diff --git a/joss.06104/10.21105.joss.06104.crossref.xml b/joss.06104/10.21105.joss.06104.crossref.xml
new file mode 100644
index 0000000000..695144a6c0
--- /dev/null
+++ b/joss.06104/10.21105.joss.06104.crossref.xml
@@ -0,0 +1,634 @@
+
+
+
+ 20240810110440-04af05f4317957dbf6fa07f5ca5c97402c02495f
+ 20240810110440
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org
+
+
+
+
+ 08
+ 2024
+
+
+ 9
+
+ 100
+
+
+
+ cortecs: A Python package for compressing
+opacities
+
+
+
+ Arjun B.
+ Savel
+ https://orcid.org/0000-0002-2454-768X
+
+
+ Megan
+ Bedell
+ https://orcid.org/0000-0001-9907-7742
+
+
+ Eliza M.-R.
+ Kempton
+ https://orcid.org/0000-0002-1337-9051
+
+
+
+ 08
+ 10
+ 2024
+
+
+ 6104
+
+
+ 10.21105/joss.06104
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.5281/zenodo.13208759
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/6104
+
+
+
+ 10.21105/joss.06104
+ https://joss.theoj.org/papers/10.21105/joss.06104
+
+
+ https://joss.theoj.org/papers/10.21105/joss.06104.pdf
+
+
+
+
+
+ Including all the lines: Data releases for
+spectra and opacities
+ Kurucz
+ Canadian Journal of Physics
+ 9
+ 95
+ 10.1139/cjp-2016-0794
+ 2017
+ Kurucz, R. L. (2017). Including all
+the lines: Data releases for spectra and opacities. Canadian Journal of
+Physics, 95(9), 825–827.
+https://doi.org/10.1139/cjp-2016-0794
+
+
+ Atmospheric dynamics of hot giant planets and
+brown dwarfs
+ Showman
+ Space Science Reviews
+ 216
+ 10.1007/s11214-020-00758-8
+ 2020
+ Showman, A. P., Tan, X., &
+Parmentier, V. (2020). Atmospheric dynamics of hot giant planets and
+brown dwarfs. Space Science Reviews, 216, 1–83.
+https://doi.org/10.1007/s11214-020-00758-8
+
+
+ A comparison of exoplanet spectroscopic
+retrieval tools
+ Barstow
+ Monthly Notices of the Royal Astronomical
+Society
+ 4
+ 493
+ 10.1093/mnras/staa548
+ 2020
+ Barstow, J. K., Changeat, Q.,
+Garland, R., Line, M. R., Rocchetto, M., & Waldmann, I. P. (2020). A
+comparison of exoplanet spectroscopic retrieval tools. Monthly Notices
+of the Royal Astronomical Society, 493(4), 4884–4909.
+https://doi.org/10.1093/mnras/staa548
+
+
+ A solar c/o and sub-solar metallicity in a
+hot jupiter atmosphere
+ Line
+ Nature
+ 7882
+ 598
+ 10.1038/s41586-021-03912-6
+ 2021
+ Line, M. R., Brogi, M., Bean, J. L.,
+Gandhi, S., Zalesky, J., Parmentier, V., Smith, P., Mace, G. N.,
+Mansfield, M., Kempton, E. M.-R., & others. (2021). A solar c/o and
+sub-solar metallicity in a hot jupiter atmosphere. Nature, 598(7882),
+580–584.
+https://doi.org/10.1038/s41586-021-03912-6
+
+
+ The ExoMol database: Molecular line lists for
+exoplanet and other hot atmospheres
+ Tennyson
+ Journal of Molecular
+Spectroscopy
+ 327
+ 10.1016/j.jms.2016.05.002
+ 2016
+ Tennyson, J., Yurchenko, S. N.,
+Al-Refaie, A. F., Barton, E. J., Chubb, K. L., Coles, P. A.,
+Diamantopoulou, S., Gorman, M. N., Hill, C., Lam, A. Z., & others.
+(2016). The ExoMol database: Molecular line lists for exoplanet and
+other hot atmospheres. Journal of Molecular Spectroscopy, 327, 73–94.
+https://doi.org/10.1016/j.jms.2016.05.002
+
+
+ Confirmation of water absorption in the
+thermal emission spectrum of the hot jupiter WASP-77Ab with
+HST/WFC3
+ Mansfield
+ The Astronomical Journal
+ 6
+ 163
+ 10.3847/1538-3881/ac658f
+ 2022
+ Mansfield, M., Wiser, L., Stevenson,
+K. B., Smith, P., Line, M. R., Bean, J. L., Fortney, J. J., Parmentier,
+V., Kempton, E. M.-R., Arcangeli, J., & others. (2022). Confirmation
+of water absorption in the thermal emission spectrum of the hot jupiter
+WASP-77Ab with HST/WFC3. The Astronomical Journal, 163(6), 261.
+https://doi.org/10.3847/1538-3881/ac658f
+
+
+ Confirmation of Subsolar Metallicity for
+WASP-77Ab from JWST Thermal Emission Spectroscopy
+ August
+ Astrophysical Journal,
+Letters
+ 2
+ 953
+ 10.3847/2041-8213/ace828
+ 2023
+ August, P. C., Bean, J. L., Zhang,
+M., Lunine, J., Xue, Q., Line, M., & Smith, P. C. B. (2023).
+Confirmation of Subsolar Metallicity for WASP-77Ab from JWST Thermal
+Emission Spectroscopy. Astrophysical Journal, Letters, 953(2), L24.
+https://doi.org/10.3847/2041-8213/ace828
+
+
+ X-ray spectral modelling of the AGN obscuring
+region in the CDFS: Bayesian model selection and
+catalogue
+ Buchner
+ Astronomy & Astrophysics
+ 564
+ 10.1051/0004-6361/201322971
+ 2014
+ Buchner, J., Georgakakis, A., Nandra,
+K., Hsu, L., Rangel, C., Brightman, M., Merloni, A., Salvato, M.,
+Donley, J., & Kocevski, D. (2014). X-ray spectral modelling of the
+AGN obscuring region in the CDFS: Bayesian model selection and
+catalogue. Astronomy & Astrophysics, 564, A125.
+https://doi.org/10.1051/0004-6361/201322971
+
+
+ A systematic retrieval analysis of secondary
+eclipse spectra. I. A comparison of atmospheric retrieval
+techniques
+ Line
+ The Astrophysical Journal
+ 2
+ 775
+ 10.1088/0004-637X/775/2/137
+ 2013
+ Line, M. R., Wolf, A. S., Zhang, X.,
+Knutson, H., Kammer, J. A., Ellison, E., Deroo, P., Crisp, D., &
+Yung, Y. L. (2013). A systematic retrieval analysis of secondary eclipse
+spectra. I. A comparison of atmospheric retrieval techniques. The
+Astrophysical Journal, 775(2), 137.
