved

Produces:

METS representations of the requested entities.

Content-Type:

multipart

5.4.4 Ingest an Intellectual Entity
Ingestion of digital objects is done by sending a METS representation of an Intellectual Entity in the
body of a HTTP POST request, which gets validated and persisted in the repository. If validation does

not succeed the implementation returns a HTTP 415 “Unsupported Media Type” status message.
When successful the response body is a plain text document consisting of the ingested entity's
identifier.

Path

/entity

Method

HTTP/1.1 POST

Parameters

Consumes

A XML representation of the entity

Produces

The Intellectual Entity identifier

Content-Type

text/plain

5.4.5 Ingest an Intellectual Entity asynchronously
Ingestion is done by sending a SIP to this endpoint. The method returns instantly and supplies the
User with an ID which can be used to request the status of the ingestion.

Path

/entity-async

Method

HTTP/1.1 POST

Parameters

Consumes

A XML representation of the entity

Produces

An Identifier which can be used to request the lifecycle status of the digital object ingested.

Content-Type

text/plain

5.4.6 Update an Intellectual Entity
In order to allow updating of Intellectual Entities the implementation exposes this HTTP PUT
endpoint. The mandatory parameter <id> tells the repository which Intellectual Entity is to be
updated. The request must include the updated METS representation of the entity in the request
body.

Path:

/entity/<id>

Parameters

Id: the id of the Intellectual Entity to update

Method

HTTP/1.1 PUT

Consumes

A digital object's XML representation.

5.4.7 Retrieve a version list for an Intellectual Entity
In order to get a list of all versions of an Intellectual Entity a plain GET request can be sent to the
implementation with the <id> parameter indicating which entity's versions to list. If successful the
response consists of the Intellectual Entity's version identifiers in a XML representation

Path:

/entity-version-list/<entity-id>

Parameters

entity-id: the id of the Intellectual Entity

Method

HTTP/1.1 GET

Produces

A XML representation of all the entities version ids.

Content-Type
text/xml

5.4.8 Retrieve a File
For fetching Files associated with Intellectual Entities the implementation exposes a HTTP GET
endpoint. Requests sent to this endpoint must have a <id> parameter indicating which File to fetch.
The parameter <version-id> indicating the version to fetch is optional and defaults to the most
current version of the File. Depending on the Storage Strategy the response body is the binary file
with the corresponding Content-Type set by the repository or a HTTP 302 redirect in the case of
referenced content.

Path:

/file/<entity-id>/<representation-id>/<file-id>/<version-id>

Method

HTTP/1.1 GET

Parameters

entity-id: the id of the Intellectual Entity

representation-id: the id of the Representation

file-id: the id of the File

version-id: the version of the requested File's parent Intellectual Entity (optional)

Produces

the file requested or a redirect to the file when using referenced content.

Content-Type

depends on File's metadata, but defaults to application/octet-stream.

5.4.9 Create a File
For creating new Files the implementation exposes a HTTP POST method. Requests sent to this
endpoint must indiciate the Intellectual Entity and the Representation to which the File should be
added. The method consumes the XML representation of a File, and returns an Identifier.

Path

/file/<entity-id>/<representation-id>

Method

HTTP/1.1 POST

Parameters

entity-id: the id of the Intellectual Entity

representation-id: the id of the Representation

Consumes

A XML representation of the new File

Produces

An identifier for the created File

Content-Type

text/plain

5.4.10 Retrieve named bit streams
For fetching a named subset of Files, such as an entry in an ARC container, the implementation
exposes a HTTP GET method. The mandatory parameter <id> is the identifier of the requested bit
stream in the Intellectual Entity. Depending on the Storage Strategy the implementation returns the
bit stream directly in the response body, or it redirects the request using HTTP 302 to the referenced
content. This requires special care when using Referenced Content as a Storage Strategy since the
implementation is only able to redirect to referenced bit streams, making the redirect target
responsible for answering the request properly.

Path:

/bitstream/<entity-id>/<rep-id>/<file-id>/<bitstream-id>/<version-id>

Method

HTTP/1.1 GET

Parameters

entity-id: the id of the Intellectual Entity

rep-id: the id of the Representation

file-id: the id of the File

bitstream-id: the id of the requested binary content

version-id: the version of the requested bit stream's parent Intellectual Entity (optional)

Produces

the binary content associated requested or a redirect to the binary content.

