-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathengine_finetune.py
208 lines (158 loc) · 7.74 KB
/
engine_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# Partly revised by YZ @UCL&Moorfields
# --------------------------------------------------------
import math
import sys
import csv
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.data import Mixup
from timm.utils import accuracy
from typing import Iterable, Optional
import util.misc as misc
import util.lr_sched as lr_sched
from sklearn.metrics import accuracy_score, roc_auc_score, f1_score, average_precision_score,multilabel_confusion_matrix
from pycm import *
import matplotlib.pyplot as plt
import numpy as np
def misc_measures(confusion_matrix):
acc = []
sensitivity = []
specificity = []
precision = []
G = []
F1_score_2 = []
mcc_ = []
for i in range(1, confusion_matrix.shape[0]):
cm1=confusion_matrix[i]
acc.append(1.*(cm1[0,0]+cm1[1,1])/np.sum(cm1))
sensitivity_ = 1.*cm1[1,1]/(cm1[1,0]+cm1[1,1])
sensitivity.append(sensitivity_)
specificity_ = 1.*cm1[0,0]/(cm1[0,1]+cm1[0,0])
specificity.append(specificity_)
precision_ = 1.*cm1[1,1]/(cm1[1,1]+cm1[0,1])
precision.append(precision_)
G.append(np.sqrt(sensitivity_*specificity_))
F1_score_2.append(2*precision_*sensitivity_/(precision_+sensitivity_))
mcc = (cm1[0,0]*cm1[1,1]-cm1[0,1]*cm1[1,0])/np.sqrt((cm1[0,0]+cm1[0,1])*(cm1[0,0]+cm1[1,0])*(cm1[1,1]+cm1[1,0])*(cm1[1,1]+cm1[0,1]))
mcc_.append(mcc)
acc = np.array(acc).mean()
sensitivity = np.array(sensitivity).mean()
specificity = np.array(specificity).mean()
precision = np.array(precision).mean()
G = np.array(G).mean()
F1_score_2 = np.array(F1_score_2).mean()
mcc_ = np.array(mcc_).mean()
return acc, sensitivity, specificity, precision, G, F1_score_2, mcc_
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
mixup_fn: Optional[Mixup] = None, log_writer=None,
args=None):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
accum_iter = args.accum_iter
optimizer.zero_grad()
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
for data_iter_step, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with torch.cuda.amp.autocast():
outputs = model(samples)
loss = criterion(outputs, targets)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
loss /= accum_iter
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=False,
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar('loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', max_lr, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device, task, epoch, mode, num_class):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = misc.MetricLogger(delimiter=" ")
header = 'Test:'
if not os.path.exists(task):
os.makedirs(task)
prediction_decode_list = []
prediction_list = []
true_label_decode_list = []
true_label_onehot_list = []
# switch to evaluation mode
model.eval()
for batch in metric_logger.log_every(data_loader, 10, header):
images = batch[0]
target = batch[-1]
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
true_label=F.one_hot(target.to(torch.int64), num_classes=num_class)
# compute output
with torch.cuda.amp.autocast():
output = model(images)
loss = criterion(output, target)
prediction_softmax = nn.Softmax(dim=1)(output)
_,prediction_decode = torch.max(prediction_softmax, 1)
_,true_label_decode = torch.max(true_label, 1)
prediction_decode_list.extend(prediction_decode.cpu().detach().numpy())
true_label_decode_list.extend(true_label_decode.cpu().detach().numpy())
true_label_onehot_list.extend(true_label.cpu().detach().numpy())
prediction_list.extend(prediction_softmax.cpu().detach().numpy())
acc1,_ = accuracy(output, target, topk=(1,2))
batch_size = images.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
# gather the stats from all processes
true_label_decode_list = np.array(true_label_decode_list)
prediction_decode_list = np.array(prediction_decode_list)
confusion_matrix = multilabel_confusion_matrix(true_label_decode_list, prediction_decode_list,labels=[i for i in range(num_class)])
acc, sensitivity, specificity, precision, G, F1, mcc = misc_measures(confusion_matrix)
auc_roc = roc_auc_score(true_label_onehot_list, prediction_list,multi_class='ovr',average='macro')
auc_pr = average_precision_score(true_label_onehot_list, prediction_list,average='macro')
metric_logger.synchronize_between_processes()
print('Sklearn Metrics - Acc: {:.4f} AUC-roc: {:.4f} AUC-pr: {:.4f} F1-score: {:.4f} MCC: {:.4f}'.format(acc, auc_roc, auc_pr, F1, mcc))
results_path = task+'_metrics_{}.csv'.format(mode)
with open(results_path,mode='a',newline='',encoding='utf8') as cfa:
wf = csv.writer(cfa)
data2=[[acc,sensitivity,specificity,precision,auc_roc,auc_pr,F1,mcc,metric_logger.loss]]
for i in data2:
wf.writerow(i)
if mode=='test':
cm = ConfusionMatrix(actual_vector=true_label_decode_list, predict_vector=prediction_decode_list)
cm.plot(cmap=plt.cm.Blues,number_label=True,normalized=True,plot_lib="matplotlib")
plt.savefig(task+'confusion_matrix_test.jpg',dpi=600,bbox_inches ='tight')
return {k: meter.global_avg for k, meter in metric_logger.meters.items()},auc_roc