+https://doi.org/10.1088/0004-637X/775/2/137
+
+
+ Principal component analysis: A review and
+recent developments
+ Jolliffe
+ Philosophical transactions of the royal
+society A: Mathematical, Physical and Engineering
+Sciences
+ 2065
+ 374
+ 10.1098/rsta.2015.0202
+ 2016
+ Jolliffe, I. T., & Cadima, J.
+(2016). Principal component analysis: A review and recent developments.
+Philosophical Transactions of the Royal Society A: Mathematical,
+Physical and Engineering Sciences, 374(2065), 20150202.
+https://doi.org/10.1098/rsta.2015.0202
+
+
+ The HITRAN2016 molecular spectroscopic
+database
+ Gordon
+ Journal of Quantitative Spectroscopy and
+Radiative Transfer
+ 203
+ 10.1016/j.jqsrt.2017.06.038
+ 2017
+ Gordon, I. E., Rothman, L. S., Hill,
+C., Kochanov, R. V., Tan, Y., Bernath, P. F., Birk, M., Boudon, V.,
+Campargue, A., Chance, K., & others. (2017). The HITRAN2016
+molecular spectroscopic database. Journal of Quantitative Spectroscopy
+and Radiative Transfer, 203, 3–69.
+https://doi.org/10.1016/j.jqsrt.2017.06.038
+
+
+ HITEMP, the high-temperature molecular
+spectroscopic database
+ Rothman
+ Journal of Quantitative Spectroscopy and
+Radiative Transfer
+ 15
+ 111
+ 10.1016/j.jqsrt.2010.05.001
+ 2010
+ Rothman, L. S., Gordon, I., Barber,
+R., Dothe, H., Gamache, R. R., Goldman, A., Perevalov, V., Tashkun, S.,
+& Tennyson, J. (2010). HITEMP, the high-temperature molecular
+spectroscopic database. Journal of Quantitative Spectroscopy and
+Radiative Transfer, 111(15), 2139–2150.
+https://doi.org/10.1016/j.jqsrt.2010.05.001
+
+
+ Review of deep learning: Concepts, CNN
+architectures, challenges, applications, future
+directions
+ Alzubaidi
+ Journal of big Data
+ 8
+ 10.1186/s40537-021-00444-8
+ 2021
+ Alzubaidi, L., Zhang, J., Humaidi, A.
+J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamarı́a, J., Fadhel, M.
+A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning:
+Concepts, CNN architectures, challenges, applications, future
+directions. Journal of Big Data, 8, 1–74.
+https://doi.org/10.1186/s40537-021-00444-8
+
+
+ JAX: Composable transformations of
+Python+NumPy programs
+ Bradbury
+ 2018
+ Bradbury, J., Frostig, R., Hawkins,
+P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A.,
+VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX:
+Composable transformations of Python+NumPy programs (Version 0.3.13).
+http://github.com/google/jax
+
+
+ 3D radiative transfer for exoplanet
+atmospheres. gCMCRT: A GPU-accelerated MCRT code
+ Lee
+ The Astrophysical Journal
+ 2
+ 929
+ 10.3847/1538-4357/ac61d6
+ 2022
+ Lee, E. K., Wardenier, J. P.,
+Prinoth, B., Parmentier, V., Grimm, S. L., Baeyens, R., Carone, L.,
+Christie, D., Deitrick, R., Kitzmann, D., & others. (2022). 3D
+radiative transfer for exoplanet atmospheres. gCMCRT: A GPU-accelerated
+MCRT code. The Astrophysical Journal, 929(2), 180.
+https://doi.org/10.3847/1538-4357/ac61d6
+
+
+ Ooc_cuDNN: Accommodating convolutional neural
+networks over GPU memory capacity
+ Ito
+ 2017 IEEE international conference on big
+data (big data)
+ 10.1109/BigData.2017.8257926
+ 2017
+ Ito, Y., Matsumiya, R., & Endo,
+T. (2017). Ooc_cuDNN: Accommodating convolutional neural networks over
+GPU memory capacity. 2017 IEEE International Conference on Big Data (Big
+Data), 183–192.
+https://doi.org/10.1109/BigData.2017.8257926
+
+
+ Corner.py: Scatterplot matrices in
+python
+ Foreman-Mackey
+ The Journal of Open Source
+Software
+ 2
+ 1
+ 10.21105/joss.00024
+ 2016
+ Foreman-Mackey, D. (2016). Corner.py:
+Scatterplot matrices in python. The Journal of Open Source Software,
+1(2), 24. https://doi.org/10.21105/joss.00024
+
+
+ IGRINS at the discovery channel telescope and
+gemini south
+ Mace
+ Ground-based and airborne instrumentation for
+astronomy VII
+ 10702
+ 10.1117/12.2312345
+ 2018
+ Mace, G., Sokal, K., Lee, J.-J., Oh,
+H., Park, C., Lee, H., Good, J., MacQueen, P., Oh, J. S., Kaplan, K.,
+& others. (2018). IGRINS at the discovery channel telescope and
+gemini south. Ground-Based and Airborne Instrumentation for Astronomy
+VII, 10702, 204–221.
+https://doi.org/10.1117/12.2312345
+
+
+ ESPRESSO at VLT-on-sky performance and first
+results
+ Pepe
+ Astronomy & Astrophysics
+ 645
+ 10.1051/0004-6361/202038306
+ 2021
+ Pepe, F., Cristiani, S., Rebolo, R.,
+Santos, N., Dekker, H., Cabral, A., Di Marcantonio, P., Figueira, P.,
+Curto, G. L., Lovis, C., & others. (2021). ESPRESSO at VLT-on-sky
+performance and first results. Astronomy & Astrophysics, 645, A96.
+https://doi.org/10.1051/0004-6361/202038306
+
+
+ On-sky commissioning of MAROON-x: A new
+precision radial velocity spectrograph for gemini north
+ Seifahrt
+ Ground-based and airborne instrumentation for
+astronomy VIII
+ 11447
+ 10.1117/12.2561564
+ 2020
+ Seifahrt, A., Bean, J. L., Stürmer,
+J., Kasper, D., Gers, L., Schwab, C., Zechmeister, M., Stefánsson, G.,
+Montet, B., Dos Santos, L. A., & others. (2020). On-sky
+commissioning of MAROON-x: A new precision radial velocity spectrograph
+for gemini north. Ground-Based and Airborne Instrumentation for
+Astronomy VIII, 11447, 305–325.
+https://doi.org/10.1117/12.2561564
+
+
+ A temperature and abundance retrieval method
+for exoplanet atmospheres
+ Madhusudhan
+ The Astrophysical Journal
+ 1
+ 707
+ 10.1088/0004-637X/707/1/24
+ 2009
+ Madhusudhan, N., & Seager, S.
