Skip to content

Latest commit

 

History

History
137 lines (104 loc) · 5.79 KB

QUBIQ2021.md

File metadata and controls

137 lines (104 loc) · 5.79 KB

QUBIQ2021

Dataset Information

The Quantification of Uncertainties in Biomedical Image Quantification Challenge 2021 (QUBIQ2021) focuses on the quantification of uncertainties in biomedical imaging, offering data for semantic segmentation that includes both 2D and 3D MRI and CT datasets. These datasets encompass segmentation tasks for prostate cancer, brain growth regions, brain tumors, kidneys, pancreas, and pancreatic lesions. This text primarily discusses the 3D data from the challenge dataset, all of which are CT datasets, including segmentation of two parts: the pancreas and pancreatic lesions.

The goal of QUBIQ2021 is to benchmark segmentation algorithms that return uncertainty estimates (probability scores, areas of variation, etc.) in medical imaging segmentation tasks. Specifically, the challenge compares algorithm outputs with the uncertainties attributed to the local delineations of various image structures related to diagnosis, such as lesions or anatomical features, by human annotators. To quantify the variability of boundary delineations, a group of experts annotated structures in several CT and MR image datasets multiple times.

Dataset Meta Information

Dimensions Modality Task Type Anatomical Structures Anatomical Area Number of Categories Data Volume File Format
3D CT Semantic Segmentation Pancreas, Pancreatic Lesions abdomen 2 90 .nii.gz

Resolution Details

Dataset Statistics spacing (mm) size
min (1, 1, 1) (36, 512, 512)
median (1, 1, 1) (53, 512, 512)
max (1, 1, 1) (194, 512, 512)

Number of two-dimensional slices in the data set: 31744 (based on statistics of 62 cases in the training set)

Label Information Statistics

Metric Pancreas Pancreatic Lesions
Case Count 40 22
Coverage 64.52% 35.48%
Min Volume (cm³) 6.17 1.27
Median Volume (cm³) 19.455 6.955
Max Volume (cm³) 74.08 27.07

Visualization

Pancreas.

Pancreatic Lesions.

File Structure

The organizational structure of the data set includes two main folders: training set and validation set. The sub-folder within each pancreatic lesion segmentation task is further divided into multiple case folders, which contain related images and their corresponding segmentation results.

Dataset
│
├── training_data_v3_QC
│   ├── pancreas
│   │   ├── case1-1
│   │   │   ├── image.nii.gz
│   │   │   ├── task01_seg01.nii.gz
│   │   │   ├── ...
│   │   ├── case1-2
│   │   │   ├── image.nii.gz
│   │   │   ├── task01_seg01.nii.gz
│   │   │   ├── ...
│   ├── pancreatic-lesion
│   │   ├── case1-1
│   │   │   ├── image.nii.gz
│   │   │   ├── task01_seg01.nii.gz
│   │   │   ├── ...
│   │   ├── case1-2
│   │   │   ├── image.nii.gz
│   │   │   ├── task01_seg01.nii.gz
│   │   │   ├── ...
├── validation_data_qubiq2021_QC
│   ├── pancreas
│   │   ├── case13-1
│   │   │   ├── image.nii.gz
│   │   │   ├── task01_seg01.nii.gz
│   │   │   ├── ...
│   │   ├── case13-2
│   │   │   ├── image.nii.gz
│   │   │   ├── task01_seg01.nii.gz
│   │   │   ├── ...
│   ├── pancreatic-lesion
│   │   ├── case13-1
│   │   │   ├── image.nii.gz
│   │   │   ├── task01_seg01.nii.gz
│   │   │   ├── ...
│   │   ├── case13-2
│   │   │   ├── image.nii.gz
│   │   │   ├── task01_seg01.nii.gz
│   │   │   ├── ...

Authors and Institutions

Bjoern Menze (University of Zurich, Switzerland)

Leo Joskowicz (Hebrew University of Jerusalem, Israel)

Spyridon Bakas (University of Pennsylvania, USA)

Andras Jakab (University of Zurich, Switzerland)

Ender Konukoglu (University of Zurich, Switzerland)

Anton Becker (University Hospital Zurich, Switzerland)

Source Information

Official Website: https://qubiq21.grand-challenge.org/QUBIQ2021/

Download Link: https://qubiq21.grand-challenge.org/participation/

Article Address: https://link.springer.com/chapter/10.1007/978-3-031-08999-2_9

Publication Date: 2021-08

Citation

@inproceedings{vzukovec2021modeling,
  title={Modeling Multi-annotator Uncertainty as Multi-class Segmentation Problem},
  author={{\v{Z}}ukovec, Martin and Dular, Lara and {\v{S}}piclin, {\v{Z}}iga},
  booktitle={International MICCAI Brainlesion Workshop},
  pages={112--123},
  year={2021},
  organization={Springer}
}

Original introduction article is here.