-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathweb_demo_gradio.py
263 lines (207 loc) · 8.22 KB
/
web_demo_gradio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from transformers.generation.utils import logger
import mdtex2html
import gradio as gr
import argparse
import warnings
import torch
import os
from queue import Queue
from threading import Thread
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers.generation.streamers import BaseStreamer
from typing import Optional
logger.setLevel("ERROR")
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", default="OpenMEDLab/PULSE-20bv5", type=str)
parser.add_argument("--gpu", default="0", type=str)
parser.add_argument("--input_max_len", default=1536, type=int)
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
num_gpus = len(args.gpu.split(","))
tokenizer = AutoTokenizer.from_pretrained(
args.model_name,
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
args.model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
).eval()
first_instruction = "Instructions: You are Helper, a large language model full of intelligence. Respond conversationally."
model_type_prompt_map = {
'医学知识QA': "若我是位患者,你是位资深医生,能够协助解答我的问题和疑虑,请为我提供回复。\n",
'在线问诊': "假设你是一位经验丰富并且非常谨慎的的医生,会通过和患者进行多次的问答来明确自己的猜测,并且每次只能提一个问题,最终只会推荐相应的检验、检查、就诊科室以及疑似的诊断,请回复患者的提问:\n",
'Base': "",
}
"""Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>"+line
text = "".join(lines)
return text
class GradioStreamer(BaseStreamer):
def __init__(
self,
timeout: Optional[float] = None
):
self.token_queue = Queue()
self.stop_signal = None
self.timeout = timeout
def put(self, value):
list_value = value.tolist()
if type(list_value[0]) == int:
self.token_queue.put(list_value, timeout=self.timeout)
def end(self):
self.token_queue.put(self.stop_signal, timeout=self.timeout)
def __iter__(self):
return self
def __next__(self):
value = self.token_queue.get(timeout=self.timeout)
if value == self.stop_signal:
raise StopIteration()
else:
return value
def predict(
input, chatbot,
model_type,
gen_max_length,
top_p, top_k, temperature,
seed,
history
):
seed = int(seed)
gen_max_length = int(gen_max_length)
query = parse_text(input)
assert len(query) > 0, "输入为长度为0"
chatbot.append((query, None))
history.append((query, None))
input_ids = tokenizer(
first_instruction,
).input_ids + [tokenizer.convert_tokens_to_ids("</s>")]
for i, (old_query, response) in enumerate(history):
if i == 0:
old_query = model_type_prompt_map[model_type] + old_query
input_ids += tokenizer("User: " + old_query).input_ids
input_ids += [tokenizer.convert_tokens_to_ids("</s>")]
if response is not None:
input_ids += tokenizer("Helper: " + response).input_ids
input_ids += [tokenizer.convert_tokens_to_ids("</s>")]
# 引导启动
input_ids += tokenizer("Helper: ").input_ids[:1]
model_inputs = tokenizer.pad(
{"input_ids": [input_ids]},
return_tensors="pt",
)
inputs = model_inputs.input_ids[:,-args.input_max_len:]
attention_mask = model_inputs.attention_mask[:,-args.input_max_len:]
max_length = inputs.shape[1] + gen_max_length
min_length = inputs.shape[1] + 1 # add eos
streamer = GradioStreamer() # type: ignore
if seed != -1:
torch.manual_seed(seed)
thread = Thread(target=model.generate, kwargs=dict(
inputs=inputs.cuda(),
attention_mask=attention_mask.cuda(),
max_length=max_length,
min_length=min_length,
do_sample=True,
top_k=top_k,
top_p=top_p,
temperature=temperature,
num_return_sequences=1,
eos_token_id=tokenizer.convert_tokens_to_ids("</s>"),
streamer=streamer,
))
thread.start()
# 起始
output_tokens = list(tokenizer("Helper: ").input_ids[:1])
for token in streamer:
if token[0] not in {
tokenizer.convert_tokens_to_ids("</s>"),
tokenizer.convert_tokens_to_ids("<pad>"),
}:
output_tokens += token
otext = tokenizer.decode(output_tokens, skip_special_tokens=False)
otext = otext.strip()
if otext[:3] == "<s>":
otext = otext[3:]
otext = otext.strip()
if len(otext) > len("Helper: "):
response = otext[len("Helper: "): ]
chatbot[-1] = (query, parse_text(response))
history[-1] = (query, response)
yield chatbot, history
def reset_user_input():
return gr.update(value='')
def reset_state():
return [], []
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">欢迎使用 <|modelname|> </h1>""")
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot().style(height=530)
with gr.Column(scale=1):
model_type = gr.Radio(
['医学知识QA','在线问诊','Base'],
label="Model Type",
value='医学知识QA',
interactive=True
)
gen_max_length = gr.Slider(
1, 512, value=512, step=1.0, label="Generate Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.2, step=0.01,
label="Top P", interactive=True)
top_k = gr.Slider(1, 50, value=9, step=1.0,
label="Top K", interactive=True)
temperature = gr.Slider(
0, 1, value=0.7, step=0.01, label="Temperature", interactive=True)
seed = gr.Number(label='Seed', value=-1)
emptyBtn = gr.Button("Clear History")
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=4).style(
container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
history = gr.State([]) # (message, bot_message)
submitBtn.click(predict, [user_input, chatbot, model_type, gen_max_length, top_p, top_k, temperature, seed, history], [chatbot, history],
show_progress=True)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
demo.queue().launch(share=False, inbrowser=True)