+(2009). A temperature and abundance retrieval method for exoplanet
+atmospheres. The Astrophysical Journal, 707(1), 24.
+https://doi.org/10.1088/0004-637X/707/1/24
+
+
+ Modelling the effect of 3D temperature and
+chemistry on the cross-correlation signal of transiting ultra-hot
+Jupiters: a study of five chemical species on WASP-76b
+ Wardenier
+ Monthly Notices of the Royal Astronomical
+Society
+ 4
+ 525
+ 10.1093/mnras/stad2586
+ 0035-8711
+ 2023
+ Wardenier, J. P., Parmentier, V.,
+Line, M. R., & Lee, E. K. H. (2023). Modelling the effect of 3D
+temperature and chemistry on the cross-correlation signal of transiting
+ultra-hot Jupiters: a study of five chemical species on WASP-76b.
+Monthly Notices of the Royal Astronomical Society, 525(4), 4942–4961.
+https://doi.org/10.1093/mnras/stad2586
+
+
+ Magnetic effects and 3D structure in
+theoretical high-resolution transmission spectra of ultrahot jupiters:
+The case of WASP-76b
+ Beltz
+ The Astronomical Journal
+ 6
+ 165
+ 10.3847/1538-3881/acd24d
+ 2023
+ Beltz, H., Rauscher, E., Kempton, E.
+M.-R., Malsky, I., & Savel, A. B. (2023). Magnetic effects and 3D
+structure in theoretical high-resolution transmission spectra of
+ultrahot jupiters: The case of WASP-76b. The Astronomical Journal,
+165(6), 257.
+https://doi.org/10.3847/1538-3881/acd24d
+
+
+ No umbrella needed: Confronting the
+hypothesis of iron rain on WASP-76b with post-processed general
+circulation models
+ Savel
+ The Astrophysical Journal
+ 1
+ 926
+ 10.3847/1538-4357/ac423f
+ 2022
+ Savel, A. B., Kempton, E. M.-R.,
+Malik, M., Komacek, T. D., Bean, J. L., May, E. M., Stevenson, K. B.,
+Mansfield, M., & Rauscher, E. (2022). No umbrella needed:
+Confronting the hypothesis of iron rain on WASP-76b with post-processed
+general circulation models. The Astrophysical Journal, 926(1), 85.
+https://doi.org/10.3847/1538-4357/ac423f
+
+
+ Time-resolved transmission spectroscopy of
+the ultra-hot Jupiter WASP-189 b
+ Prinoth
+ Astronomy and Astrophysics
+ 678
+ 10.1051/0004-6361/202347262
+ 2023
+ Prinoth, B., Hoeijmakers, H. J.,
+Pelletier, S., Kitzmann, D., Morris, B. M., Seifahrt, A., Kasper, D.,
+Korhonen, H. H., Burheim, M., Bean, J. L., Benneke, B., Borsato, N. W.,
+Brady, M., Grimm, S. L., Luque, R., Stürmer, J., & Thorsbro, B.
+(2023). Time-resolved transmission spectroscopy of the ultra-hot Jupiter
+WASP-189 b. Astronomy and Astrophysics, 678, A182.
+https://doi.org/10.1051/0004-6361/202347262
+
+
+ ExoMol molecular line lists–XXXV. A
+rotation-vibration line list for hot ammonia
+ Coles
+ Monthly Notices of the Royal Astronomical
+Society
+ 4
+ 490
+ 10.1093/mnras/stz2778
+ 2019
+ Coles, P. A., Yurchenko, S. N., &
+Tennyson, J. (2019). ExoMol molecular line lists–XXXV. A
+rotation-vibration line list for hot ammonia. Monthly Notices of the
+Royal Astronomical Society, 490(4), 4638–4647.
+https://doi.org/10.1093/mnras/stz2778
+
+
+ Update of the HITRAN collision-induced
+absorption section
+ Karman
+ Icarus
+ 328
+ 10.1016/j.icarus.2019.02.034
+ 2019
+ Karman, T., Gordon, I. E., Der
+Avoird, A. van, Baranov, Y. I., Boulet, C., Drouin, B. J., Groenenboom,
+G. C., Gustafsson, M., Hartmann, J.-M., Kurucz, R. L., & others.
+(2019). Update of the HITRAN collision-induced absorption section.
+Icarus, 328, 160–175.
+https://doi.org/10.1016/j.icarus.2019.02.034
+
+
+ ExoMol line lists–III. An improved hot
+rotation-vibration line list for HCN and HNC
+ Barber
+ Monthly Notices of the Royal Astronomical
+Society
+ 2
+ 437
+ 10.1093/mnras/stt2011
+ 2014
+ Barber, R., Strange, J., Hill, C.,
+Polyansky, O., Mellau, G. C., Yurchenko, S., & Tennyson, J. (2014).
+ExoMol line lists–III. An improved hot rotation-vibration line list for
+HCN and HNC. Monthly Notices of the Royal Astronomical Society, 437(2),
+1828–1835. https://doi.org/10.1093/mnras/stt2011
+
+
+ ExoMol molecular line lists–XVI. The
+rotation–vibration spectrum of hot H2S
+ Azzam
+ Monthly Notices of the Royal Astronomical
+Society
+ 4
+ 460
+ 10.1093/mnras/stw1133
+ 2016
+ Azzam, A. A., Tennyson, J.,
+Yurchenko, S. N., & Naumenko, O. V. (2016). ExoMol molecular line
+lists–XVI. The rotation–vibration spectrum of hot H2S. Monthly Notices
+of the Royal Astronomical Society, 460(4), 4063–4074.
+https://doi.org/10.1093/mnras/stw1133
+
+
+ An accurate, extensive, and practical line
+list of methane for the HITEMP database
+ Hargreaves
+ The Astrophysical Journal Supplement
+Series
+ 2
+ 247
+ 10.3847/1538-4365/ab7a1a
+ 2020
+ Hargreaves, R. J., Gordon, I. E.,
+Rey, M., Nikitin, A. V., Tyuterev, V. G., Kochanov, R. V., &
+Rothman, L. S. (2020). An accurate, extensive, and practical line list
+of methane for the HITEMP database. The Astrophysical Journal Supplement
+Series, 247(2), 55.