Content-Type

depends on content's type, but defaults to application/octet-stream.

5.4.11 Search Intellectual Entities in a collection
For digital object discovery the implementation exposes a SRU search endpoint. The endpoint
implements the SRU specifications by the Library of Congress for Internet Search queries, utilizing
CQL, a standard syntax for representing queries, and exposes this functionality via a HTTP GET
endpoint. Pagination is done via the SRU parameters startRecord and maximumRecords6

Path

/sru/entities

Parameters

see SRU specification7

Method

HTTP/1.1 GET

Produces

A XML representation as specified by SRU

Content-Type

text/xml

5.4.12 Search Representations in a collection
For discovering Representations the implementation exposes a SRU search endpoint. The endpoint
implements the SRU specifications by the Library of Congress for Internet Search queries, utilizing
CQL, a standard syntax for representing queries, and exposes this functionality via a HTTP GET
endpoint. Pagination is done via the SRU parameters startRecord and maximumRecords

Path

/sru/representations

Parameters

see SRU specification

Method

HTTP/1.1 GET

Produces

6 http://www.loc.gov/standards/sru/specs/search-retrieve.html
7 http://www.loc.gov/standards/sru/

http://www.loc.gov/standards/sru/

A XML representation as specified by SRU

Content-Type

text/xml

5.4.13 Search Files in a collection
For discovering Files the implementation exposes a SRU search endpoint. The endpoint implements
the SRU specifications by the Library of Congress for Internet Search queries, utilizing CQL, a standard
syntax for representing queries, and exposes this functionality via a HTTP GET endpoint. Pagination is
done via the SRU parameters startRecord and maximumRecords

Path

/sru/files

Parameters

see SRU specification

Method

HTTP/1.1 GET

Produces

A XML representation as specified by SRU

Content-Type

text/xml

5.4.14 Retrieve the lifecycle status of an entity
In order to access the life cycle state of an Intellectual Entity without having to fetch the whole METS
representation an endpoint for retrieving this significant property is exposed by the repository.

Path

/lifecycle/<entity-id>

Method

HTTP/1.1 GET

Parameters:

entity-id: the id of the Intellectual Entity to update

Produces

A XML representation of the lifecycle status

Content-Type

text/xml

5.4.15 Retrieve a Representation
For fetching Representations without having to retrieve the METS representation of the whole
Intellectual Entity a dedicated endpoint is exposed by the repository

Path:

/representation/<entity-id>/<representation-id>

Method:

HTTP/1.1 GET

Parameters:

entity-id: the id of the Intellectual Entity to update

representation-id: the id of the Representation to update

Produces:

A XML representation of the requested Representation

Content-Type:

text/xml

5.4.16 Create a new Representation
For creation of a new Representation the implementation exposes an HTTP POST endpoint. Requests
sent to this endpoint must indicate the Intellectual Entity's Id.

Path

/representation/<entity-id>

Method

HTTP/1.1 POST

Parameters

entity-id: the id of the Intellectual Entity

Consumes

A XML representation of the new Representation

Produces

An identifier for the created Representation

Content-Type

text/plain

5.4.17 Update a Representation of an Intellectual Entity
For updating a Representation of an Intellectual entity without sending a METS representation of the
Intellectual Entity an endpoint is exposed by the repository. The repository has to create a new
Version of the Intellectual Entity with the updated Representation.

Path:

/representation/<entity-id>/<representation-id>

Parameters

entity-id: the id of the Intellectual Entity to update

representation-id: the id of the Representation to update

Method

HTTP/1.1 PUT

Consumes

A Representations' XML representation.

5.4.18 Add a new Provenance recordPremis to a Representation
For adding new Premis events to a Representation's provenance metadata, the implementation
exposes the following HTTP POST endpoint. Requests sent to this endpoint must indicate the
Intellectual Entity and Representation to which the provenance record should be added.