+https://doi.org/10.3847/1538-4365/ab7a1a
+
+
+ Retrieval survey of metals in six ultrahot
+jupiters: Trends in chemistry, rain-out, ionization, and atmospheric
+dynamics
+ Gandhi
+ The Astronomical Journal
+ 6
+ 165
+ 10.3847/1538-3881/accd65
+ 2023
+ Gandhi, S., Kesseli, A., Zhang, Y.,
+Louca, A., Snellen, I., Brogi, M., Miguel, Y., Casasayas-Barris, N.,
+Pelletier, S., Landman, R., & others. (2023). Retrieval survey of
+metals in six ultrahot jupiters: Trends in chemistry, rain-out,
+ionization, and atmospheric dynamics. The Astronomical Journal, 165(6),
+242. https://doi.org/10.3847/1538-3881/accd65
+
+
+ High-resolution atmospheric retrievals of
+WASP-121b transmission spectroscopy with ESPRESSO: Consistent relative
+abundance constraints across multiple epochs and
+instruments
+ Maguire
+ Monthly Notices of the Royal Astronomical
+Society
+ 1
+ 519
+ 10.1093/mnras/stac3388
+ 2023
+ Maguire, C., Gibson, N. P., Nugroho,
+S. K., Ramkumar, S., Fortune, M., Merritt, S. R., & Mooij, E. de.
+(2023). High-resolution atmospheric retrievals of WASP-121b transmission
+spectroscopy with ESPRESSO: Consistent relative abundance constraints
+across multiple epochs and instruments. Monthly Notices of the Royal
+Astronomical Society, 519(1), 1030–1048.
+https://doi.org/10.1093/mnras/stac3388
+
+
+ Keras
+ Chollet
+ 2015
+ Chollet, F. (2015). Keras.
+https://keras.io.
+
+
+ ExoMol molecular line lists XXX: A complete
+high-accuracy line list for water
+ Polyansky
+ Monthly Notices of the Royal Astronomical
+Society
+ 2
+ 480
+ 10.1093/mnras/sty1877
+ 2018
+ Polyansky, O. L., Kyuberis, A. A.,
+Zobov, N. F., Tennyson, J., Yurchenko, S. N., & Lodi, L. (2018).
+ExoMol molecular line lists XXX: A complete high-accuracy line list for
+water. Monthly Notices of the Royal Astronomical Society, 480(2),
+2597–2608. https://doi.org/10.1093/mnras/sty1877
+
+
+
+
+
+
diff --git a/joss.06104/10.21105.joss.06104.pdf b/joss.06104/10.21105.joss.06104.pdf
new file mode 100644
index 0000000000..342d8ae633
Binary files /dev/null and b/joss.06104/10.21105.joss.06104.pdf differ
diff --git a/joss.06104/paper.jats/10.21105.joss.06104.jats b/joss.06104/paper.jats/10.21105.joss.06104.jats
new file mode 100644
index 0000000000..2293b61d03
--- /dev/null
+++ b/joss.06104/paper.jats/10.21105.joss.06104.jats
@@ -0,0 +1,1324 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+6104
+10.21105/joss.06104
+
+cortecs: A Python package for compressing
+opacities
+
+
+
+https://orcid.org/0000-0002-2454-768X
+
+Savel
+Arjun B.
+
+
+
+*
+
+
+https://orcid.org/0000-0001-9907-7742
+
+Bedell
+Megan
+
+
+
+
+https://orcid.org/0000-0002-1337-9051
+
+Kempton
+Eliza M.-R.
+
+
+
+
+
+Astronomy Department, University of Maryland, College Park,
+4296 Stadium Dr., College Park, MD 207842 USA
+
+
+
+
+Flatiron Institute, Simons Foundation, 162 Fifth Avenue,
+New York, NY 10010, USA
+
+
+
+
+* E-mail:
+
+
+26
+8
+2023
+
+9
+100
+6104
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2022
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+Python
+astronomy
+radiative transfer
+
+
+
+
+
+ Summary
+
The absorption and emission of light by exoplanet atmospheres
+ encode details of atmospheric composition, temperature, and dynamics.
+ Fundamentally, simulating these processes requires detailed knowledge
+ of the opacity of gases within an atmosphere. When modeling broad
+ wavelength ranges at high resolution, such opacity data, for even a
+ single gas, can take up multiple gigabytes of system random-access
+ memory (RAM). This aspect can be a limiting factor when considering
+ the number of gases to include in a simulation, the sampling strategy
+ used for inference, or even the architecture of the system used for
+ calculations. Here, we present cortecs, a
+ Python tool for compressing opacity data.
+ cortecs provides flexible methods for fitting
+ the temperature, pressure, and wavelength dependencies of opacity data
+ and for evaluating the opacity with accelerated, GPU-friendly methods.
+ The package is actively developed on GitHub
+ (https://github.com/arjunsavel/cortecs),
+ and it is available for download with pip and
+ conda.
+
+
+ Statement of need
+
Observations with the latest high-resolution spectrographs (e.g.,
+ IGRINS / Gemini South, ESPRESSO / VLT, MAROON-X / Gemini North; Mace
+ et al.
+ (2018);
+ Seifahrt et al.
+ (2020);
+ Pepe et al.
+ (2021))
+ have motivated RAM-intensive simulations of exoplanet atmospheres at
+ high spectral resolution. cortecs enables these
+ simulations with more gases and on a broader range of computing
+ architectures by compressing opacity data.
+
Broadly, generating a spectrum to compare against recent
+ high-resolution data requires solving the radiative transfer equation
+ over tens of thousands of wavelength points (e.g.,
+ Beltz
+ et al., 2023;
+ Gandhi
+ et al., 2023;
+ Line
+ et al., 2021;
+ Maguire
+ et al., 2023;
+ Prinoth
+ et al., 2023;
+ Savel
+ et al., 2022;
+ Wardenier
+ et al., 2023). To decrease computational runtime, some codes
+ have parallelized the problem on GPUs (e.g.,
+ Lee
+ et al., 2022;
+ Line
+ et al., 2021). However, GPUs cannot in general hold large
+ amounts of data in their video random-access memory (VRAM) (e.g.,
+ Ito
+ et al., 2017); only the cutting-edge, most expensive GPUs are
+ equipped with VRAM in excess of 30 GB (such as the NVIDIA A100 or
+ H100). RAM and VRAM management is therefore a clear concern when
+ producing high-resolution spectra.
+
How do we decrease the RAM footprint of these calculations? By far
+ the largest contributor to the RAM footprint, at least as measured on
+ disk, is the opacity data. For instance, the opacity data for a single
+ gas species across the wavelength range of the Immersion GRating
+ INfrared Spectrometer spectrograph (IGRINS,
+ Mace
+ et al., 2018) takes up 2.1 GB of non-volatile memory (i.e., the
+ file size is 2.1 GB) at float64 precision and
+ at a resolving power of 400,000 (as used in Line et al.
+ (2021);
+ with 39 temperature points and 18 pressure points, using, e.g., the
+ Polyansky et al.
+ (2018)
+ water opacity tables). In many cases, not all wavelengths need to be
+ loaded, e.g. if the user is down-sampling the resolution of their
+ opacity function. Even so, it stands to reason that decreasing the
+ amount of RAM/VRAM consumed by opacity data would strongly decrease
+ the total amount of RAM/VRAM consumed by the radiative transfer
+ calculation.
+
One solution is to isolate redundancy: While the wavelength
+ dependence of opacity is sharp for many gases, the temperature and
+ pressure dependencies are generally smooth and similar across
+ wavelengths (e.g.,
+ Barber
+ et al., 2014;
+ Coles
+ et al., 2019;
+ Polyansky
+ et al., 2018). This feature implies that the opacity data
+ should be compressible without significant loss of accuracy at the
+ spectrum level.
+
While our benchmark case (see the Benchmark section below)
+ demonstrates the applicability of cortecs to
+ high-resolution opacity functions of molecular gases, the package is
+ general and the compression/decompression steps of the package can be
+ applied to any opacity data in HDF5 format that has pressure and
+ temperature dependence, such as the opacity of neutral atoms or ions.
+ Our benchmark only shows, however, that the amounts of error from our
+ compression technique is reasonable in the spectra of exoplanet
+ atmospheres at pressures greater than a microbar for a single
+ composition. This caveat is important to note for a few reasons:
+
+
+
Based on error propagation, the error in the opacity function
+ may be magnified in the spectrum based on the number of cells that
+ are traced during radiative transfer. The number of spatial cells
+ used to simulate exoplanet atmospheres (in our case, 100) is small
+ enough that the cortecs error is not large
+ at the spectrum level.
+
+
+
Exoplanet atmospheres are often modeled in hydrostatic
+ equilibrium at pressures greater than a microbar (e.g.,
+ Barstow
+ et al., 2020;
+ Showman
+ et al., 2020). When modeling atmospheres in hydrostatic
+ equilibrium, the final spectrum essentially maps to the altitude
+ at which the gas becomes optically thick. If
+ cortecs-compressed opacities were used to
+ model an optically thin gas over large path lengths, however, then
+ smaller opacities would be more important.
+ cortecs tends to perform worse at modeling
+ opacity functions that jump from very low to very high opacities,
+ so it may not perform optimally in these optically thin
+ scenarios.
+
+
+
The program may perform poorly for opacity functions with sharp
+ features in their temperature–pressure dependence (e.g., the Lyman
+ series transitions of hydrogen,
+ Kurucz,
+ 2017). That is, the data may require so many parameters to
+ be fit that the compression is no longer worthwhile.
+
+
+
+
+ Methods
+
cortecs seeks to compress redundant
+ information by representing opacity data not as the opacity itself but
+ as fits to the opacity as a function of temperature and pressure. We
+ generally refer to this process as compression as
+ opposed to fitting to emphasize that we do not seek
+ to construct physically motivated, predictive, or comprehensible
+ models of the opacity function. Rather, we simply seek representations
+ of the opacity function that consume less RAM/VRAM. The compression
+ methods we use are lossy — the original opacity data
+ cannot be exactly recovered with our methods. We find that the loss of
+ accuracy is tolerable for at least the hot Jupiter emission
+ spectroscopy application (see Benchmark below).
+
We provide three methods of increasing complexity (and flexibility)
+ for compressing and decompressing opacity: polynomial-fitting,
+ principal components analysis (PCA, e.g.,
+ Jolliffe
+ & Cadima, 2016) and neural networks (e.g.,
+ Alzubaidi
+ et al., 2021). The default neural network architecture is a
+ fully connected neural network; the user can specify the desired
+ hyperparameters, such as number of layers, neurons per layer, and
+ activation function. Alternatively, any keras
+ model
+ (Chollet,
+ 2015) can be passed to the fitter. Each compression method is
+ paired with a decompression method for evaluating opacity as a
+ function of temperature, pressure, and wavelength. These decompression
+ methods are tailored for GPUs and are accelerated with the
+ JAX code transformation framework
+ (Bradbury
+ et al., 2018). An example of this reconstruction is shown in
+ [fig:example].
+ In the figure, opacities less than
+
+ 10−60
+ are ignored. This is because, to become optically thick at a pressure
+ of 1 bar and temperature of 1000 K, a column would need to be nearly
+
+
+ 1034m
+ long. Here we show a brief derivation of this. The length of the
+ column,
+
+ ds
+ is
+
+ ds=τα,
+ where
+
+ τ
+ is the optical depth, and
+
+ α
+ is the absorption coefficient. Setting
+
+ τ=1,
+ we have
+
+ ds=1α.
+ The absorption coefficient is the product of the opacity and the
+ density of the gas:
+
+ ds=1κλρ.
+ Therefore,
+
+ ds=1κλρ.
+ The density of the gas
+
+ ρ
+ is the pressure divided by the product of the temperature and the gas
+ constant:
+
+ ρ=PkBTμ
+ for mean molecular weight
+
+ μ.
+ This leads to the final equation for the column length:
+
+
+ ds=kBTμPκλ.
+ For CO, the mean molecular weight is 28.01 g/mol. Plugging in, we
+ arrive at
+
+ ds≈1034m
+ (roughly
+
+ 1017
+ parsecs) for
+
+ κλ=10−33
+ ,
+ which is equivalent to roughly a cross-section of
+
+
+ σλ=10−60
+ .
+
+
Top panel: The original opacity function of CO
+ (Rothman
+ et al., 2010) (solid lines) and its
+ cortecs reconstruction (transparent lines)
+ over a large wavelength range and at multiple temperatures and
+ pressures. Bottom panel: the absolute residuals between the opacity
+ function and its cortecs reconstruction.
+
+
+ σλ
+ is the opacity, in units of square meters. We cut off the opacity at
+
+
+ 10−104,
+ explaining the shape of the residuals in teal and dark red. Note
+ that opacities less than
+
+ 10−60
+ are not generally relevant for the benchmark presented here; an
+ opacity of
+
+ σλ=10−60
+ would require a column nearly
+
+ 1034m
+ long to become optically thick at a pressure of 1 bar and
+ temperature of 1000 K.
+
+
+
+
+
+ Workflow
+
A typical workflow with cortecs involves the
+ following steps:
+
+
+
Acquiring: Download opacity data from a source such as the
+ ExoMol database
+ (Tennyson
+ et al., 2016) or the HITRAN database
+ (Gordon
+ et al., 2017).
+
+
+
Fitting: Compress the opacity data with
+ cortecs’s fit
+ methods.
+
+
+
Saving: Save the compressed opacity data (the fitted
+ parameters) to disk.
+
+
+
Loading: Load the compressed opacity data from disk in whatever
+ program you’re applying the data—e.g., within your radiative
+ transfer code.