Path

/provenance/<entity-id>/<metadata-id>

Method

HTTP/1.1 POST

Parameters

entity-id: the id of the Intellectual Entity

representation-id: the id of the Representation

Consumes

A XML representation of the PremisEvent

5.4.19 Update the metadata of an Intellectual Entity
When updating only the metadata of an Intellectual Entity validity on binary files can be omitted,
thereby saving cpu cycles. An endpoint is exposed to clients for updating the metadata of an
Intellectual entity, that consumes a METS representations of an Intellectual Entity. In the case of
technical metadata a list of technical metadata records is expected as defined in the data model

Path:

/metadata/<entity-id>/<metadata-id>

Parameters

entity-id: the id of the Intellectual Entity to update

metadata-id: the Id of the metadata set to update

Method

HTTP/1.1 PUT

Consumes

An metadata's XML representation.

6 Technology Compatibility Kit
A Technology Compatibility Kit will be developed to enable repository system developers to test their
repository’s implementation of the Connector API. The TCK consists of a series of integration tests
covering the various endpoints of the Connector API, mocking an implementation client, creating,

retrieving and updating Intellectual Entities and preservation plans in the repository as described by
the various HTTP methods in Chapter 5.4. The TCK should test for the various error conditions
possible and validate the responses of the implementation.
 The TCK will consist of a HTTP Client sending requests to an existing repository implementation. It
will for example check if it is possible to ingest an Intellectual Entity via a HTTP POST as described in
5.3.3 and check if the ingested entity can be fetched by the HTTP GET method described in 5.3.1.

7 Glossary

Apache Hadoop is a sofware framework that supports data-intensive distributed applications under
a free license. It enables applications to work with thousands of computational independent
computers and petabytes of data. Hadoop was derived from Google's MapReduce and Google File
System (GFS) papers.

A Bitstream is a contiguous or non-contiguous data within a file that has meaningful common
properties for preservation purposes. Generally speaking, a bitstream cannot be transformed into a
standalone file without the addition of file structure (headers, etc.) and/or reformatting the bitstream
to comply with some particular file format. This definition is derived from the data model outlined in
Introduction and Supporting Materials from PREMIS Data Dictionary, p. 7, illustrated by the example
of a TIFF file that contains embedded bitstreams representing raster images together with header
that presents some information about the file. The authors of the PREMIS definition note that their
definition is limited to sets of bits embedded within a file and they call attention to an alternate usage
that defines bitstream as an entity that could span more than one file.8

A File file is a named and ordered sequence of bytes that is known by an operating system. A file can
be zero or more bytes and has a file format, access permissions, and file system characteristics such
as size and last modification date Files can be read, written, and copied. Files have names and
formats." Introduction and Supporting Materials from PREMIS Data Dictionary (p. 7)9

A Intellectual entity is a set of content that is considered a single intellectual unit for purposes of
management and description: for example, a particular book, map, photograph, or database. An
Intellectual Entity can include other Intellectual Entities; for example, a Web site can include a Web
page; a Web page can include an image. An Intellectual Entity may have one or more digital
representations. From Introduction and Supporting Materials from PREMIS Data Dictionary, p. 6.10

8http://www.digitizationguidelines.gov/term.php?term=bitstream

9http://www.digitizationguidelines.gov/term.php?term=digitalfile

10http://www.digitizationguidelines.gov/term.php?term=intellectualentity

http://www.loc.gov/standards/premis/v2/premis-report-2-1.pdf
http://www.digitizationguidelines.gov/term.php?term=intellectualentity
http://www.loc.gov/standards/premis/v2/premis-report-2-1.pdf
http://www.digitizationguidelines.gov/term.php?term=digitalfile
http://www.loc.gov/standards/premis/v2/premis-report-2-1.pdf
http://www.digitizationguidelines.gov/term.php?term=bitstream

A Representation is a set of files, including structural metadata, needed for a complete and
reasonable rendition of an Intellectual Entity. For example, a journal article may be complete in one
PDF file; this single file constitutes the representation. Another journal article may consist of one
SGML file and two image files; these three files constitute the representation. A third article may be
represented by one TIFF image for each of 12 pages plus an XML file of structural metadata showing
the order of the pages; these 13 files constitute the representation. From Introduction and
Supporting Materials from PREMIS Data Dictionary, p. 7.11

A Technology Compatibility Kit (TCK) is a suite of tests that at least nominally checks a particular
alleged implementation for compliance.