+
+
+
Decompressing: Evaluate the opacity with
+ cortecs’s eval
+ methods.
+
+
+
The accuracy of these fits may or may not be suitable for a given
+ application. It is important to test that the error incurred using
+ cortecs does not impact the results of your
+ application—for instance, by using the
+ cortecs.fit.metrics.calc_metrics function to
+ calculate the error incurred by the compression and by calculating
+ spectra with and without using
+ cortecs-compressed opacities. We provide an
+ example of such a benchmarking exercise below.
+
+
+ Benchmark: High-resolution retrieval of WASP-77Ab
+
As a proof of concept, we perform a parameter inference exercise (a
+ “retrieval,”
+ Madhusudhan
+ & Seager, 2009) on the high-resolution thermal emission
+ spectrum of the fiducial hot Jupiter WASP-77Ab
+ (August
+ et al., 2023;
+ Line
+ et al., 2021;
+ Mansfield
+ et al., 2022) as observed at IGRINS. The retrieval pairs
+ PyMultiNest
+ (Buchner
+ et al., 2014) sampling with the CHIMERA
+ radiative transfer code
+ (Line
+ et al., 2013), with opacity from
+
+ (Polyansky
+ et al., 2018),
+
+ (Rothman
+ et al., 2010),
+
+ (Hargreaves
+ et al., 2020),
+
+ (Coles
+ et al., 2019),
+
+ (Barber
+ et al., 2014),
+
+ (Azzam
+ et al., 2016), and
+
+ collision-induced absorption
+ (Karman
+ et al., 2019). The non-compressed retrieval uses the data and
+ retrieval framework from
+ (Line
+ et al., 2021), run in an upcoming article (Savel et al. 2024,
+ submitted). For this experiment, we use the PCA-based compression
+ scheme implemented in cortecs, preserving 2
+ principal components and their corresponding weights as a function for
+ each wavelength as a lossy compression of the original opacity
+ data.
+
Using cortecs, we compress the input opacity
+ files by a factor of 13. These opacity data (as described earlier in
+ the paper) were originally stored as 2.1 GB .h5 files containing 39
+ temperature points, 18 pressure points, and 373,260 wavelength points.
+ The compressed opacity data are stored as a 143.1 MB .npz file,
+ including the PCA coefficients and PCA vectors (which are reused for
+ each wavelength point). These on-disk memory quotes are relatively
+ faithful to the in-memory RAM footprint of the data when stored as
+ numpy arrays (2.1 GB for the uncompressed data
+ and 160 MB for the compressed data). Reading in the original files
+ takes 1.1
+
+ ±
+ 0.1 seconds, while reading in the compressed files takes 24.4
+
+
+ ±
+ 0.3 ms. Accessing/evaluating a single opacity value takes 174.0
+
+
+ ±
+ 0.5 ns for the uncompressed data and 789
+
+
+ ±
+ 5 ns for the compressed data. All of these timing experiments are
+ performed on a 2021 MacBook Pro with an Apple M1 Pro chip and 16 GB of
+ RAM.
+
Importantly, we find that our compressed-opacity retrieval yields
+ posterior distributions (as plotted by the
+ corner package,
+ Foreman-Mackey,
+ 2016) and Bayesian evidences that are consistent with those
+ from the benchmark retrieval using uncompressed opacity
+ ([fig:corner])
+ within a comparable runtime. The two posterior distributions exhibit
+ slightly different substructure, which we attribute to the compressed
+ results requiring 10% more samples to converge (about 5 hours of extra
+ runtime on a roughly 2 day-long calculation) and residual differences
+ between the compressed and uncompressed opacities. The results from
+ this exercise indicate that our compression/decompression scheme is
+ accurate enough to be used in at least some high-resolution
+ retrievals.
+
+
The posterior distributions for our baseline WASP-77Ab
+ retrieval (teal) and our retrieval using opacities compressed by
+ cortecs (gold).
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Method
+
Compression factor
+
Median absolute deviation
+
Compression time (s)
+
Decompression time (s)
+
+
+
+
+
PCA
+
13
+
0.30
+
2.6
+
+ ×101
+
2.3
+
+ ×102
+
+
+
Polynomials
+
44
+
0.24
+
7.8
+
+ ×102
+
3.6
+
+ ×103
+
+
+
Neural network
+
9
+
2.6
+
1.4
+
+ ×107
+
3.6
+
+ ×104
+
+
+
+
+
Comparison of compression methods used for the full HITEMP CO line
+ list
+ (Rothman
+ et al., 2010) over the IGRINS wavelength range at a resolving
+ power of 250,000, cumulative for all data points. Note that the neural
+ network compression performance and timings are only assessed at a
+ single wavelength point and extrapolated over the full wavelength
+ range.
+
+
+ Acknowledgements
+
A.B.S. and E.M-R.K. acknowledge support from the Heising-Simons
+ Foundation. We thank Max Isi for helpful discussions.
+
+
+
+
+
+
+
+
+ KuruczRobert L
+
+ Including all the lines: Data releases for spectra and opacities
+
+ NRC Research Press
+ 2017
+ 95
+ 9
+ 10.1139/cjp-2016-0794
+ 825
+ 827
+
+
+
+
+
+ ShowmanAdam P
+ TanXianyu
+ ParmentierVivien
+
+ Atmospheric dynamics of hot giant planets and brown dwarfs
+
+ Springer
+ 2020
+ 216
+ 10.1007/s11214-020-00758-8
+ 1
+ 83
+
+
+
+
+
+ BarstowJoanna K
+ ChangeatQuentin
+ GarlandRyan
+ LineMichael R
+ RocchettoMarco
+ WaldmannIngo P
+
+ A comparison of exoplanet spectroscopic retrieval tools
+
+ Oxford University Press
+ 2020
+ 493
+ 4
+ 10.1093/mnras/staa548
+ 4884
+ 4909
+
+
+
+
+
+ LineMichael R
+ BrogiMatteo
+ BeanJacob L
+ GandhiSiddharth
+ ZaleskyJoseph
+ ParmentierVivien
+ SmithPeter
+ MaceGregory N
+ MansfieldMegan
+ KemptonEliza M-R
+ others
+
+ A solar c/o and sub-solar metallicity in a hot jupiter atmosphere
+
+ Nature Publishing Group UK London
+ 2021
+ 598
+ 7882
+ 10.1038/s41586-021-03912-6
+ 580
+ 584
+
+
+
+
+
+ TennysonJonathan
+ YurchenkoSergei N
+ Al-RefaieAhmed F
+ BartonEmma J
+ ChubbKaty L
+ ColesPhillip A
+ DiamantopoulouS
+ GormanMaire N
+ HillChristian
+ LamAden Z
+ others
+
+ The ExoMol database: Molecular line lists for exoplanet and other hot atmospheres
+
+ Elsevier
+ 2016
+ 327
+ 10.1016/j.jms.2016.05.002
+ 73
+ 94
+
+
+
+
+
+ MansfieldMegan
+ WiserLindsey
+ StevensonKevin B
+ SmithPeter
+ LineMichael R
+ BeanJacob L
+ FortneyJonathan J
+ ParmentierVivien
+ KemptonEliza M-R
+ ArcangeliJacob
+ others
+
+ Confirmation of water absorption in the thermal emission spectrum of the hot jupiter WASP-77Ab with HST/WFC3
+
+ IOP Publishing
+ 2022
+ 163
+ 6
+ 10.3847/1538-3881/ac658f
+ 261
+
+
+
+
+
+
+ AugustPrune C.
+ BeanJacob L.
+ ZhangMichael
+ LunineJonathan
+ XueQiao
+ LineMichael
+ SmithPeter C. B.
+
+ Confirmation of Subsolar Metallicity for WASP-77Ab from JWST Thermal Emission Spectroscopy
+
+ 202308
+ 953
+ 2
+ https://arxiv.org/abs/2305.07753
+ 10.3847/2041-8213/ace828
+ L24
+
+
+
+
+
+
+ BuchnerJ
+ GeorgakakisA
+ NandraK
+ HsuL
+ RangelC
+ BrightmanM
+ MerloniA
+ SalvatoM
+ DonleyJ
+ KocevskiD
+
+ X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue
+
+ EDP Sciences
+ 2014
+ 564
+ 10.1051/0004-6361/201322971
+ A125
+
+
+
+
+
+
+ LineMichael R
+ WolfAaron S
+ ZhangXi
+ KnutsonHeather
+ KammerJoshua A
+ EllisonElias
+ DerooPieter
+ CrispDave
+ YungYuk L
+
+ A systematic retrieval analysis of secondary eclipse spectra. I. A comparison of atmospheric retrieval techniques
+
+ IOP Publishing
+ 2013
+ 775
+ 2
+ 10.1088/0004-637X/775/2/137
+ 137
+
+
+
+
+
+
+ JolliffeIan T
+ CadimaJorge
+
+ Principal component analysis: A review and recent developments
+
+ The Royal Society Publishing
+ 2016
+ 374
+ 2065
+ 10.1098/rsta.2015.0202
+ 20150202
+
+
+
+
+
+
+ GordonIouli E
+ RothmanLaurence S
+ HillChristian
+ KochanovRoman V
+ TanY
+ BernathPeter F
+ BirkManfred
+ BoudonV
+ CampargueAlain
+ ChanceKV
+ others
+
+ The HITRAN2016 molecular spectroscopic database
+
+ Elsevier
+ 2017
+ 203
+ 10.1016/j.jqsrt.2017.06.038
+ 3
+ 69
+
+
+
+
+
+ RothmanLaurence S
+ GordonIE
+ BarberRJ
+ DotheH
+ GamacheRobert R
+ GoldmanA
+ PerevalovVI
+ TashkunSA
+ TennysonJ
+
+ HITEMP, the high-temperature molecular spectroscopic database
+
+ Elsevier
+ 2010
+ 111
+ 15
+ 10.1016/j.jqsrt.2010.05.001
+ 2139
+ 2150
+
+
+
+
+
+ AlzubaidiLaith
+ ZhangJinglan
+ HumaidiAmjad J
+ Al-DujailiAyad
+ DuanYe
+ Al-ShammaOmran
+ Santamarı́aJosé
+ FadhelMohammed A
+ Al-AmidieMuthana
+ FarhanLaith
+
+ Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions
+
+ Springer
+ 2021
+ 8
+ 10.1186/s40537-021-00444-8
+ 1
+ 74
+
+
+
+
+
+ BradburyJames
+ FrostigRoy
+ HawkinsPeter
+ JohnsonMatthew James
+ LearyChris
+ MaclaurinDougal
+ NeculaGeorge
+ PaszkeAdam
+ VanderPlasJake
+ Wanderman-MilneSkye
+ ZhangQiao
+
+ JAX: Composable transformations of Python+NumPy programs
+ 2018
+ http://github.com/google/jax
+
+
+
+
+
+ LeeElspeth KH
+ WardenierJoost P
+ PrinothBibiana
+ ParmentierVivien
+ GrimmSimon L
+ BaeyensRobin
+ CaroneLudmila
+ ChristieDuncan
+ DeitrickRussell
+ KitzmannDaniel
+ others
+
+ 3D radiative transfer for exoplanet atmospheres. gCMCRT: A GPU-accelerated MCRT code
+
+ IOP Publishing
+ 2022
+ 929
+ 2
+ 10.3847/1538-4357/ac61d6
+ 180
+
+
+
+
+
+
+ ItoYuki
+ MatsumiyaRyo
+ EndoToshio
+
+ Ooc_cuDNN: Accommodating convolutional neural networks over GPU memory capacity
+
+ IEEE
+ 2017
+ 10.1109/BigData.2017.8257926
+ 183
+ 192
+
+
+
+
+
+ Foreman-MackeyDaniel
+
+ Corner.py: Scatterplot matrices in python
+
+ The Open Journal
+ 201606
+ 1
+ 2
+ https://doi.org/10.21105/joss.00024
+ 10.21105/joss.00024
+ 24
+
+
+
+
+
+
+ MaceGregory
+ SokalKimberly
+ LeeJae-Joon
+ OhHeeyoung
+ ParkChan
+ LeeHanshin
+ GoodJohn
+ MacQueenPhillip
+ OhJae Sok
+ KaplanKyle
+ others
+
+ IGRINS at the discovery channel telescope and gemini south
+
+ SPIE
+ 2018
+ 10702
+ 10.1117/12.2312345
+ 204
+ 221
+
+
+
+
+
+ PepeF
+ CristianiStefano
+ ReboloR
+ SantosNC
+ DekkerH
+ CabralA
+ Di MarcantonioPaolo
+ FigueiraP
+ CurtoG Lo
+ LovisC
+ others
+
+ ESPRESSO at VLT-on-sky performance and first results
+
+ EDP Sciences
+ 2021
+ 645
+ 10.1051/0004-6361/202038306
+ A96
+
+
+
+
+
+
+ SeifahrtAndreas
+ BeanJacob L
+ StürmerJulian
+ KasperDavid
+ GersLuke
+ SchwabChristian
+ ZechmeisterMathias
+ StefánssonGumundur
+ MontetBen
+ Dos SantosLeonardo A
+ others
+
+ On-sky commissioning of MAROON-x: A new precision radial velocity spectrograph for gemini north
+
+ SPIE
+ 2020
+ 11447
+ 10.1117/12.2561564
+ 305
+ 325
+
+
+
+
+
+ MadhusudhanN
+ SeagerSara
+
+ A temperature and abundance retrieval method for exoplanet atmospheres
+
+ IOP Publishing
+ 2009
+ 707
+ 1
+ 10.1088/0004-637X/707/1/24
+ 24
+
+
+
+
+
+
+ WardenierJoost P
+ ParmentierVivien
+ LineMichael R
+ LeeElspeth K H
+
+ Modelling the effect of 3D temperature and chemistry on the cross-correlation signal of transiting ultra-hot Jupiters: a study of five chemical species on WASP-76b
+
+ 202308
+ 525
+ 4
+ 0035-8711
+ https://doi.org/10.1093/mnras/stad2586
+ 10.1093/mnras/stad2586
+ 4942
+ 4961
+
+
+
+
+
+ BeltzHayley
+ RauscherEmily
+ KemptonEliza M-R
+ MalskyIsaac
+ SavelArjun B
+
+ Magnetic effects and 3D structure in theoretical high-resolution transmission spectra of ultrahot jupiters: The case of WASP-76b
+
+ IOP Publishing
+ 2023
+ 165
+ 6
+ 10.3847/1538-3881/acd24d
+ 257
+
+
+
+
+
+
+ SavelArjun B
+ KemptonEliza M-R
+ MalikMatej
+ KomacekThaddeus D
+ BeanJacob L
+ MayErin M
+ StevensonKevin B
+ MansfieldMegan
+ RauscherEmily
+
+ No umbrella needed: Confronting the hypothesis of iron rain on WASP-76b with post-processed general circulation models
+
+ IOP Publishing
+ 2022
+ 926
+ 1
+ 10.3847/1538-4357/ac423f
+ 85
+
+
+
+
+
+
+ PrinothB.