The Metadata Encoding and Transmission Standard (METS) is a metadata standard for encoding
descriptive, administrative, and structural metadata regarding objects within a digital library,
expressed using the XML schema language of the World Wide Web Consortium. The standard is
maintained in the Network Development and MARC Standards Office of the Library of Congress, and
is being developed as an initiative of the Digital Library Federation.

Representational state transfer (REST) is a style of sofware architecture for distributed hypermedia
systems such as theWorld Wide Web. The term representational state transfer was introduced and
defined in 2000 by Roy Fielding in his doctoral dissertation. Fielding is one of the principal authors of
the Hypertext Transfer Protocol (HTTP) specification versions 1.0 and 1.1.

Contextual Query Language (CQL), previously known as Common Query Language is a formal
language for representing queries to information retrieval systems such as search engines,
bibliographic catalogs and museum collection information. Based on the semantics of Z39.50, its
design objective is that queries be human readable and writable, and that the language be intuitive
while maintaining the expressiveness of more complex query languages. It is being developed and
maintained by the Z39.50 Maintenance Agency, part of the Library of Congress.

Search/Retrieve via URL(SRU) is a standard search protocol for Internet search queries, utilizing
Contextual Query Language(CQL), a standard query syntax for representing queries.

8 List of Figures
Figure 4-1: Sequence Diagram illustrating the workflow to fetch an Intellectual
Entity..5

Figure 4-2: Sequence Diagram illustrating the workflow to fetch an File (as
referenced content)...6

11http://www.digitizationguidelines.gov/term.php?term=representation

http://www.loc.gov/standards/premis/v2/premis-report-2-1.pdf
http://www.loc.gov/standards/premis/v2/premis-report-2-1.pdf
http://www.digitizationguidelines.gov/term.php?term=intellectualentity
http://www.digitizationguidelines.gov/term.php?term=representation

Figure 4-3: Sequence Diagram illustrating the workflow to fetch an Intellectual
Entity (as managed content)...7

Figure 4-4: Sequence Diagram illustrating the workflow to ingest an Intellectual
Entity (as referenced content)...8

Figure 4-5: Sequence Diagram illustrating the workflow to ingest an Intellectual
Entity (as managed content)...8

9 Changes

Update 1.1

In order to minimize requests needed to the back end store (e.g. Fedora) the Identifiers of the parent
have been added to the request paths. For e.g. retrieval of a File the corresponding Representation
and Intellectual Entity Identifiers are supplied via path variables.

Update 1.1.2

In order to accommodate SB's use case a list of technical metadata is used for update/retreival. The
list is defined in the data model as the Java class TechnicalMetadataList which can be
serialized/deseriliazed by the SCAPEMarshaller.

	1 Introduction
	2 Use Cases of the Connector API
	2.1 Loader application for batch ingest
	2.2 Request Intellectual Entities by the computation cluster
	2.3 Update Intellectual Entities with provenance information
	2.4 Partially fetching large scale files

	3 Storage Strategy
	4 Schematic views
	4.1 Fetching an Intellectual Entity
	4.2 Fetching a File
	4.3 Ingesting or Updating an Intellectual Entity

	5 Specification
	5.1 Authentication & Authorization
	5.2 Life cycle states
	5.3 HTTP Status codes
	5.4 HTTP endpoints
	5.4.1 Retrieve an Intellectual Entity
	5.4.2 Retrieve a metadata record
	5.4.3 Retrieve a set of Intellectual Entities
	5.4.4 Ingest an Intellectual Entity
	5.4.5 Ingest an Intellectual Entity asynchronously
	5.4.6 Update an Intellectual Entity
	5.4.7 Retrieve a version list for an Intellectual Entity
	5.4.8 Retrieve a File
	5.4.9 Create a File
	5.4.10 Retrieve named bit streams
	5.4.11 Search Intellectual Entities in a collection
	5.4.12 Search Representations in a collection
	5.4.13 Search Files in a collection
	5.4.14 Retrieve the lifecycle status of an entity
	5.4.15 Retrieve a Representation
	5.4.16 Create a new Representation
	5.4.17 Update a Representation of an Intellectual Entity
	5.4.18 Add a new Provenance recordPremis to a Representation
	5.4.19 Update the metadata of an Intellectual Entity

	6 Technology Compatibility Kit
	7 Glossary
	8 List of Figures
	9 Changes