+ HoeijmakersH. J.
+ PelletierS.
+ KitzmannD.
+ MorrisB. M.
+ SeifahrtA.
+ KasperD.
+ KorhonenH. H.
+ BurheimM.
+ BeanJ. L.
+ BennekeB.
+ BorsatoN. W.
+ BradyM.
+ GrimmS. L.
+ LuqueR.
+ StürmerJ.
+ ThorsbroB.
+
+ Time-resolved transmission spectroscopy of the ultra-hot Jupiter WASP-189 b
+
+ 202310
+ 678
+ https://arxiv.org/abs/2308.04523
+ 10.1051/0004-6361/202347262
+ A182
+
+
+
+
+
+
+ ColesPhillip A
+ YurchenkoSergei N
+ TennysonJonathan
+
+ ExoMol molecular line lists–XXXV. A rotation-vibration line list for hot ammonia
+
+ Oxford University Press
+ 2019
+ 490
+ 4
+ 10.1093/mnras/stz2778
+ 4638
+ 4647
+
+
+
+
+
+ KarmanTijs
+ GordonIouli E
+ Der AvoirdAd van
+ BaranovYury I
+ BouletChristian
+ DrouinBrian J
+ GroenenboomGerrit C
+ GustafssonMagnus
+ HartmannJean-Michel
+ KuruczRobert L
+ others
+
+ Update of the HITRAN collision-induced absorption section
+
+ Elsevier
+ 2019
+ 328
+ 10.1016/j.icarus.2019.02.034
+ 160
+ 175
+
+
+
+
+
+ BarberRJ
+ StrangeJK
+ HillC
+ PolyanskyOL
+ MellauG Ch
+ YurchenkoSN
+ TennysonJonathan
+
+ ExoMol line lists–III. An improved hot rotation-vibration line list for HCN and HNC
+
+ Oxford University Press
+ 2014
+ 437
+ 2
+ 10.1093/mnras/stt2011
+ 1828
+ 1835
+
+
+
+
+
+ AzzamAla’a AA
+ TennysonJonathan
+ YurchenkoSergei N
+ NaumenkoOlga V
+
+ ExoMol molecular line lists–XVI. The rotation–vibration spectrum of hot H2S
+
+ Oxford University Press
+ 2016
+ 460
+ 4
+ 10.1093/mnras/stw1133
+ 4063
+ 4074
+
+
+
+
+
+ HargreavesRobert J
+ GordonIouli E
+ ReyMichael
+ NikitinAndrei V
+ TyuterevVladimir G
+ KochanovRoman V
+ RothmanLaurence S
+
+ An accurate, extensive, and practical line list of methane for the HITEMP database
+
+ IOP Publishing
+ 2020
+ 247
+ 2
+ 10.3847/1538-4365/ab7a1a
+ 55
+
+
+
+
+
+
+ GandhiSiddharth
+ KesseliAurora
+ ZhangYapeng
+ LoucaAmy
+ SnellenIgnas
+ BrogiMatteo
+ MiguelYamila
+ Casasayas-BarrisNúria
+ PelletierStefan
+ LandmanRico
+ others
+
+ Retrieval survey of metals in six ultrahot jupiters: Trends in chemistry, rain-out, ionization, and atmospheric dynamics
+
+ IOP Publishing
+ 2023
+ 165
+ 6
+ 10.3847/1538-3881/accd65
+ 242
+
+
+
+
+
+
+ MaguireCathal
+ GibsonNeale P
+ NugrohoStevanus K
+ RamkumarSwaetha
+ FortuneMark
+ MerrittStephanie R
+ MooijErnst de
+
+ High-resolution atmospheric retrievals of WASP-121b transmission spectroscopy with ESPRESSO: Consistent relative abundance constraints across multiple epochs and instruments
+
+ Oxford University Press
+ 2023
+ 519
+ 1
+ 10.1093/mnras/stac3388
+ 1030
+ 1048
+
+
+
+
+
+ CholletFrançois
+
+ Keras
+ https://keras.io
+ 2015
+
+
+
+
+
+ PolyanskyOleg L
+ KyuberisAleksandra A
+ ZobovNikolai F
+ TennysonJonathan
+ YurchenkoSergei N
+ LodiLorenzo
+
+ ExoMol molecular line lists XXX: A complete high-accuracy line list for water
+
+ Oxford University Press
+ 2018
+ 480
+ 2
+ 10.1093/mnras/sty1877
+ 2597
+ 2608
+
+
+
+
+
diff --git a/joss.06104/paper.jats/example_application.png b/joss.06104/paper.jats/example_application.png
new file mode 100644
index 0000000000..922b31cfbd
Binary files /dev/null and b/joss.06104/paper.jats/example_application.png differ
diff --git a/joss.06104/paper.jats/pca_compress.png b/joss.06104/paper.jats/pca_compress.png
new file mode 100644
index 0000000000..aac3dfd429
Binary files /dev/null and b/joss.06104/paper.jats/pca_compress.png differ